
SSLRef 3.0 API Details
SSLRef 3.0 Final -- 11/19/96

Copyright (c)1996 by Netscape Communications Corp.

By retrieving this software you are bound by the licensing terms disclosed in
the file "LICENSE.txt". Please read it, and if you don't accept the terms, delete
this software.

SSLRef 3.0 was codeveloped by Netscape Communications Corp. of Mountain
View, California <http://home.netscape.com/> and Consensus Development
Corporation of Berkeley, California <http://www.consensus.com>.

SSLRef 3.0 API Details contents
November 19, 1996, version 3.0 final

Contents
Preface... 1

Definitions... 1
Public API .. 2

Summary of API functions.. 2
Data Structures ... 3

General Data Types.. 3
SSLBuffer... 3
SSLContext .. 3
Reference Parameters.. 4

SSLRef Error Return Values ... 5
Connection Creation and Deletion.. 5

SSLContextSize... 5
SSLInitContext.. 6
SSLDeleteContext... 6
SSLDuplicateContext... 7

Connection Configuration... 8
SSLSetProtocolSide.. 8
SSLSetProtocolVersion... 8
SSLSetPrivateKey... 10
SSLSetExportPrivateKey... 11
SSLSetDHAnonParams.. 11
SSLSetRequestClientCert ... 12
SSLAddCertificate.. 12
SSLAddDistinguishedName... 13
SSLSetPeerID... 14

Connection Status.. 14
SSLGetProtocolVersion.. 15
SSLGetPeerCertificateChainLength ... 15
SSLGetPeerCertificate.. 16
SSLGetNegotiatedCipher ... 17
SSLGetWritePendingSize .. 17
SSLGetReadPendingSize.. 18

Data Exchange... 18
SSLHandshake.. 18
SSLRead ... 19
SSLWrite.. 20
SSLServiceWriteQueue.. 21
SSLClose... 22

SSLRef 3.0 API Details contents
November 19, 1996, version 3.0 final

Assigning Application Callbacks.. 22
SSLSetAllocFunc.. 22
SSLSetFreeFunc.. 23
SSLSetReallocFunc.. 23
SSLSetAllocRef... 24
SSLSetTimeFunc.. 24
SSLSetConvertTimeFunc .. 25
SSLSetTimeRef... 25
SSLSetRandomFunc ... 26
SSLSetRandomRef .. 26
SSLSetReadFunc .. 27
SSLSetWriteFunc... 27
SSLSetIORef .. 28
SSLSetAddSessionFunc.. 28
SSLSetGetSessionFunc ... 29
SSLSetDeleteSessionFunc.. 29
SSLSetSessionRef... 30
SSLSetCheckCertificateFunc.. 30
SSLSetCheckCertificateRef... 31

Platform-specific Callbacks... 31
SSLAllocFunc ... 31
SSLFreeFunc ... 32
SSLReallocFunc.. 33
SSLRandomFunc... 34
SSLTimeFunc ... 35
SSLConvertTimeFunc.. 36

I/O Callbacks ... 36
SSLReadFunc.. 37
SSLWriteFunc .. 37

Session Resumption Callbacks ... 38
SSLAddSessionFunc ... 39
SSLGetSessionFunc... 40
SSLDeleteSessionFunc.. 41

Certificate Verification Callbacks.. 41
SSLCheckCertificateFunc ... 42

SSLRef 3.0 API Details 1 of 42
November 19, 1996, version 3.0 final

Preface
This document was last updated on November 22, 1996 by Eric Gundrum
(Consensus Development) <eric@macgroup.com>. It is based on original
documents written by Tim Dierks (Consensus Development)
<timd@consensus.com>.

This document describes the programmers interface of the SSLRef 3.0 library.
SSLRef 3.0 implements the SSL 3.0 protocol.

Before reading this document, you should be familiar with the SSL 3.0
protocol. You can find more information about SSL 3.0 from
<http://home.netscape.com/newsref/std/SSL.html>.

You may also find it helpful to read about how SSLRef works, described in
API_Introduction.txt, and what SSLRef does, described in
Implementation_Notes.txt.

Definitions
Throughout this document these terms are used exclusively with these
definitions:

• Client refers to any software implementing the client side of the SSL
protocol.

• Server refers to any software implementing the server side of the SSL
software.

• Peer refers to the client or server to which you are connecting.

• User refers to the software that is making use of the SSLRef library.

SSLRef 3.0 API Details 2 of 42
November 19, 1996, version 3.0 final

Public API
This section describes each function call of the public API. These calls are
declared in ssl.h. These descriptions include the purpose of the call, how it is
normally used, and how it affects the state of the SSL connection.

Before reading this section, you should have read API_Introduction.txt to
learn about the architecture of SSLRef 3.0, and you should review the sample
code for SSLRef 3.0 to learn how the library is typically used.

Summary of API functions
• Data Structures describes the public data structures used by the library.

• Connection Creation and Deletion represents a group of calls used to
create and destroy whole SSL connection contexts.

• Connection Configuration represents a group of calls used to setup and
configure the state of the SSL connection context.

• Connection Status represents a group of calls used to examine the state of
the SSL connection context.

• Data Exchange functions are used to communicate over the physical
connection using the SSL protocol. These include SSLHandshake,
SSLRead and SSLWrite.

• Application Callback functions identify several groups of functions
implemented by the user to provide platform-dependent capabilities, such
as memory allocation and data exchange over the physical connection.
Additional callbacks are used to provide capabilities best tailored to the
specific needs of the user.

SSLRef 3.0 API Details 3 of 42
November 19, 1996, version 3.0 final

Data Structures

General Data Types
The library generally uses ANSI C data types wherever possible. However,
when the specific size of the data is critical to the application, these general
data types are used: sint8, uint8, sint16, uint16, sint32, uint32.

SSLBuffer
Many functions require a block of data upon which to act. These data blocks
are passed as an SSLBuffer structure specifying the length of the data block
and a pointer to the data block.

SSLContext
For each SSL connection, a connection instance (context) is created. This
context serves as a constant reference to that connection supplied by the user.
The context parameter, of type SSLContext, is used by nearly all functions in
the public API. (Internally it is labeled as ctx.)

A SSLContext instance stores the cryptographic data associated with the
connection, certificates, references to the I/O callbacks, and various other data
used by the library.

SSLContext Is an Opaque Data Structure
SSLContext , like all other structures internal to the SSLRef implementation,
is treated by the API as an opaque value.

The details of this structure are not exposed to the user. The user must call
through the API to modify or view fields of an SSLContext instance.

This separation of interface and implementation serves three purposes:
1. This separation creates a clear distinction between data members which

are part of the public interface and those which are not.

2. This separation allows the library developer to modify the SSLRef
implementation without requiring modification of the library’s clients.

3. This separation allows the library to be notified when a value changes,
allowing for greater flexibility in adding features to the SSLRef library.

SSLRef 3.0 API Details 4 of 42
November 19, 1996, version 3.0 final

SSLRef Is Thread-safe, But SSLContext Is Not Reentrant
The library relies on the user to maintain an independent context for each
connection instead of using static or global data. This allows the library to
remain thread-safe, but the SSLContext data structure is not reentrant.

The library assumes that exactly one thread owns a specific SSLContext
instance. There is no library-based protection against multiple library threads
attempting to update the same SSLContext instance. If multiple threads are
sharing a particular SSLContext instance, the user is responsible for resolving
contention for access to fields within the SSLContext instance.

For the library to be used in a threaded environment, the user implemented
callbacks must be thread-safe. Note that all active sessions can simultaneously
use callbacks to access the same database information about resumable
sessions, for example.

Reference Parameters
Included in the parameter list of most callback functions is a reference
parameter. This reference parameter can be used as a pointer by which data
can be passed through the library to the callback functions.

For example, an I/O callback used to implement receiving data might use its
reference parameter as a pointer to the socket number or other identifier
required to identify the stream for a particular connection.

The reference parameter is stored as type void*. However, the library will
never dereference or otherwise access a reference parameter, so they need not
be pointers.

Reference parameters are stored in the same SSLContext structure as the
callback function pointers. Because the reference parameter is how the
callback functions are expected to distinguish between different physical
connections, the SSLContext structures must be unique for each SSL
connection. Typically a generic context structure is created and held as a
template. When an SSL connection instance is created, the template structure
is duplicated and its unique fields, such as the I/O reference parameter, are set
as needed.

An individual callback may share its reference parameter with other similar
callbacks. For example, the Read and Write callbacks will both receive the
same reference parameter value when called for a particular connection.
Review the list of application callbacks to see how the reference parameters
are shared.

SSLRef 3.0 API Details 5 of 42
November 19, 1996, version 3.0 final

SSLRef Error Return Values
Most SSLRef routines can return an error if the routine does not complete as
expected. SSLRef expects the user-defined callback functions to return similar
errors where appropriate. Errors from the callback functions are generally
passed up the call chain and ultimately are returned to the caller of the SSL
API function. These SSLErrors are declared in sslerrors.h:

SSLNoErr SSLMemoryErr
SSLUnsupportedErr SSLOverflowErr
SSLUnknownErr SSLProtocolErr
SSLNegotiationErr SSLFatalAlert
SSLWouldBlockErr SSLIOErr
SSLConnectionClosedGraceful SSLConnectionClosedError
ASNBadEncodingErr ASNIntegerTooBigErr
X509CertChainInvalidErr X509NamesNotEqualErr

Connection Creation and Deletion
Calls used to create and delete the SSL connection context.

uint32 SSLContextSize(void);

The Purpose Of This Function
Determine the amount of memory required by a SSLContext structure.

How the Parameters are Used
The return value indicates how many bytes should be allocated for use by the
SSLContext structure.

How This Function Affects the Library
SSLContextSize() does not affect the library.

How Errors Are Handled
SSLContextSize() cannot encounter an error.

SSLRef 3.0 API Details 6 of 42
November 19, 1996, version 3.0 final

SSLErr SSLInitContext(SSLContext *ctx);

The Purpose Of This Function
Initialize the internal values of the SSLContext structure. SSLInitContext()
must be called before other SSLSet… functions.

How the Parameters are Used
ctx points to a memory buffer to be initialized as a SSLContext with default
values.

How This Function Affects the Library
The internal values of ctx are initialized.

If ctx points to a SSLContext currently in use, its values will be initialized
without regard to its associated SSL connection.

SSLInitContext() does not affect any internal values set by calls to SSLSet....
SSLInitContext and the various SSLSet... calls can be made in any order;
however, the memory allocation callbacks should be set before others that
will allocate memory.

How Errors Are Handled
SSLInitContext() cannot encounter an error.

SSLErr SSLDeleteContext(SSLContext *ctx);

The Purpose Of This Function
Release all resources held by a SSLContext structure. The SSLContext
structure is not deallocated.

How the Parameters are Used
ctx points to the context to be released. The user is still responsible for
deallocating the SSLContext structure after the SSLDeleteContext call.

How This Function Affects the Library
Heap memory and other resources of ctx are released. Memory occupied by
ctx is not released.

SSLRef 3.0 API Details 7 of 42
November 19, 1996, version 3.0 final

If the SSL connection has not been closed, it should be closed by calling
SSLClose before deleting the SSLContext.

How Errors Are Handled
SSLDeleteContext() cannot encounter an error.

SSLErr SSLDuplicateContext
(SSLContext *src, SSLContext *dest, void *ioRef);

The Purpose Of This Function
Initialize a SSLContext structure using another as a template.

How the Parameters are Used
src points to the template context.

dest points to the context to be initialized.

ioRef points to the I/O reference parameter to be used when initializing the
new SSLContext (dest).

How This Function Affects the Library
The contents of src are unaffected by this call.

The contents of dest are initialized by the library using the information in
src where appropriate. ioRef is also added to dest as if SSLSetIORef(dest,
ioRef) had been called.

Even if src represents an active SSL connection, dest is set as an inactive
SSL connection as if dest were created from scratch using the SSLSet... calls.
SSLDuplicateContext() is merely a short cut to avoid repeated SSLSet... calls
when most contexts will be initialized with the same data.

How Errors Are Handled
Errors returned by the allocation callbacks can be returned. Typically this will
be SSLMemoryErr.

X509CertChainInvalidErr and X509NamesNotEqualErr also can be returned if
there is a problem with the certificate chain, but these are unlikely.

SSLRef 3.0 API Details 8 of 42
November 19, 1996, version 3.0 final

Connection Configuration
Calls used to configure the SSL connection context.

SSLErr SSLSetProtocolSide
(SSLContext *ctx, SSLProtocolSide side);

The Purpose Of This Function
Specify whether to connect as an SSL server or SSL client.

How the Parameters are Used
side must be either SSL_ServerSide or SSL_ClientSide.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
SSL_ServerSide specifies that the library will act as a SSL server for all
communications using this context.

SSL_ClientSide specifies that the library will act as a SSL client for all
communications using this context.

How Errors Are Handled
SSLSetProtocolSide() cannot encounter an error.

SSLErr SSLSetProtocolVersion
(SSLContext *ctx, SSLProtocolVersion version);

The Purpose Of This Function
Specify what versions of the SSL protocol can be used for the connection.

How the Parameters are Used
version specifies what versions of the SSL protocol can be used for the
connection as described below.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
The library negotiates connections differently based on the value of version:

SSLRef 3.0 API Details 9 of 42
November 19, 1996, version 3.0 final

SSL_Version_Undetermined
Use this option to connect to SSL 2.0 and SSL 3.0 peers.

The library will negotiate either SSL 2.0 or SSL 3.0.

The library will send initial Hello messages using SSL 2.0, then attempt to
negotiate up to SSL 3.0. If the peer does not support SSL 3.0, then
communication will continue using SSL 2.0.

SSL_Version_3_0_With_2_0_Hello
Use this option to force an SSL 3.0 connection, but allow a meaningful error
message when SSL 2.0-only peers attempt a connection.

The library will negotiate only SSL 3.0, but it will support an initiating SSL 2.0
Hello.

The library will send initial Hello messages using SSL 2.0, then attempt to
negotiate up to SSL 3.0. If the peer does not support SSL 3.0, then
handshaking will fail and further communication will cease.

SSL 2.0 communications is not permitted in this mode.

SSL_Version_3_0_Only
Use this option for the highest security when you always know that the SSL
peer supports SSL 3.0.

The library will send initial Hello messages using SSL 3.0 and all
communications will occur using SSL 3.0. If the peer does not support SSL 3.0,
the handshake will fail without a meaningful indication of why it failed.

This setting can cause problems with some SSL 2.0 servers that will block
against a read that will never complete because the server does not
understand the SSL 3.0 Hello.

SSL_Version_2_0
Use this option to restrict all communications to SSL 2.0.

The library will send initial Hello messages using SSL 2.0. If the peer supports
SSL 2.0, further communication will take place using SSL 2.0.

SSLRef 3.0 API Details 10 of 42
November 19, 1996, version 3.0 final

Version Handshaking Summary

Server Setting

Client Setting Undetermined 3.0 W/2.0 Hello 3.0 Only 2.0 Only

Undetermined 3.0 3.0 (a) 2.0

3.0 W/2.0 Hello 3.0 3.0 (a) (b)

3.0 Only 3.0 3.0 3.0 (c)

2.0 Only 2.0 (d) (e) 2.0

Each entry specifies the negotiated protocol version. Alphabetic notes indicate
why negotiation is impossible:

(a) These protocols support SSL 3.0, but the SSL 3.0 setting on the server
prevents the SSL 2.0 Hello message they send from being recognized.

(b) The SSL 2.0 Hello message sent by the client is recognized, but the
server will respond with a 2.0 response. The client rejects this response; it
is set to communicate using only SSL 3.0.

(c) The SSL 3.0 Hello message sent by the client will not be understood by the
SSL 2.0 server.

(d) The server understands the SSL 2.0 message, but it is configured to not
communicate with a SSL 2.0-only client.

(e) The server will not be able to parse the SSL 2.0 Hello message sent by
the client.

How Errors Are Handled
SSLSetProtocolVersion() does not check for errors.

SSLErr SSLSetPrivateKey
(SSLContext *ctx, SSLRSAPrivateKey *privKey);

The Purpose Of This Function
Specify the private key used for signing and non-export key exchange. This
private key must match the installed public key.

How the Parameters are Used
privKey points to a valid RSAREF or BSAFE formatted private key. The
desired format is specified by setting BSAFE or RSAREF compile flag to a non-
zero value. The library will free this block after closing the SSL connection.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

SSLRef 3.0 API Details 11 of 42
November 19, 1996, version 3.0 final

How This Function Affects the Library
This SSLContext structure's private key field is set to the specified pointer.

How Errors Are Handled
SSLSetPrivateKey() does not check for errors.

SSLErr SSLSetExportPrivateKey
(SSLContext *ctx, SSLRSAPrivateKey *privKey);

The Purpose Of This Function
Specify the export private key used for this SSL connection. This key should
be less than 512 bits for compatibility with exportable SSL implementations.
Note that this key is required when using the RSA_EXPORT Cipher Suite.

How the Parameters are Used
privKey points to a valid RSAREF or BSAFE formatted private key. The
desired format is specified by setting BSAFE or RSAREF compile flag to a non-
zero value. The library will free this block after closing the SSL connection.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
This SSLContext structure's export private key field is set to the specified
pointer.

How Errors Are Handled
SSLSetExportPrivateKey() does not check for errors.

SSLErr SSLSetDHAnonParams
(SSLContext *ctx, SSLDHParams *dhAnonParams);

The Purpose Of This Function
Specify the parameters used for anonymous Diffie-Hellman calculations.

How the Parameters are Used
dhAnonParams points to a valid RSAREF or BSAFE formatted set of Diffie-
Hellman parameters. The desired format is specified by setting BSAFE or
RSAREF compile flag to a non-zero value. The library will free this block after
closing the SSL connection.

SSLRef 3.0 API Details 12 of 42
November 19, 1996, version 3.0 final

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
This SSLContext structure's Diffie-Hellman parameters field is set to the
specified pointer. This value is passed to RSAREF or BSAFE as needed by the
libraries.

How Errors Are Handled
SSLSetDHAnonParams() does not check for errors.

SSLErr SSLSetRequestClientCert
(SSLContext *ctx, int requestClientCert);

The Purpose Of This Function
Specify if certificates should be requested from connecting SSL clients.

How the Parameters are Used
requestClientCert specifies that the peer is asked for a certificate if the peer
is acting as an SSL client.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
This SSLContext structure's requestClientCert field is set to the specified
value. A non-zero value directs the library to request a certificate when
handshaking with an SSL client.

How Errors Are Handled
SSLSetRequestClientCert() does not check for errors.

SSLErr SSLAddCertificate
(SSLContext *ctx, SSLBuffer derCert, int parent,
int complete);

The Purpose Of This Function
Add a certificate to the chain of certificates used when authenticating to an
SSL peer. This is necessary when using in a server that supports RSA key
exchange. This is optional for clients.

SSLRef 3.0 API Details 13 of 42
November 19, 1996, version 3.0 final

How the Parameters are Used
derCert is a DER-encoded X.509 (v1, 2 or 3) certificate.

parent set to a non-zero value specifies that this certificate is a parent to
certificates previously added.

complete set to a non-zero value specifies that this is the last certificate to be
added.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
Certificates are added to the chain as parents or children of other certificates
previously added. When complete is specified, SSLRef will attempt to verify
the certificate chain.

How Errors Are Handled
Possible errors returned include allocation errors,
X509CertChainInvalidErr and X509NamesNotEqualErr.

SSLErr SSLAddDistinguishedName
(SSLContext *ctx, SSLBuffer derDN);

The Purpose Of This Function
Add a distinguished name to the list of acceptable distinguished names used
when acting as a server and requesting client authentication. This list is
transmitted to the client when requesting a client certificate.

How the Parameters are Used
derDN is a DER-encoded X.509 (v1, 2 or 3) Distinguished Name.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
The distinguished name is added to the SSLContext structure.

How Errors Are Handled
Errors returned by the allocation callbacks can be returned. Typically this will
be SSLMemoryErr.

SSLRef 3.0 API Details 14 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetPeerID(SSLContext *ctx, SSLBuffer peerID);

The Purpose Of This Function
Uniquely identify the SSL peer associated with this SSL connection. Setting a
peer ID activates the session resumption capabilities for this session.

How the Parameters are Used
peerID is an opaque buffer. When acting as a client, the library passes it to the
session database callback functions as the key and without regard for its
contents; it should be a representation of the peer's network address and port,
or some other uniquely identifying value. When acting as a server, the library
uses the existence of a peerID buffer to indicate that this session might be
resumed; the library uses the session ID provided by the client as the key
passed to the session database callback functions. When acting as a server, the
contents of peerID are not used, but the buffer must exist. In all cases, the
library will free this buffer when it is done with it.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
The library uses callback functions to retrieve existing peer information to
resume the SSL session. If the peer is a server and is not in the resumable
connection database, the library uses this value as a key when adding the
resumption data for this session. If the peer is a client, the library uses the
client’s session ID as the key when adding the resumption data for this
session.

If this function is not called for an SSLContext, the library will not attempt to
resume a session with this peer, nor will the library attempt to store any
session data.

How Errors Are Handled
Errors returned by the allocation callbacks can be returned. Typically this will
be SSLMemoryErr.

Connection Status
Calls used to examine the SSL connection context. These functions provide
read access to the SSLContext fields that reflect the status of the connection.
There are no functions for retrieving fields set by the user.

SSLRef 3.0 API Details 15 of 42
November 19, 1996, version 3.0 final

SSLErr SSLGetProtocolVersion
(SSLContext *ctx, SSLProtocolVersion *version);

The Purpose Of This Function
Examine what version of the SSL protocol is being used for the connection.
(The protocol version is normally negotiated between the SSL peers. See the
description for SSLSetProtocolVersion.)

How the Parameters are Used
version points to a container into which the version identifier is copied as
described below.

ctx points to the context structure defining the SSL connection being
examined.

How This Function Affects the Library
Before the protocol is negotiated, version will contain whatever value is set
by the user.

After the protocol is negotiated, version will contain one of these values:

SSL_Version_2_0
The library is communicating with the peer using the SSL 2.0 protocol.

SSL_Version_3_0
The library is communicating with the peer using the SSL 3.0 protocol.

How Errors Are Handled
SSLGetProtocolVersion() does not check for errors.

SSLErr SSLGetPeerCertificateChainLength
(SSLContext *ctx, int *chainLen);

The Purpose Of This Function
Examine the number of certificates in the peer certificate chain.

How the Parameters are Used
chainLen points to a container into which the number of certificates in the
peer certificate chain is copied.

ctx points to the context structure defining the SSL connection being
examined.

SSLRef 3.0 API Details 16 of 42
November 19, 1996, version 3.0 final

How This Function Affects the Library
SSLGetPeerCertificateChainLength() counts the number of certificates in the
peer certificate chain and copies the result to the container pointed to by
chainLength.

How Errors Are Handled
SSLGetPeerCertificateChainLength() does not check for errors.

SSLErr SSLGetPeerCertificate
(SSLContext *ctx, int index, SSLBuffer *derCert);

The Purpose Of This Function
Examine a certificate from the peer certificate chain.

How the Parameters are Used
derCert points to an empty buffer structure which will be updated to specify
a copy of the requested certificate. The memory pointed to by the updated
buffer is allocated using the AllocFunc() callback and should be freed by the
user.

index specifies which certificate to retrieve by its position in the certificate
chain.

ctx points to the context structure defining the SSL connection being
examined.

How This Function Affects the Library
The requested certificate is found in the peer certificate chain. Memory is
allocated for a copy of the certificate using the AllocFunc() callback function
and the certificate is copied to the memory. The buffer structure is updated to
point to the new certificate.

How Errors Are Handled
SSLOverflowErr can be returned if the requested certificate does not exist.

Any error returned by the AllocFunc() callback function can also be returned.

SSLRef 3.0 API Details 17 of 42
November 19, 1996, version 3.0 final

SSLErr SSLGetNegotiatedCipher
(SSLContext *ctx, uint16 *cipherSuite);

The Purpose Of This Function
Examine what Cipher Suite was selected during the handshake process.

How the Parameters are Used
cipherSuite points to a container into which the identifier of the negotiated
Cipher Suite will be copied. Possible identifiers are specified in Appendix A of
the SSL Protocol Version 3.0 Specification document.

ctx points to the context structure defining the SSL connection being
examined.

How This Function Affects the Library
After a Cipher Suite has been chosen, cipherSuite will contain its identifier
as specified in cryptype.h.

How Errors Are Handled
SSLGetNegotiatedCipher() does not check for errors.

SSLErr SSLGetWritePendingSize
(SSLContext *ctx, uint32 *waitingBytes);

The Purpose Of This Function
Examine how many encrypted bytes are waiting in the write queue to be sent
to the peer.

How the Parameters are Used
waitingBytes points to a container into which the number of bytes in the
write queue will be copied.

ctx points to the context structure defining the SSL connection being
examined.

How This Function Affects the Library
waitingBytes will specify how many bytes have been encrypted but not yet
sent to the peer. These bytes are held in the write queue until the queue is
serviced through a call to SSLWrite or SSLServiceWriteQueue.

How Errors Are Handled
SSLGetWritePendingSize() does not check for errors.

SSLRef 3.0 API Details 18 of 42
November 19, 1996, version 3.0 final

SSLErr SSLGetReadPendingSize
(SSLContext *ctx, uint32 *waitingBytes);

The Purpose Of This Function
Examine how many decrypted bytes of application data are in the read buffer
available to be read by the user.

How the Parameters are Used
waitingBytes points to a container into which the number of bytes of
application data in the read buffer will be copied.

ctx points to the context structure defining the SSL connection being
examined.

How This Function Affects the Library
waitingBytes will specify how many bytes of application data have been
decrypted but not yet read by the user (or the library during handshaking).
These bytes are held in the read buffer until read through a call to SSLRead.

How Errors Are Handled
SSLGetReadPendingSize() does not check for errors.

Data Exchange
Calls used to establish an SSL connection and exchange data with an SSL peer.

SSLErr SSLHandshake(SSLContext *ctx);

The Purpose Of This Function
Initiate and progress handshake negotiation for an SSL connection.

How the Parameters are Used
ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
SSLHandshake initiates the handshake process with the peer. In the absence
of any errors, SSLHandshake will not return until the handshake process is
complete. Note that the handshake process generally will cause data to be
written to the connection as well as read using the I/O callbacks.

SSLRef 3.0 API Details 19 of 42
November 19, 1996, version 3.0 final

How Errors Are Handled
SSLWouldBlockError is returned if the read or write callback is unable to
fully satisfy the request made by the SSL engine. The user should continue by
calling SSLHandshake after taking any desired action during the block.

SSLProtocolError is returned if there is an error in the handshake process.
SSLProtocolError typically indicates the peer is not compliant with the SSL
protocol and will not support SSL communications. This error is fatal.

This function can return any of the defined SSL errors including any error
returned by the allocation and I/O callback functions.

SSLErr SSLRead
(void *data, uint32 *length, SSLContext *ctx);

The Purpose Of This Function
Read data from an SSL connection.

How the Parameters are Used
data points to the buffer where the read data is will be stored.

length points to the size of the buffer in bytes. *length will be replaced with
the number of bytes actually read.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
If a secure SSL connection has already been negotiated, SSLRead first attempts
to satisfy the read request with any data already decrypted in its internal
buffer. If the buffer contains insufficient data, the ReadFunc() callback
function is called to retrieve enough data from the physical connection to
decrypt a complete record. The decrypted data is moved to the internal buffer
and the requested amount is returned to the user.

If a secure SSL connection has not yet been negotiated, SSLRead initiates the
handshake process with the peer. In the absence of any errors, SSLRead will
not return until the handshake process is complete. Note that the handshake
process generally will cause data to be written to the connection as well as
read.

How Errors Are Handled
SSLWouldBlockError is returned if the read or write callback is unable to
fully satisfy the request made by the SSL engine. The user should attempt to
read again by calling SSLRead after taking any desired action during the block.

SSLRef 3.0 API Details 20 of 42
November 19, 1996, version 3.0 final

If the block occurred during handshaking and the user calls SSLRead again, it
will attempt to continue the handshake process.

SSLProtocolError is returned if there is an error in the handshake process.
SSLProtocolError typically indicates the peer is not compliant with the SSL
protocol and will not support SSL communications. This error is fatal.

This function can return any of the defined SSL errors including
SSLConnectionClosedGraceful, SSLConnectionClosedError and any
error returned by the allocation and I/O callback functions.

SSLErr SSLWrite
(void *data, uint32 *length, SSLContext *ctx);

The Purpose Of This Function
Write data to an SSL connection.

How the Parameters are Used
data points to the block of data to be written. The user is responsible for
freeing the buffer passed to SSLWrite.

length points to the number of bytes to be written. *length will be replaced
with the number of bytes actually written.

ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
If an SSL connection has already been established, SSLWrite causes the
specified data to be encrypted, added to the write queue, and the write queue is
serviced.

If an SSL connection has not yet been established, SSLWrite initiates the
handshake process with the peer. In the absence of any errors, SSLWrite will
not return until the handshake process is complete. This process also causes
data to be read using the ReadFunc callback.

How Errors Are Handled
SSLWouldBlockError is returned if the read or write callback is unable to
fully satisfy the request made by the SSL engine. The user should attempt to
write again by calling SSLWrite after taking any desired action during the
block, and accounting for the portion of data that was successfully written. If
the block occurred during handshaking and the user calls SSLWrite again, it
will attempt to continue the handshake process.

SSLRef 3.0 API Details 21 of 42
November 19, 1996, version 3.0 final

Typically SSLWouldBlockError will return only if the write callback
returned SSLWouldBlockError while processing the write queue. However,
the data buffer passed to SSLWrite will have been processed into the write
queue before the block. This means that all data is processed, but SSLWrite
must be called again with new data or no data, or SSLProcessWriteQueue
must be called to continue processing the write queue.

SSLProtocolError is returned if there is an error in the handshake process.
SSLProtocolError typically indicates the peer is not compliant with the SSL
protocol and will not support SSL communications. This error is fatal.

This function can return any of the defined SSL errors including
SSLConnectionClosedGraceful, SSLConnectionClosedError and any
error returned by the allocation and I/O callback functions.

SSLErr SSLServiceWriteQueue
(SSLConntext *ctx);

The Purpose Of This Function
Attempt to process the internal write queue, writing all available data to the
connection. SSLProcessWriteQueue is typically called after SSLWrite has
returned SSLWouldBlockErr and the user has no additional data to write.

How the Parameters are Used
ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects the Library
SSLServiceWriteQueue attempts to write the contents of the write queue
using the WriteFunc() callback function. In the absence of any errors,
SSLServiceWriteQueue will not return until the write queue is empty.

Directing SSLWrite to write zero bytes of data will have a similar affect, but
SSLWrite performs a number of other tasks in addition to processing the
write queue.

How Errors Are Handled
SSLWouldBlockError is returned if the WriteFunc() callback is unable to
fully satisfy the request made by the SSL engine. The user should continue by
calling SSLProcessWriteQueue after taking any desired action during the
block.

This function can return any error returned by the allocation and I/O callback
functions.

SSLRef 3.0 API Details 22 of 42
November 19, 1996, version 3.0 final

SSLErr SSLClose(SSLContext *ctx);

The Purpose Of This Function
SSLClose attempts to close the SSL connection with the peer. If the
connection is not properly closed, it cannot be resumed.

How Parameters are Used
ctx points to the context structure defining the SSL connection. The library
updates it as necessary for its internal use.

How This Function Affects The Library
A finished message is sent to the peer, indicating that no further
communications should be expected.

Note that SSLClose calls the WriteFunc() callback function.

How Errors Are Handled
SSLWouldBlockError is returned if the WriteFunc() callback is unable to
process the write request. The user should continue by calling
SSLProcessWriteQueue after taking any desired action during the block.

Assigning Application Callbacks
Specify the various functions used by the library to obtain platform-specific
services for the specified context.

SSLErr SSLSetAllocFunc
(SSLContext *ctx, SSLAllocFunc alloc);

The Purpose Of This Function
Specify the function used by the library to allocate memory for internal use.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

alloc points to a SSLAllocFunc() function as specified in the section
Platform-specific Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 23 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetFreeFunc
(SSLContext *ctx, SSLFreeFunc free);

The Purpose Of This Function
Specify the function used by the library to free memory allocated using the
function specified by SSLSetAllocFunc().

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

free points to a SSLFreeFunc() function as specified in the section Platform-
specific Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLErr SSLSetReallocFunc
(SSLContext *ctx, SSLAllocFunc realloc);

The Purpose Of This Function
Specify the function used by the library to adjust the size of a memory block
previously allocated using the function specified by SSLSetAllocFunc().

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

realloc points to a SSLReallocFunc() function as specified in the section
Platform-specific Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 24 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetAllocRef(SSLContext *ctx, void *allocRef);

The Purpose Of This Function
Specify the reference parameter passed by the library to the memory allocation
callback functions.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

allocRef is passed through to the memory allocation callback functions. It is
shared by SSLAllocFunc(), SSLFreeFunc(), and SSLReallocFunc().

allocRef is not used by the library. It is up to the callback functions to
determine how allocRef is used.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLErr SSLSetTimeFunc
(SSLContext *ctx, SSLTimeFunc time);

The Purpose Of This Function
Specify the function used by the library to determine the current time.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

time points to a SSLTimeFunc() function as specified in the section Platform-
specific Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 25 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetConvertTimeFunc
(SSLContext *ctx, SSLTimeFunc convertTime);

The Purpose Of This Function
Specify the function used by the library to convert time.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

converTime points to a SSLConvertTimeFunc() function as specified in the
section Platform-specific Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLErr SSLSetTimeRef(SSLContext *ctx, void *timeRef);

The Purpose Of This Function
Specify the reference parameter passed by the library to the time callback
functions.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

timeRef is passed through to the time callback functions. It is shared by
SSLTimeFunc() and SSLConvertTimeFunc().

timeRef is not used by the library. It is up to the callback functions to
determine how timeRef is used.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 26 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetRandomFunc
(SSLContext *ctx, SSLRandomFunc random);

The Purpose Of This Function
Specify the function used by the library to obtain a random number.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

random points to a SSLRandomFunc() function as specified in the section
Platform-specific Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLErr SSLSetRandomRef
(SSLContext *ctx, void *randomRef);

The Purpose Of This Function
Specify the reference parameter passed by the library to the random callback
function.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

randomRef is passed through to the random callback function.

randomRef is not used by the library. It is up to the callback function to
determine how randomRef is used.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 27 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetReadFunc
(SSLContext *ctx, SSLIOFunc read);

The Purpose Of This Function
Specify the function used by the library to retrieve data from the physical
connection.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

read points to a SSLIOFunc() function as specified in the section I/O
Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLErr SSLSetWriteFunc
(SSLContext *ctx, SSLIOFunc write);

The Purpose Of This Function
Specify the function used by the library to write data to the physical
connection.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

write points to a SSLIOFunc() function as specified in the section I/O
Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 28 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetIORef(SSLContext *ctx, void *ioRef);

The Purpose Of This Function
Specify the reference parameter passed by the library to the I/O callback
functions.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

ioRef is passed through to the I/O callback functions. It is shared by
SSLReadFunc() and SSLWriteFunc().

ioRef is not used by the library. It is up to the callback functions to determine
how ioRef is used.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLErr SSLSetAddSessionFunc
(SSLContext *ctx, SSLAddSessionFunc addSession);

The Purpose Of This Function
Specify the function used by the library to add a session's resume information
to the database of resumable sessions.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

addSession points to a SSLAddSessionFunc() function as specified in the
section Session Resumption Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 29 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetGetSessionFunc
(SSLContext *ctx, SSLGetSessionFunc getSession);

The Purpose Of This Function
Specify the function used by the library to retrieve a session's resume
information from the database of resumable sessions.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

getSession points to a SSLGetSessionFunc() function as specified in the
section Session Resumption Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLErr SSLSetDeleteSessionFunc
(SSLContext *ctx, SSLDeleteSessionFunc
deleteSession);

The Purpose Of This Function
Specify the function used by the library to remove a session's resume
information from the database of resumable sessions.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

deleteSession points to a SSLDeleteSessionFunc() function as specified in
the section Session Resumption Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 30 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetSessionRef
(SSLContext *ctx, void *sessionRef);

The Purpose Of This Function
Specify the reference parameter passed by the library to the Session
Resumption callback functions.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

sessionRef is passed through to the Session Resumption callback functions.
It is shared by SSLAddSessionFunc(), SSLGetSessionFunc(), and
SSLDeleteSessionFunc().

sessionRef is not used by the library. It is up to the callback functions to
determine how sessionRef is used.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLErr SSLSetCheckCertificateFunc
(SSLContext *ctx, SSLCheckCertificateFunc
checkCertificate);

The Purpose Of This Function
Specify the function used by the library to check the validity of a certificate.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

checkCertificate points to a SSLCheckCertificateFunc() function as
specified in the section Certificate Verification Callbacks.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

SSLRef 3.0 API Details 31 of 42
November 19, 1996, version 3.0 final

SSLErr SSLSetCheckCertificateRef
(SSLContext *ctx, void *checkCertificateRef);

The Purpose Of This Function
Specify the reference parameter passed by the library to the Certificate
Verification callback functions.

How the Parameters are Used
ctx points to the context structure into which this parameter is installed.

checkCertificateRef is passed through to the Certificate Verification
callback functions. It is used by SSLCheckCertificateFunc().

checkCertificateRef is not used by the library. It is up to the callback
functions to determine how checkCertificateRef is used.

How This Function Affects the Library
This function configures the SSLContext structure for later use.

How Errors Are Handled
This functions does not check for errors.

Platform-specific Callbacks
These functions must be supplied by the user to provide memory allocation,
random numbers, and time access in a platform-independent manner.

If the library is used in a threaded manner, all callbacks provided by the
application must be thread-safe.

typedef SSLErr (*SSLAllocFunc)
(SSLBuffer *buf, void *allocRef);

The Purpose Of This Function
Allocate memory to be used internally by the library.

How the Parameters are Used
buf points to a SSLBuffer structure identifying the memory to be allocated.

buf->length specifies how many bytes to allocate.

buf->data must contain a pointer to the allocated space when the function
returns. It must be NULL if the allocation fails.

SSLRef 3.0 API Details 32 of 42
November 19, 1996, version 3.0 final

allocRef is the value specified by SetAllocRef() for this SSLContext. It is up
to the callback function to determine how to use allocRef.

The return value must be zero if the allocation succeeds. All other values are
considered an error.

How This Function Affects the Library
The library calls *SSLAllocFunc() whenever it requires more memory, such
as for read and write buffers.

Any buf structure returned from *SSLAllocFunc() must be a valid parameter
to *SSLFreeFunc(), even if the allocation failed.

How Errors Are Handled
The user determines what errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are passed back to the user through the
calling functions. The library will not act upon any of these errors.

typedef SSLErr (*SSLFreeFunc)
(SSLBuffer *buf, void *allocRef);

The Purpose Of This Function
Free memory used internally by the library and allocated with
*SSLAllocFunc().

How the Parameters are Used
buf points to a SSLBuffer structure identifying the memory to be freed.

buf->length specifies how many bytes this buffer uses. It should not be used
by this function.

buf->data contains a pointer to the memory to be freed. It may be NULL if
the allocation had failed.

allocRef is the value specified by SetAllocRef() for this SSLContext. It is up
to the callback function to determine how to use allocRef.

The return value must be zero if the free succeeds. All other values are
considered an error.

SSLRef 3.0 API Details 33 of 42
November 19, 1996, version 3.0 final

How This Function Affects the Library
The library calls *SSLFreeFunc() whenever it is done with the memory it had
received from a previous call to *SSLAllocFunc().

*SSLFreeFunc() must be able to handle any buf structure returned from
*SSLAllocFunc(), including one where the allocation failed (which should
have buf->data set to NULL).

How Errors Are Handled
The user determines what errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are passed back to the user through the
calling functions. The library will not act upon any of these errors.

typedef SSLErr (*SSLReallocFunc)
(SSLBuffer *buf, uint32 newSize, void *allocRef);

Attempt to reallocate the buffer, copying all data possible.

The Purpose Of This Function
Attempt to resize a block of memory used internally by the library and
allocated with *SSLAllocFunc().

How the Parameters are Used
buf points to a SSLBuffer structure identifying the memory to be resized.

buf->length specifies how many bytes this buffer uses. It should be set to the
new size when this function returns.

buf->data contains a pointer to the memory to be resized. It should be set to
point to the new block when this function returns. All data from the original
buffer must be copied to the new block if a new block is allocated.

buf->data should be set to NULL if the realloc fails and destroys the original
buffer. Memory previously pointed to by buf->data must be freed.

newSize specifies the desired size of the new buffer.

allocRef is the value specified by SetAllocRef() for this SSLContext. It is up
to the callback function to determine how to use allocRef.

The return value must be zero if the realloc succeeds. All other values are
considered an error.

SSLRef 3.0 API Details 34 of 42
November 19, 1996, version 3.0 final

How This Function Affects the Library
The library can call *SSLReallocFunc() to resize a block of memory it had
received from a previous call to *SSLAllocFunc().

*SSLReallocFunc() must be able to handle any buf structure returned from
*SSLAllocFunc().

How Errors Are Handled
The user determines what errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are passed back to the user through the
calling functions. The library will not act upon any of these errors.

typedef SSLErr (*SSLRandomFunc)
(SSLBuffer buf, void *randomRef);

The Purpose Of This Function
Provide a buffer of cryptographically secure random bytes.

How the Parameters are Used
buf is a SSLBuffer structure identifying where to copy the random data.

buf.length specifies how many bytes of random data is requested.

buf.data contains a pointer to the memory where the bytes are to be copied.

randomRef is the value specified by SetRandomRef() for this SSLContext. It is
up to the callback function to determine how to use randomRef .

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
The random data provided by this function is used for a variety of
cryptographic purposes for the specified SSL connection. It is up to the user to
ensure that this data is cryptographically secure for the specified SSLContext.

Seeding this generator is the responsibility of the user.

SSLRef 3.0 API Details 35 of 42
November 19, 1996, version 3.0 final

How Errors Are Handled
The user determines what errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are passed back to the user through the
calling functions. The library will not act upon any of these errors.

typedef SSLErr (*SSLTimeFunc)
(uint32 *time, void *timeRef);

The Purpose Of This Function
Provide the current time in seconds GMT since Midnight, Jan 1, 1970, GMT.

How the Parameters are Used
time points to a 32 bit unsigned integer into which the user must place the
current time in seconds GMT since Midnight, Jan 1, 1970, GMT. This value
must be GMT, not a local reference.

timeRef is the value specified by SetTimeRef() for this SSLContext. It is up to
the callback function to determine how to use timeRef .

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
The time data provided by this function is used for a variety of purposes for
the specified SSL connection.

How Errors Are Handled
The user determines what errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are passed back to the user through the
calling functions. The library will not act upon any of these errors.

SSLRef 3.0 API Details 36 of 42
November 19, 1996, version 3.0 final

typedef SSLErr (*SSLConvertTimeFunc)
(uint32 *time, void *timeRef);

The Purpose Of This Function
Convert the input time from the format returned by the user's ANSI C
function mktime() to seconds GMT since Midnight, Jan 1, 1970, GMT.

How the Parameters are Used
time points to a 32 bit unsigned integer containing a time value in the format
provided by the user's ANSI C function mktime().(mktime() is an ANSI C
library function linked to the SSLRef library when it is built.)

Upon return, time must point to the input value converted to seconds GMT
since Midnight, Jan 1, 1970, GMT. This value must be GMT, not a local
reference.

timeRef is the value specified by SetTimeRef() for this SSLContext. It is up to
the callback function to determine how to use timeRef.

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
The time data provided by this function is used for a variety of purposes for
the specified SSL connection.

How Errors Are Handled
The user determines what errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are passed back to the user through the
calling functions. The library will not act upon any of these errors.

I/O Callbacks
These functions are used to give the SSLRef library access to data transport
over a particular physical connection. The user is responsible for opening and
closing the physical connection; hence, no such functions are provided. This
allows clients to begin an SSL connection after some unencrypted
communication for protocols which require it, or vary the client/server mode
of the communication.

If the library is used in a threaded manner, all callbacks provided by the
application must be thread-safe.

SSLRef 3.0 API Details 37 of 42
November 19, 1996, version 3.0 final

typedef SSLErr (*SSLReadFunc)
(SSLBuffer data, uint32 *processed, void *connRef);

The Purpose Of This Function
Retrieve data from the specified physical connection.

How the Parameters are Used
data is an SSLBuffer into which the retrieved data should be copied.

data.length specifies how much data to read.

Upon return, processed must point to the number of bytes that were read.

ioRef is the value specified by SetIORef() for this SSLContext. It must provide
enough information to distinguish this physical connection from others. It is
up to the callback function to determine exactly how to use ioRef. Typically it
will contain a pointer to data describing the physical connection.

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
The data read is decrypted by the library and, if application data, passed to the
user through SSLRead(). Otherwise the data is processed by the library as
appropriate.

How Errors Are Handled
The user determines what errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are passed back to the user through the
calling functions. The library will not act upon any of these errors.

This function may at the user's discretion return SSLWouldBlockErr if
fulfilling the read request would cause the library to block further processing.

typedef SSLErr (*SSLWriteFunc)
(SSLBuffer data, uint32 *processed, void *connRef);

The Purpose Of This Function
Write data to the specified physical connection.

How the Parameters are Used
data is an SSLBuffer from which the data should be copied.

SSLRef 3.0 API Details 38 of 42
November 19, 1996, version 3.0 final

data.length specifies how much data to write.

Upon return, processed must point to the number of bytes that were
written.

ioRef is the value specified by SetIORef() for this SSLContext. It must provide
enough information to distinguish this physical connection from others. It is
up to the callback function to determine exactly how to use ioRef. Typically it
will contain a pointer to the physical connection.

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
The library prepares data from SSLWrite(), or SSL protocol messages, and
passes the data to this function to be sent through the physical connection.

How Errors Are Handled
The user determines what errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are passed back to the user through the
calling functions. The library will not act upon any of these errors.

This function may at the user's discretion return SSLWouldBlockErr if
fulfilling the write request would cause the library to block further processing.

Session Resumption Callbacks
These functions are used to allow SSLRef to maintain a database of resumable
SSL sessions as identified by the value set by the SSLSetPeerID() function. The
user is responsible for aging and deleting obsolete sessions from this database.

The stored information is persistent across processes. It consists of

• session ID (used as a key for retrieval)

• protocol version of the session

• cipher spec used for the session

• master secret for the session

• certificates of the peer for the session

Note that this is an opaque data structure. Users should not rely on this
information being stored in this way in future versions.

SSLRef 3.0 API Details 39 of 42
November 19, 1996, version 3.0 final

If the library is used in a threaded manner, all callbacks provided by the
application must be thread-safe.

typedef SSLErr (*SSLAddSessionFunc)
(SSLBuffer sessionKey, SSLBuffer sessionData,
void *sessionRef);

The Purpose Of This Function
Add the session information to the database.

How the Parameters are Used
sessionKey is an SSLBuffer identifying this peer. The value is originally
specified by the user through the SSLSetPeerID() function. The library does
not access this data in any way.

sessionData is an SSLBuffer identifying information needed by the library
to resume this session. The library retains ownership of this buffer. The user
must copy the data before returning.

sessionData.length specifies the size of the data to be stored.

sessionData.data points to the data to be stored.

sessionRef is the value specified by SetSessionRef() for this SSLContext. It is
up to the callback function to determine exactly how to use sessionRef.
Typically it will contain a pointer to the database structures.

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
When the library establishes a session with a peer, it requests this function
store enough information about the session that the session can be later
resumed. This stored data is opaque to the user, but must be retrievable by the
session key.

If the database already contains an entry for this session key that entry should
be replaced with this new one.

The user is responsible for aging and deleting obsolete sessions from its
database.

How Errors Are Handled
The user determines what errors this function can generate.

All errors generated by this function are ignored.

SSLRef 3.0 API Details 40 of 42
November 19, 1996, version 3.0 final

typedef SSLErr (*SSLGetSessionFunc)
(SSLBuffer sessionKey, SSLBuffer *sessionData,
void *sessionRef);

The Purpose Of This Function
Retrieve the session information specified by the sessionKey from the
database.

How the Parameters are Used
sessionKey is an SSLBuffer identifying this peer. The value is originally
specified by the user through the SSLSetPeerID() function. The library does
not access this data in any way.

sessionData must be filled with a pointer to an SSLBuffer allocated by this
function and into which the session resumption data is copied. This buffer
must be allocated such that it can be freed with the FreeFunc() callback. Note
that ownership of the allocated memory is transferred from this function to
the library. The library becomes responsible for freeing that memory.

sessionRef is the value specified by SetSessionRef() for this SSLContext. It is
up to the callback function to determine exactly how to use sessionRef.
Typically it will contain a pointer to the physical connection.

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
Before the library establishes a session with the peer, it requests this function
return any stored information about previous sessions with this peer. This
information, which typically contains authentication and cryptographic data,
will be used to resume the session. This stored data is opaque to the user, but
must be retrievable by the session key.

If the database does not contain an entry for this session key,
SSLNoMatchingSessionKeyErr should be returned.

How Errors Are Handled
Return SSLNoMatchingSessionKeyErr if no sessionKey match is found.

The user determines what other errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function cause the session to not be resumed.
Otherwise, errors are ignored.

SSLRef 3.0 API Details 41 of 42
November 19, 1996, version 3.0 final

typedef SSLErr (*SSLDeleteSessionFunc)
(SSLBuffer sessionKey, void *connRef);

The Purpose Of This Function
Delete the session information specified by the sessionKey from the database.

How the Parameters are Used
sessionKey is an SSLBuffer identifying this peer. The value is originally
specified by the user through the SSLSetPeerID() function. The library does
not access this data in any way.

sessionRef is the value specified by SetSessionRef() for this SSLContext. It is
up to the callback function to determine exactly how to use sessionRef.
Typically it will contain a pointer to the physical connection.

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
If the library detects that the security of a session might be compromised, such
as by proper close messages not being received, the library will request that
session resumption data associated with that peer be removed from the
database so that the session can not be resumed.

How Errors Are Handled
Return SSLNoMatchingSessionKeyErr if no sessionKey match is found.

The user determines what other errors this function can generate.

The user is encouraged to return one of the defined SSL errors where
appropriate.

All errors generated by this function are ignored.

Certificate Verification Callbacks
These functions are used to allow SSLRef to allow the user to perform
additional verification of certificates. Before a certificate is added to a
certificate chain, SSLRef verifies it against other certificates in the chain.
However, SSLRef does not perform any other verification of certificate.

If the library is used in a threaded manner, all callbacks provided by the
application must be thread-safe.

SSLRef 3.0 API Details 42 of 42
November 19, 1996, version 3.0 final

typedef SSLErr (*SSLCheckCertificateFunc)
(int certCount, SSLBuffer *derCerts, void
*checkCertificateRef);

The Purpose Of This Function
Perform any additional certificate verification procedures desired by the user.
This callback function is typically used to enable whatever model of trust is
appropriate for the user.

How the Parameters are Used
certCount is the number of certificates to be processed.

derCerts points to an array of buffer structures specifying the certificates to
be processed. The library retains ownership of this array and the certificates.

checkCertificateRef is the value specified by SSLSetCheckCertificateRef()
for this SSLContext. It is up to the callback function to determine exactly how
to use checkCertificateRef.

The return value must be zero if the function succeeds. All other values are
considered an error.

How This Function Affects the Library
When the library is building a chain of certificates, each certificate is verified
with the other certificates in the chain. No other verification or authenticity
checks are performed. Instead, this callback function is called, allowing the
user to perform any additional checks desired.

How Errors Are Handled
The user determines what errors this function can generate.

All errors generated by this function are passed to the calling function.

