SILICOM GRAPHICS | The: Sou-re of Innovation and Discowery™

Silicon Graphics, Inc.

Exploring High Bandwidth Hlesystems on
Large Systems

Presented by:

David Chinner
Jeremy Higdon

&
August 9, 2006 S gl

Background

« History of filesystem performance comparisons on small machines.

« Indicate the maximum performance achievable by a small number of disks, not
the maximum the kernel or the filesystem can achieve.

« Increasing bandwidth requirements from customers:
— Past: < 300MiB/s from 2.4.x kernels.
— Present: 1-2GiB/s from early 2.6.x kernels.
— Future: > 5GiB/s from current 2.6.x kernels.

sgt

Background, Part 2

« Dual- and multi-core CPUs are leading to higher parallelism on mainstream
servers and desktops.

« Memory Capacity:
— Increasing substantially faster than disk transfer rates.
— More disks required to fill memory at the same proportional rate.

« Storage per disk:
— Increasing faster than transfer rates.
— Less disks are required for a given storage capacity.
— Need to maximise per-disk throughput.

sgt

Need To Know.....

« Can we reach the physical hardware limits on a big machine?
e Is Linux stable under these loads?

« What VM issues arise under these loads?

« Are there NUMA issues we need to address?

« Do we have new file fragmentation problems?

« Are there other bottlenecks we do not know about?

« Can we expect customer workloads to achieve the same results?

sgt

Test Hardware

» Altix 3700:

24x 1.5GHz Itanium 2 CPUs.

24GiB RAM.

Cache coherent NUMALINnk 4 interconnect between nodes.

36 x 133MHz PCI-X slots directly attached to the interconnect.
64 HBAs, U320 SCSI and Fibre Channel.

256 disks, 4 to each controller.

« Theoretical maximum sustained disk throughput is approximately 11.5GiB/s.

« Memory bandwidth and bi-sectional interconnect bandwidth substantially higher
than this.

sgt

Machine Topology

kL4 Crossbar Router, MLE link, 2x3.2G0/s (full
8 ports duplex) peak throughput

P-Brick. Z Nodes (2x133MHZ c| € Brick, 2 Nodes {2 CPUs,
PCI-X buses, 3 slots each) 2GIB RAM ezch)

Test Methodology

« Many configuration variables to be explored such as:
— Volume and block device parameters.
— different filesystems and filesystem parameters.
— different 1/O sizes and thread counts.
— memory and process placement.

e PCP (http://oss.sgi.com/projects/pcp) Used to archive monitored parameters for
off-line analysis.

« Many parameters to be monitored including:
— CPU, disk and memory utilisation.
— VM behaviour.
— Filesystem and volume manager behaviour (if supported)

sgt

Test Methodology

« Test Preparation:

Configure volume and filesystem with specific test parameters.

Mount filesystem, write out N “read” files with increasing levels of parallelism, then
unmount filesystem.

« Repeat for different numbers of threads and I/O block sizes:

Mount filesystem.

Read n “read” files using 1/O size B.

Unmount, remount filesystem.

Write n “write” files using I/O size B after first truncating them to zero length.
Unmount filesystem.

sgt

Volume Layout

« 1024 character line length limit for dmsetup:
— Could not set up a flat 256 disk RAID-0 stripe.
— Roughly 90 disks to a stripe was the limit.

o 2-tier RAID-O0 stripe using MD and DM:
— 4x64 disk DM RAID-O0 stripes.
— MD RAID-O0 stripe of DM volumes.
— Same stripe unit and stripe width as a flat stripe.

« SGI's XVM volume manager was used to confirm that the 2-tier stripe gave
equivalent performance to a flat stripe.

« Stripe unit and width were varied to find the configuration that resulted in optimal
throughput.

sgt

Results: Baseline XFS

« SUSE Linux Enterprise Server 9, Service Pack 2.
« Buffered 1/O, 128KiB 1/O size.

40

sgt

Results: Baseline XFS

« SUSE Linux Enterprise Server 9, Service Pack 2.
« Buffered 1/O, 128KiB 1/O size.

N &
—
—
Ly
o |
]
Lt

-
i
| ==
=
—
o
"
—

sgt

Results: 2.6.15-rc5 Wtite

« 2.6.15-rc5, sn2_defconfig kernel build, no debugging options, kdb on.
 Buffered write 1/0, 256KiB 1/O size.

sgt

Results: 2.6.15-rc5 Wtite

« 2.6.15-rc5, sn2_defconfig kernel build, no debugging options, kdb on.
 Buffered write 1/0, 256KiB 1/O size.

T
—
=
=
__l
=
-

—_
e
[
]
—
L
.n
—

sgt

Buffered Write: Not so Good in 2.6.15-rch5

« XFS substantially slower in 2.6.15-rc6 than SLES9 SP2.
— contention on the in-core superblock lock at >= 4 parallel write threads.

« Only EXT2 shows increasing throughput across tests, but even this was
suboptimal:

— At peak throughput the disks were sustaining >70,000 small write 1/0Os per second.
— Disks were IOP saturated, not bandwidth saturated.

« JFS, ReiserFS and EXT3 do not scale to 2 parallel write threads due to lock
contention.

« ReiserFS made extremely progress at greater than 8 parallel write threads

— Tests were terminated at less than 10% completion after allowing several hours of
additional runtime.,

sgt

Results: 2.6.15rc5 Read

« 2.6.15-rc5, sn2_defconfig kernel build, no debugging options, kdb on.
« Buffered read I/O, 256KiB 1/O size.

sgt

Results: 2.6.15rc5 Read

« 2.6.15-rc5 sn2_defconfig kernel build, no debugging options, kdb on.
« Buffered read I/O, 256KiB 1/O size.

T
—
=
=
__l
=
-

—_
e
[
]
—
L
.n
—

sgt

Buffered Read: Better, but still problems

« XFS was substantially faster than the SLES9 SP2 baseline:
— Disks approaching 90% utilisation.
— sustaining 13,000 I/Os per second to reach 6.3GiB/s.

EXT3 has a similar throughput curve to XFS, but:
— disks are IOP saturated.
— sustaining > 60,000 1/Os per second to reach 4.5GiB/s.

XFS and EXT3 have equally CPU efficient read paths.

ReiserFS and JFS showing signs of lock contention limiting read throughput.

EXT2 does not scale as well as expected from the buffered write results.

sgt

Issue #1 - Fragmentation

Over multiple test runs, EXT2 and EXT3 had widely varied read throughput
despite relatively consistent write throughput.

— Arresult of fragmentation during the preparation stage.

— Different fragmentation patterns each run.

— Creates hot spots in the disk subsystem.

— Increases disk seeks and decreases /O sizes.

— Run to run reproducibility is non-existent.

1600
1500
1400
1300
1200

« EXT2 variation shows an order of
magnitude between best and worst case

results.

« This is on a fresh filesystem!

EXT2 Read Throughput (MiB/s)

1100
1000
900
800 W Best
700 Worst
600
500 —
400 +—
300 —
200
100 —+ Sam— —
0+ - T T —
1 2 4 8

Parallel Read Threads

sgt

Issue #1 — Fragmentation

« Only XFS, JFS and ReiserFS consistently gave the same results over repeated
test runs.

« Hard to draw any conclusions about file layout and fragmentation from the JFS
and ReiserFS results:

— Throughput limited by lock contention, not the disk subsystem.

« XFS rarely fragmented the files:

Typical results after parallel writes were 50-100GiB extents on disk guaranteeing
large, sequential disk 1/O.

Separate test runs often ended with identical allocation patterns.
Run to run throughput variation was within +/- 3%.

sgt

Issue #2 - Spinlocks

o All filesystems except EXT2 and JFS showed signs of spinlock contention in their
write paths

JFS had sleeping lock contention in the write path.

« JFS and ReiserFS also showed spinlock contention in their read paths.

« Analysis of contention performed on XFS:

Fundamental problem is a ->prepare write() call for every filesystem block being
written.

175,000 calls/s at 700MiB/s for a 4KiB block size filesystem.

~5.6us to obtain a spinlock and execute a function call, a memory read, two likely
branches, a subtraction, a memory write and then drop the spinlock.

Does not scale past 4 concurrent write threads.

sgt

Issue #2 — Spinlocks

Need to batch contiguous ->prepare write() calls to reduce the number of calls
and lock traversals.

Only a partial solution as contention will still occur given enough CPUs all writing
at the same time.

Each filesystem needs to be analysed separately to determine and fix the
contention causing bottlenecks.

For high end scalability, spinlocks on globally contended structures need to be
avoided entirely.
— Use sleeping locks if lock contention cannot be avoided.

sgt

Issue #3 — Memory Reclaim Behaviour

« Main problem is ensuring pdflush can keep up with the rate pages are being
dirtied.

« With multiple write threads, we end up with kswapd doing all the writeback rather
than pdflush:

— Results in random offset writeback.
— /O sizes decrease due to less effective write clustering.
— Delayed allocation cannot prevent fragmentation entirely.

: I
1 2 4 8 16 32

900 —
Parallel Write Threads

800 —
700 —
600 —
500 —
400 —
300 —
200 —
100 —

0 -

Average 1/O Size (KiB)

sgt

Issue #3 —Memory Reclaim Behaviour

« pdflush running at 100% CPU with only 4 parallel write threads running.

« At 8 parallel write threads, pdflush almost never ran:
— kswapd consuming 70-80% of a CPU per node.

— On aggregate, the kswapd threads consume more CPU time than the writing
processes.

« Making background write-back scale better would help prevent the kswapd write-
back overload condition:

— wb_kupdate() is single threaded so is limited in the amount of work it can do.
— write-back contends for cache lines with concurrent writers and kswapd threads

sgt

Improvements

« Improvements were made to:

— XFS
» to solve lock contention problems.
« to achieve large 1/O sizes on small block size filesystems.

- VM
o To improve pdflush and memory reclaim interactions.
« SN2 specific improvements.

— Tuning
« to improve memory locality and interconnect loading.

sgt

XFS Improvements #1

« Need to solve in-core superblock lock contention:
— we need a distributed free space counter.

— accuracy a requirement due to the counter being used to detect full filesystem
conditions.

— no global lock or cache line sharing in the fast path.

— but still needs locking in the fast path to enable accurate summation of counters when
required.

The implementation uses:
— per-CPU counters and locks.
— a balancer that does accurate summation and distribution across all CPUSs.

— When the filesystem is full, it falls back to the existing slow method to ensure accuracy
without requiring repeated, costly rebalancing.

sgt

XFS Improvements #2

« XFS's buffered write I/O size has been limited to the number of filesystem blocks
It can put in a single bio due to it's use of submit bh():

— 512KiB maximum I/O size on 4KiB block size filesystems.
— 2MiB maximum I/O size on 16KiB block size filesystems.
— due to using a bio vector per bufferhead.

« Christoph Hellwig and Nathan Scott converted XFS to build it's own bio vectors
and use submit bio().

« Maximum 1/O size XFS can issue is how determined by:
— Maximum number of vectors in a bio.
— Page size.
— Underlying hardware limits.

sgt

VM Improvements #1

« A kernel upgrade from 2.6.14 to 2.6.15-rc5 showed a dramatic improvement in
buffered read speeds from the same filesystem configuration:

— 2.6.14 sustained approximately 4GiB/s (same as baseline results).
— 2.6.15-rc5 sustained 6.3GiB/s.

« Dean Roe had, independently, been working on improving TLB flushing on the
SN2 platform:

— Uses hardware based global TLB flush calls rather than generic global flush.
« Global TLB flush speed has a major impact on memory reclaim speed.

« Buffered read I/O scalability appears to be limited by memory reclaim speed and
scalability.

sgt

VM Improvements #2

« Christoph Lameter's node local memory reclaim was the main area of interest:

reduces cross-node cache line traffic during reclaim.

— prefers to reclaim clean pages on a specified node before trying to allocate from a

different node.

« Major differences in behaviour:

kswapd never ran:

« All memory reclaim occurred directly in the allocation path from clean pages.
pdflush throughput increased by an order of magnitude:

« Now sustains >5GiB/s write-back using less than half a CPU.

CPU usage was greatly reduced at low thread counts as there were no kswapd
processes running.

Buffered reads were now clearly I/0O bound.

sgt

Tuning Improvements

« Memory distribution was the main problem:
— /O hardware was spread evenly throughout the interconnect.
— but page cache or direct I/O buffers were not.
— unbalanced interconnect traffic.
— both hot and idle nodes in the machine.

e numactl -i all"
— spreads page cache and direct I/O buffers evenly across all nodes.
— balanced interconnect traffic.
— improved throughput by up to 75%.

« Block device read ahead needed increasing to keep all disks in the stripe busy on
buffered read I/O.

sgt

Results: Improved XFS, Buffered Writes

e 2.6.15-rc5 plus all listed improvements
» Baseline results from SLES9 SP2
» Buffered write 1/0, 256KiB 1/O size.

Fhad

sgt

Results: Improved XFS, Buffered Writes

e 2.6.15-rc5 plus all listed improvements
» Baseline results from SLES9 SP2
» Buffered write 1/0, 256KiB 1/O size.

T
—
=
=
__l
=
-

—_
e
[
]
—
L
.n
—

sgt

Results: Buffered Writes

« No adverse memory reclaim behaviour.
 No decrease in I/O sizes as load increases.

 pdflush no longer stressed by writeback.

« XFS throughput scales independently of filesystem block size.

« NO apparent contention points at > 5GiB/s write throughput.

« Substantial reductions in CPU usage.

sgt

Results: Improved XFS, Buffered Reads

e 2.6.15-rc5 plus all listed improvements
» Baseline results from SLES9 SP2
» Buffered read I/O, 256KiB 1/O size.

sgt

Results: Improved XFS, Buffered Reads

e 2.6.15-rc5 plus all listed improvements
» Baseline results from SLES9 SP2
» Buffered read I/O, 256KiB 1/O size.

SLIFLL 2

LTozlerz g vs

sgt

Results: Buffered Read

« 7.6GiB/s sustained read throughput.
« No apparent memory reclaim issues.
« XFS scales independently of filesystem block size.

« No apparent scalability bottlenecks, but efficiency is reducing as the number of
concurrent readers and throughput increases.

— indicates some limit is being approached.

sgt

What is limiting throughput?

Buffered read I/O sustained 7.6GiB/s
— Disk subsystem theoretically capable of > 11GiB/s.

Memory access patterns on read is:
— FC HBA -> memory -> CPU -> memory.
— 11/12ths of the memory operations are remote due to memory placement.
— ~21GiB/s of bi-sectional interconnect bandwidth utilised at this throughput rate.

Interconnect saturation!

Need a bigger machine with greater bi-sectional interconnect bandwidth to
achieve higher throughput from buffered 1/O.

sgt

Interconnect Saturation

L4 Crossbar Router,
A R 8 ports

P-Brick, 2 Nodes (2X133MHZ
PCI-X buses, 3 slots each)

|

MNL4 link, 2x3.2GD3/s (full
dupliex) peak throughput

C Brick, 2 Nodes (2 CPUs,

2GIB RAaM ezch)

sgt

Direct I/O?

« With Direct I/O, we can avoid two of the three memory operations involved with
buffered I/O if we don't touch the data buffers with the CPU

— Should be able to achieve maximal throughput from disk subsystem

« 2.6.15-rc5, 512MiB 1/O size, memory interleaved across all nodes.

Single Threaded Direct I/O Throughput

M XFS
EXT3

Sustained Throughput (GiB/s)
S
|

|

S
Read Write Overwrite

sgt

Direct I/O?

« Multiple read threads on XFS results in sustained throughput of 10GiB/s and peak
at over 10.7GiB/s of throughput.

« EXT3 suffers from severe fragmentation under parallel direct I/O write threads and
only achieves 60MiB/s write speed.

18 Thread Direct I/O Throughput

B XFS
EXT3

Sustained Throughput (GiB/s)

Read Write Overwrite

sgt

Futures

« SAS, PCI-e, multi-core CPUs and NUMA all moving rapidly into mainstream:

— Issues seen in this investigation will become mainstream problems in the next 1-2
years.

— need to ensure Linux operates effectively on systems of this size sooner rather than
later.

« Simple jobs scale well but we are already seeing interactions with high bandwidth
I/O and independent cpuset constrained jobs.

— Indicates the need for filesystems to become NUMA and I/O path topology aware.

— Filesystem placement and hence I/0O bandwidth locality needs to be more finely
controlled.

sgt

Futures

« Need to minimise disk seeks at all costs:
— Disk sizes increasing faster than seek rates.
— Smarter allocation algorithms are the key to achieving this goal.
— Problems seen (and solved) at the high end are now becoming mainstream issues.

« Intrinsic parallelism of the average computer is increasing, so effective parallel
allocation algorithms are becoming a necessity in Linux filesystems.

sgt

Conclusion

« Achieved throughput close to physical limits:
— of the disk subsystem with direct I/O on XFS.
— of the NUMALInk interconnect with buffered 1/0 on XFS.

« Uncovered a set of generic filesystem scalability issues that affect every
filesystem we tested.

« Solved the scalability problems we encountered in XFS and the VM running
buffered 1/0O.

« Proved that XFS is the best choice for our customers: both on the machines they
use and the common workloads they run.

sgt

sgi

