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Abstract 1 Background and Goals

In the past, there have been many compar-

isons of the different filesystems suppported
In this paper we present the results of an investiby Linux. Most of these comparisons focus
gation conducted by SGI into streaming filesys-on activities typically performed by a kernel
tem throughput on the Altix platform with a developer or use well known benchmark pro-
high bandwidth disk subsystem. grams. Typically these tests are run on an aver-

age desktop machine with a single disk or, more

. rarely, a system with two or four CPUs with a
We start by describing some of the backgrouncg o|p configuration of a few disks.

that led to this project and our goals for the

project. Next, we describe the benchmarkHowever, this really doesn't tell us anything

methodology and hardware used in the projectabout the maximum capabilities of the filesys-

We follow this up with a set of baseline resultstems; these machine configurations don’t push

and observations using XFS on a patched 2.6.the boundaries of the filesystems and hence

kernel from a major distribution. these observations have little relevance to those
who are trying to use Linux in large configura-

_ tions that require substantial amounts of 1/O.
We then present the results obtained from XFS,

JFS, Reiser3, Ext2 and Ext3 on a recent 2.®ver the past two years, we have seen a dra-
kernel. We discuss the common issues that wenatic increase in the bandwidth customers re-
found to adversely affect throughput and repro-quire new machines to support. On older, mod-
ducibility and suggest methods to avoid thesefied 2.4.21 kernels, we could not achieve much
problems in the future. more than 300MiB/s on parallel buffered write
loads. Now, on patched 2.6.5 kernels, cus-
_ _ _ __tomers are seeing higher than 1GiB/s under the
Finally, we discuss improvements and optimi-game [oads. And, of course, there are customers

sations that we have made and present the fiz,, simply want all the I/O bandwidth we can
nal results we achieved using XFS. From thes‘f)rovide.

results we reflect on the original goals of the
project, what we have learnt from the projectThe trend is unmistakable. A coarse correla-
and what the future might hold. tion is that required I/O bandwidth matches the



amount of memory in a large machine. Mem-nodes in a single cache-coherent NUMA do-
ory capacity is increasing faster than physi-main. Each node is configured with 2GiB of
cal disk transfer rates are increasing, and thiRAM for a system total of 24GiB. Each node
means that systems are being attached to largbas 6.4GB/s peak full duplex external intercon-
numbers of disks in the hope that this providesect bandwidth provided by SGI's NUMALink
higher throughput to populate and drain mem-nterconnect. A total of 12 I/O nodes, each with
ory faster. Unfortunately, what we currently three 133MHz PCI-X slots on two busses, were
lack is any data on whether Linux can makeconnected to the NUMALInk fabric supplying
use of the increased bandwidth that larger disl6.4GB/s peak full duplex bandwidth per 1/0
farms provide. node. The CPU and I/O nodes were connected

_ . via crossbar routers in a symmetric topology.
Some of the questions we need to answer in-

clude: The 1/0 nodes were populated with a mix of
) o U320 SCSI and Fibre Channel HBAs (64 SCSI
* How close to physical hardware limits can conroliers in total) and distributed 256 disks
we push a filesystem? amongst the controllers in JBOD configura-
e How stable is Linux under these loads?  tion, This provided an infrastructure that al-
e How does the Linux VM stand up to this Jowed each disk run at close to its maximum
sort of load? read or write bandwidth independently of any

e Do the Device Mapper (DM) and/or Mul- other disk in the machine.

tiple Device (MD) drivers limit perfor-

mance or configurations? The result is a machine with a disk subsys-
e Are there NUMA issues we need to ad-tem theoretically capable of just over 11.5GiB/s
dress? of throughput evenly distributed throughout the
e Do we have file fragmentation problems NUMALIink fabric. Hence the hardware should
under these loads? be able to sustain maximum disk rates if the

« How easily reproducible are the results weSeftware is able to drive it that fast.
achieved and can we expect customers to
be able to achieve them?. . 2.2 Methodology
e What other bottlenecks limit the perfor-
mance of a system?
The main focus of our investigation was on
To answer these questions, as they are impoXFS performance. In particular, parallel se-
tant to SGl's customers, we put together a modeuential I/O patterns were of most interest as
estly sized machine to explore the limits ofthese are the most common patterns we see
high-bandwidth 1/0 on Linux. our customers using on their large machines.
We also assessed how XFS compares with
other mainstream filesystems on Linux on these

2 Test Hardware and Methodology Workloads.

The main metrics we used to compare per-
2.1 Hardware formance were aggregate disk throughput and

CPU usage. We used multiple programs and in-
The test machine was an Altix A3700 contain-dependent test harnesses to validate the results
ing 24 Itanium2 CPUs running at 1.5GHz in 12 against each other so we had confidence in the
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results of individual test runs that weren’t repli- e pdflush tunables
cated. o NUMA allocation methods

To be able to easily compare different con-

figurations and kernels, we present normalisegye tested several different kernels so we could
/O efficiency results along with the aggregatechart improvements or regressions over time
throughput achieved. This gives an indicationyhat our customers would see as they upgraded.

of the amount of CPU time being expended foryance we tested XFS on SLES9 SP2. SLES9
each unit of throughput achieved. The unit ofsp3 5nd 2.6.15-rc5.

efficiency reported i$6 CPU/MIiB/s, or the

percentage of a CPU consumed per mebibytgve also ran a subset of the above tests on other
per second throughput. The lower the calcuq jnux filesystems including Ext2, Ext3, Reis-
lated number, the better the efficiency of the I/OgrFS v3, and JFS. We kept as many configu-
executed. ration parameters as possible constant across

e these tests. Where supported, we used mkfs
The tests were run with file sizes large enougthnd mount parameters that were supposed to

to make run times long enough to ensure th%ptimise data transfer rates and large filesystem
measurement was accurate to at least 1%. Thi erformance

combined with running the tests in a consisten
(scripted) manner, enabled us to draw concluthe volume size for Ext2. Ext3 and Reis-

sions about the reproducibility of the results ob-o 5 3 was halved to approximately 4.2TiB
tained. because they don't support sizes of greater

For most of the tests run. we used SGI's I:,erghan 8TiB. We took the outer portion of each

formance Co-Pilot infrastructure [PCP] to cap-d'Sk for this smaller volume, hence maintain-

ture high resolution archives of the system’s bel"d the same stripe configuration. Compared

haviour during tests. This included disk utili- o the larger volume used by XFS and JFS,

: : the smaller volume has lower average seek
sation and throughput, filesystem and volume. . -
times and higher minimum transfer rates and

manager behaviour, memory usage, CPU us- S
age, and much more. We were able to analys?éence should be able to maintain higher aver
ge throughputs than the larger volume as the

these archives after the fact which gave us grea}I esvstems fill up during testin
insight into system wide behaviour during the y P 9 9.

testing. The comparison tests were scripted to:

To find the best throughput under different con-
ditions, we varied many parameters during test-

1. Run mkfs with relevant large filesystem
ing. These included: 9 y

optimisations.

2. Make a read file set with dd by writing out

different volume configurations the files to be read back with increasing
the effect of I/O size on throughput and levels of parallelism.

CPU usage
buffered I1/O and direct I/0O

3. Perform buffered read tests using one file
per thread across a range of I/O sizes and

o different allocation methods for writes thread count measuring throughput, CPU
e block device readahead usage, average process run time and other
e filesystem block size metrics required for analysis.



The filesystem was unmounted and re-4 DM volumes each with 64 disks. We used
mounted between each test to ensure thatn MD stripe of DM volumes because it was
all tests started without any cached filesys-unclear whether DM andmsetup supported
tem data and memory approximately 99%multi-level volume configurations.
empty.

4. Repeat Step 3 using buffered write tests
including truncating the file to be written
in the overall test runtime.

Using SGI's XVM volume manager, we were
able to construct both a flat 256 disk stripe and
a 4x64 disk multi-level stripe. Hence we were
able to confirm that there was no measurable
performance or disk utilisation difference be-

Parallel writes were used to lay down the filestWeen the two configurations.

for reading back to demonstrate the level OfTherefore we ran all the tests on the multi-level,

file fragmentation the filesystem suffered. TheMD-DM stripe volume layout. The only pa-

greater the fragmentation, the more seeking the o
. : rameter that was varied in the layout was the
disks will do and the lower the subsequent read, . . . .
. . .stripe unit (and therefore stripe width) and most
rate achieved will be. Hence the read rate di- . . : .
: : of the testing was done with stripe units of
rectly reflects on the fragmentation reS|stanc¢5 . :
) o 12KiB or 1MiB.
of the filesystem. This is also a best case re-
sult because the tests are being run on an empty
filesystem.

3 Baseline XFS Results
Finally, after we fixed several of the worst prob-

lems we uncovered, we re-ran various tests to

determine the effect of the changes on the sys22S€lineé XFS performance numbers were ob-
tem. tained from SuSE Linux Enterprise Server 9

Service Pack 2 (SLES9 SP2). We ran tests

on XFS filesystem with both 4KiB and 16KiB
2.3 Volume Layout and Constraints block sizes. Performance varied little with

I/O size, so the results presented used 128KiB,

which is in the middle of the test range.
Achieving maximum throughput from a single

filesystem required a volume layout that en-Looking at read throughput, we can see from
abled us to keep every disk busy at the samé&igure 1 that there was very little difference
time. In other words, we needed to distributebetween the different XFS filesystem configu-
the I/O as evenly as possible. rations. In some cases the 16KiB block size

filesystem was faster, in other cases the 4KiB
Building a wide stripe was the easiest way toblock size filesystem was faster. Overall, they

achieve even distribution since we were mostlyboth averaged out at around 3.5GiB/s across alll
interested in sequential I/O performance. Thiglock sizes.

exposed a configuration limitation of DM;

dmsetup was limited to a line length of 1024 In contrast, the 16KiB block size filesystem

characters which meant we could only build aiS substantially faster than the 4KiB filesystem

stripe approximately 90 disks wide. when writing. The 4KiB filesystem appeared
to be I/O bound as it was issuing much smaller

Hence we ended up using a two level volumd/Os than the 16KiB filesystem and the disks

configuration where we had an MD stripe of were seeking significantly more.
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Figure 1:Baseline XFS Throughput. Figure 2:Baseline XFS Efficiency.

From the CPU efficiency graph in Figure 2, the results presented represent best-case perfor-
we can see that there is no difference in CPUnance rather than a mean of repeated test runs.
time expended by the filesystem for different

block sizes on read. This was expected fronThe kernel used for all these tests was 2.6.15-
the throughput results. rch.

Both the read and write tests show that CPU

usage is scaling linearly with throughput; in- 4 1 Buffered Read Results

creasing the number of threads doing 1/0 does

not decrease the efficiency of the filesystem. In

other words, we are limited by either the rateThe maximum read rates achieved by each

at which we can issue 1/Os or by somethingfilesystem can be seen in Figure 3. The read

else outside the filesystem. Also, the write ef-rate changed very little with varying 1/0 block

ficiency is substantially worse than for reads, itsize, we saw the same maximum throughput us-

would seem that there is room for substantiaing 4KiB 1/Os as using 1MiB 1/0s. The only

improvement here. real difference was the amount of CPU con-
sumed.

It is worth noting that XFS read throughput is
substantially higher on 2.6.15-rc5 compared to
the baseline results on SLES9 SP2. A discus-
The first thing to note about the results is thatsion of this improvement canbe found in Sec-
some of the filesystems were tested to highetion 6.2.

numbers of threads and larger block sizes. The

reasons for this were that some configuration3 he performance of Ext2 and Ext3 is also quite
were not stable enough to complete the wholdalifferent despite their common heritage. How-
test matrix and we had to truncate some ofver, the results presented for Ext2 and Ext3
the longer test runs that would have preventedas well as JFS) are the best of several test ex-
us from completing a full test cycle in our ecutions due to the extreme variability of the
available time window. Consequently some offilesystem performance under these tests. The

4 Filesystem Comparison Results
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Figure 3:Buffered Read Throughput Comparison. Figure 4:Buffered Read Efficiency Comparison.

reasons for this variability are discussed in Secmode for Ext3 as it was consistently 10% faster
tion 5.2. than thedata=ordered = mode.

Itis clear that XFS and Ext3 give substantially The ReiserFS results are truncated due to prob-
better throughput, and this is reflected in the ef1ems running at h|gher thread counts. Writes
ficiency plots in Figure 4, where these are theyould terminate without error unexpectedly,
most efficient ﬁlesystems. Both ReiserFS an(hnd sometimes the machine would hang_ Due
JFS show substantial decreases in efficiency ag time constraints this was not investigated fur-
thread count increases. This behaviour is disther, but it is suspected that buffer initialisa-
cussed in Section 5.1. tion problems which manifested on machines
with both XFS and ReiserFS filesystems were
the cause. The fixes did not reach the up-
stream kernel until well after testing had been
completed[Scott][Mason].

Figure 5 shows some very clear trends in

buffered write throughput. Firstly, XFS is sub- JFS demonstrated low write throughput. We
stantially slower than the SLES9 SP2 baselingliscovered that this was partially due to truncat-
results. Secondly, throughput is peaking at fouing a multi-gigabyte file taking several minutes
to eight concurrent writers for all filesystems to execute. However, the truncate time made up
except for Ext2. XFS, using a 16KiB filesys- only half the elapsed time of each test. Hence,
tem block size, was still faster than Ext2 until even if we disregarded the truncate time, JFS
high thread counts were reached. would still have had the lowest sustained write

rate of all the filesystems.
The poor write throughput of Ext3 and JFS

is worth noting. JFS was unable to exceed.ooking at the efficiency graph in Figure 6,

an average of 80MiB/s write speed in all butwe can see that only JFS and Ext2 had rela-
two of the many test points executed, andively flat profiles as the number of threads in-
Ext3 did not score above 250MiB/s and de-creased. However, the profile for JFS is rel-
creased to less than 100MiB/s at sixteen oatively meaningless due to the low through-
more threads. We used thata=writeback put. All the other filesystems show decreas-

4.2 Buffered Write Results
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Figure 5:Buffered Write Throughput Comparison. Figure 6:Buffered Write Efficiency Comparison.

ing efficiency (increasing CPU time per MiB slower as it fragmented the files it was writing.
transferred to disk every second) at the sam@t 18 threads, Ext3 direct I/O performance was
load points that they also showed decreasingetween 10 and 20 times lower than for a single
throughput. This is discussed further in Secthread.

tion 5.1.
In contrast, from 1 to 18 threads, XFS doubled

] its read and write throughput, and overwrite in-
4.3 Direct I/O Results creased marginally from its already high single
thread result. It is worth noting that the XFS

Only XFS and Ext3 were compared for directnumb.ers peaked substantially higher than the
/O due to time constraints. The tests were rursustained throughput - reads peaked at above
over different block sizes and thread counts10-7GIB/s, while writes and overwrites peaked
and involved first writing a file per thread, then &t over 8.9GIB/s.

overwriting the file, and finally reading the file

back again. A 512KiB stripe unit was used for

these tests. 5 Issues Affecting Throughput

Table 1 documents the maximum sustained

throughput we achieved with these tests. Ext3 1 gspinlocks in Hot Paths
was fastest with only a single thread, but writes

still fell a long way behind XFS. As the num-

ber of threads increased, Ext3 got slower andne thing that is clear from the buffered 1/0
results is that global spinlocks in hot paths of

Threads| ES | Read| Write | Overwrite a filesystem do not scale. Every journalled
1 XES| 55 | 40 75 filesystem except JFS was limited by spinlock
1 Ex:3| 42 | 06 25 contention during parallel writes. In the case
18 | XES | 100 | 7.7 77 of JFS, it appeared to be some kind of sleeping
18 Ext3 | 0.58 | 0.06 0.12 contention that limited performance, and so the

o _ impact of contention on CPU usage was not im-
Table 1:Sequential Direct I/O Throughput (GiB/s) mediately measurable. Both ReiserFS and JFS
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displayed symptoms of contention in their read5.2 File Fragmentation and Reproducibil-
paths as well. ity

From analysis of the contention on the XFSFrom observation, the main obstacle in ob-
buffered write path, we found that the con-taining reproducible results across multiple test
tended lock was not actually being held for veryruns on each filesystem was file fragmentation.
long. The fundamental problem is the numberXFS was the only filesystem that almost com-
of calls being made. For every page we writepletely avoided fragmentation of its working
on a 4KiB filesystem, we are allocating four files. ReiserFS also seemed to be somewhat re-
filesystem blocks. We do this in four separatesistant to fragmentation but the results are not
calls to->prepare_write() . Hence at the conclusive due to the problems ReiserFS had
peak throughput of approximately 700MiB/s, writing files in parallel.

we are making roughly 180,000 calls per sec- _ _

tion at all well. From truncated test results,

we know that the variation was extreme. A
That gives us less than 5.6 microseconds to obzomparison of the best case results versus the
tain the spinlock and execute our critical secaworst case results for ext2 can be seen in Ta-
tion to avoid contention. The code that XFSble 2. Both Ext3 and JFS demonstrated very
executes inside this critical section involvessimilar performance variation due to the differ-
a function call, a memory read, two likely ent amounts of fragmentation of the files being
branches, a subtraction and a memory writeread in each test run. While we present the best
That is not a lot of code, but with enough CPUsnumbers we achieved for these filesystems, you
trying to execute it in parallel it quickly be- should keep in mind that these are not consis-
comes a bottleneck. tently reproducible under real world conditions.

At the other end of the scale, the XFS results
Of all the journalling filesystems, XFS appearswere consistently reproducible to withib3%.
to have the smallest global critical section in itsThis is due to the fact that we rarely saw frag-
write path. Filesystems that do allocation in thementation on the XFS filesystems and the disk
write path (instead of delaying it until later like allocation for each file was almost identical on
XFS does) can't help but have larger criticalevery test run. Even when we did see fragmen-
sections here, and this shows in the throughputation, the contiguous chunks of file data were
being achieved. never smaller than several gigabytes in size.

A further measure of fragmentation we used
Looking to the future, we need to move awaywas the number of physical disk I/0Os required
from allocating or mapping a block at a time in o provide the measured throughput. In the case
the generic write path to reduce the load on critof XFS, we were observing stripe unit sized
ical sections in the filesystems. While work is|/Os being sent to each disk (512KiB) while
being done to reduce the number of block mapsustaining roughly 13,000 disk I/Os per second
ping calls on the read path, we need to do thgg gchieve 6.3GiB/s.
same work for the write path. In the meantime,
we have solved XFS’s problem in a differentin contrast, Ext2 and Ext3 were issuing ap-
way. (see Section 6.1.2) proximately 60-70,000 disk 1/Os per second



Threads| Best Run| Worst Run PID | State| % CPU| Name
1 522.2 348.5 23589 R 97 dd
2 780.2 74.8 345 R 88 kswapd7
4 1130.3 105.0 344 R 83 kswapd6
8 1542.1 176.8 23556| R 81 dd
348 R 80 kswapd10
Table 2: Example of Ext2 Read Throughput Vari- 346 R 79 kswapd8
ability (MiB/s) 347 | R 77 kswapd9
339 R 76 kswapdl
to achieve 1.7GiB/s and 4.5GiB/s respectively. 349 R 74 | kswapd1l
) 343 | R 72 kswapd5
That equates to average /O sizes of approx- 23517| R 71 dd
imately 24KiB and 56KiB and each disk ex- 23573| R 64 dd
ecuting more than 250 I/Os per second each. 338 R 64 kswapd0
The disks were seek bound rather than band- 23552 R 64 dd
width bound. Sustained read throughput of less 23502| R 63 dd
than 300MiB/s at 60-70,000 disk I/Os per sec- 340 ) 63 kswapd?2
ond with an average size of 4KiB was not un- 23570 R 61 dd
common to see. This indicates worst case (sin- 23592| R 60 dd
gle block) fragmentation in the filesystem. The 341 | R 57 kswapd3

m haviour w n with JF well.
same behaviour was seen with JFS as we Table 3: kswapd CPU usage during buffered

i writes.
The source of the fragmentation on Ext2 and

Ext3 would appear to be interleaved disk allo-
cation when multiple files are written in parallel 5.3
from multiple CPUs. This also occurred when

running parallel direct I/O writes on EXt3 (€€ \yhjle running single threaded tests, it was clear
Table 1) so it would appear to be a general issUghat there was something running in the back-
with the way Ext3 handles parallel allocation ground that was using more CPU time than the
streams. writer process and pdflush combined. A sin-

gle threaded read from disk consuming a single
XFS solves this problem by decoupling diskcpy was consuming 10-15% of a CPU on each
block allocation from disk space accountingpgde running memory reclaim via kswapd. For
and then using well known algorithmic tech- 5 single threaded write, this was closer to 30%
niques to avoid lock contention to achieve writeqf 3 CPU per node. On our twelve node ma-
scaling. chine, this meant that we were using between

1.5 and 3.5 CPUs to reclaim memory being al-
The message being conveyed here is that mofgcated by a single CPU.

Linux filesystems do not resist fragmentation

under parallel write loads. With parallelism hit- On buffered write tests, pdflush also appeared
ting the mainstream now via multicore CPUs,to be struggling to write out the dirty data.
we need to recognise that filesystems may noiVith a single write thread, pdflush would con-
be as resistant to fragmentation under normasume very little CPU; maybe 10% of a sin-
usage patterns as they were once recognised ¢pe CPU every five seconds. As the number
be. This used to be a problem that only superef threads increased, however, pdflush quickly
computer vendors had to worry about. .. became overwhelmed. At four threads writing

kswapd and pdflush



Threads| Average I/O Size The main change this introduced was XFS clus-

1 1000KiB tering pages directly into kio instead of by

2 450KiB buffer heads andsubmit_bh calls. Using

4 400KiB buffer heads limited the size of an I/O to the
8 250K?B number of buffer heads lsio could hold. In
16 ZOOK!B other words, the larger the block size of the
32 220KiB

filesystem, the larger the 1/Os that could be
Table 4:1/0 size during buffered writes. formed in the write cluster path. This is the pri-

mary reason for the difference in throughput we
see for the XFS filesystems with different block

sizes.

at approximately 1.5GiB/s, pdflush ran perma:
nently consuming an entire CPU.

At eight or more write threads, pdflush con- By adding complete pages ti rather than

sumed CPU time only sporadically; instead thebUfFer '?ea‘?'s’ we were able to make XFS write
kswapd CPU usage jumped from 30% of a CPLp!usterlng independent of the filesystem block

to 70-80% of a CPU per node. This can be seefi¢&: This means that any XFS filesystem can
in Table 3 Issue I/Os only limited in size by the number of

pages that can be held by thie vector.
Monitoring of the disk level 1/O patterns in-
dicated that writeback was occuring from theUnfortunately, due to the locking issue de-
LRU lists rather than in file offset order from Scribed earlier in Section 5.1, XFS with the
pdflush. This could also be seen in the 1/O sizegnodified write path was actually slower on our
that were being issued to disk as seen in Table st machine than without it. Clearly, the spin-
as the thread count increased. lock problem needed to be solved before we

would see any benefit from the new I/O path.
This is clearly not scalable writeback and mem-

ory reclaim behaviour; we need reclaim to con-
sume less CPU time and for all writeback to oc-
cur in file offset order to maximise throughput.

For XFS, this will also minimise fragmentation

during block allocation. See Section 6.2.2 forKernel profiles taken during parallel buffered
details on how we improved this behaviour.  write tests indicated contention within XFS on
the in-core superblock lock. This lock pro-

tects the current in-core (in-memory) state of
the filesystem.

6.1.2 Per-CPU Superblock Counters

6 Improvements and Optimisations

In the case of delayed allocation, XFS uses the
6.1 XFS Modifications in-core superblock to track both disk space that
is actually allocated on disk as well as the space
that has not yet been allocated but is dirty in
memory. That means duringvaite(2)  sys-
tem call we allocate the space needed for the
In 2.6.15, a new buffered write I/O path imple- data being written but we don't allocate disk
mentation was introduced. This was written byblocks. Hence the "allocation" is very fast
Christoph Hellwig and Nathan Scott[Hellwig]. whilst maintaining an accurate representation

6.1.1 Buffered Write I/O Path
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of how much space there is remaining in theback to a slow, global, single threaded counter
filesystem. for the aggregated total. That is, we prefer ac-

curacy over blazing speed. It should also be
This makes contention on this structure a diffi-ngted that using a global lock in this case tends

cult problem to solve. We need global accuracyto he more efficient than constant rebalancing
but we now need to avoid global contention.gn |arge machines.

The in-core superblock is a write-mostly struc-
ture, so we can’'t use atomic operations or RCU].
to scale it. The only commonly used method .

S or themselves and the code is to be released
remaining is to make the counters per-CPU, bu[ . .

. : with 2.6.17[Chinner].
we still need to have some method of being ac-
curate when necessary that performs in an ac-
ceptable manner.

he results (see Figure 7 and Figure 8) speak

. 6.2 VM and NUMA Issues
Hence for the free space counter we decided to

trade off performance for accuracy when we are

close to ENOSPC. The algorithm that was im-

plemented is essentially a distributed countef-2.1 SN2 Specific TLB Purging
that gets slower and more accurate as the ag-

gregated total of the counter approaches zero.
When first running tests on 2.6.15-rc5, it was

When an individual per-CPU counter reachesoticed that XFS buffered read speeds were
zero, we execute a balance operation. This opnuch higher than we saw on SLES9 SP2,
eration locks out all the per-CPU counters beSLES9 SP3 and 2.6.14. On these kernels we
fore aggregating and redistributing the aggrewere only achieving a maximum of 4GiB/s.
gated value evenly over all the counters befordéJsing 2.6.15-rc5 we achieved 6.4GiB/s, and
re-enabling the counters again. This requiresnonitoring showed all the disks at greater than
a per-CPU atomic exclusion mechanism. Thed0% utilisation so we were now getting near to
balance operation must lock every CPU fasbeing disk bound.

path out and so can be an expensive operation

on a large machine. Further study revealed that the memory reclaim

However, on that same large machine, the fasrate limited XFS buffered read throughput. In

path cost of the per-CPU counters is orders ofhls particular case, the global TLB flushing
speed was found to make a large difference to

magnitude lower than a global spinlock. Hence )
. . the reclaim speed.
we are amortising the cost of an expensive
rebalance very quickly compared to using a _
global spinlock on every operation. Also, whenWe found this when we reverted a platform spe-
the filesystem has lots of free space we rarewlflc optimisation that was |_ncluded in 2.6.15-
see a rebalance operation as the distributeffl to speed up TLB flushing[Roe]. Revert-
counters can sink hundreds of gigabytes of aling this optimisation reduced buffered read

location on a single CPU before running dry. throughput by approximately 30% on the same
filesystem and files. Simply put, this improve-

If a counter rebalance results in a very smaliment was an unexpected but welcome side ef-
amount being distributed to each CPU, thefect of an optimisation made for different rea-
counter is considered to be near zero and we faions.
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6.2.2 Node Local Memory Reclaim 6.2.3 Memory Interleaving

In a stroke of good fortune, Christoph LameterWh”e dqlng initial bandwidth chargcterlsatlons
using direct 1/0, we found that it was nec-

completed a set of modifications to the mem-
ory reclaim subsystem[Lameter] while we were®SSary 10 ensure that bufrer memory was al-
running tests. The modifications were includeoﬂoc_ated eyenly from_every n_ode in the ma-
in Linux 2.6.16, and they modified the reclaim chine. This was achieved using themact
behaviour to reclaim clean pages on a give

-i all  command prefix to the test commands
node before trying to allocate from a remote €ing run.
node.

Without memory interleaving, direct 1/O (read

_ L ) _ or write) struggled to achieve much more than
The first major difference in behaviour was thatGGiB/s due to the allocation patterns limiting

kswapd never ran during either buffered readpe yy tters to only a few nodes in the machine.
or write tests. Buffered reads were now quite o .o we were limited by the per-node NU-

obviously I/O bound with approximately half MALink bandwidth. Interleaving the buffer

the disks showing 100% utilisation. Using amemory across all the nodes solved this prob-
different volume layout with a 1MiB stripe unit, |,

sustained buffered read throughput increased to

over 7.6GiB/s. With buffered 1/0, however, we saw very dif-
_ _ ferent behaviours. In initial testing we saw lit-
The second most obvious thing was that pdflusile difference in throughput because the page

was now able to flush more than 5GiB/s of datacgche ended up spread across all nodes of the
whilst consuming less than half a CPU. Withoutmachine due to memory reclaim behaviour.

the node local reclaim, it was only able to push

approximately 500MiB/s when it consumed anHowever, when testing the node local memory
equivalent amount of CPU time. Writeback, es-reclaim patches we found that interleaving did
pecially at low thread counts, became far moranake a big difference to performance as the lo-
efficient. cal reclaim reduced the number of nodes that
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put. ciency.

the page cache ended up spread over. Integticates that the buffered write efficiency has
estingly, the improvement in memory reclaimimproved by factor of between three and four.
speed that the local reclaim gave us meant that can been seen that the efficiency decreases
there was no performance degradation despitéomewhat as throughput and thread count goes
not spreading the pages all over the machineyp, so there is still room for improvement here.
Once we spread the pages using thenactl

command we saw the substantial performanc8uffered read throughput has roughly doubled
increases. as shown in Figure 9. This improvement can be
almost entirely attributed to the VM improve-
ments as the XFS read path is almost identical
6.2.4 Results in the baseline and optimised kernels.

We've compared the baseline buffered 1/0 re-ONCce again, the improvement in throughput

sults from Section 3 with the best results weCPTesponds directly to an improvement in ef-

achieved with our optimised kernel. ficiency. Figure 10 indicates that we saw

much greater improvements in efficiency at low

From Figure 7 itis clear that we achieved a subthread counts than at high thread counts. The
stantial gain in write throughput. The outstand-source of this decrease in efficiency is unknown
ing result is the improvement of 4KiB block and more investigation is required to under-

size filesystems and is a direct result of thestand it.

I/O path rewrite. The improved write cluster-

ing resulted in consistently larger 1/0s being©One potential reason for the decrease in effi-
sent to disk, and this has translated into im-ciency of the buffered read test as throughput
proved throughput. Local memory reclaim hasincreases is that the NUMALInk interfaces may

also prevented /O sizes from decreasing as thee getting close to saturation. With the tests
number of threads writing increases which had€ing run, the typical memory access patterns

also contributed to higher throughputs as well.are @ DMA write from the HBA to memory,
which due to the interleaved nature of the page

On top of improved throughput, Figure 8 in- cache is distributed across the NUMALInk fab-
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ric. The datais then read by a CPU, which gathio control placement in the filesystem to min-
ers the data spread across every node, and imise the NUMALInk bandwidth that a job’s
then written back out into a user buffer which 1/0O uses.

iSs spread across every node. . ' .
This means that filesystems are likely to need

With both bulk data and control logic memory allocation hints provided to them to enable this
references included, each node node in the sysort of functionality. We already have policy in-
tem is receiving at least 2GiB/s and transmit-formation controlling how a job uses CPU and
ting more than 1.2GiB/s. With per-node receivememory in large machines, so extending this
throughput this high, remote memory read andconcept to how the filesystem does allocation
write latencies can increase compared to an idlé not as far-fetched as it seems.

interconnect. Hence the increase in CPU usage

may simply be an artifact of sustained high NU-IMProving performance in filesystems is all
MALink utilisation. about minimising disk seeking, and this comes

down to the way the filesystem allocates its disk
space. We have new issues at the high end
to deal with, while the issues that have been
7 Futures solved at the high end are now becoming is-
sues for mainstream. As the intrinsic paral-

. o lelism of the average computer increases, algo-
The investigation that we undertook has pro-

| : _ : rithms need to be able to resist fragmentation
vided us with enough information about the be~yhen allocations occur simultaneously so that

haviour of these large systems for us t0 presjjesystem performance can grow with machine
dict issues that SGI customers will see over th%apability.

next year or two. It has also demonstrated that

there are issues that mainstream Linux users are

likely to start to see over this same timeframe. )
With technologies like SAS, PCI express, mul-8  Conclusion
ticore CPUs and NUMA moving into the main-

stream, issues that used to affect only high engpg jnyestigation we undertook has provided us
machines are rapidly moving down to the averyith valuable information on the behaviour of

age user. We need to make sure thatomljrfilesy?_-inux in high bandwidth 1/0 loads. We iden-
tems behave well on the average machine of thgieq several areas which limited our perfor-

day. mance and scalability and fixed the worst dur-

At the high end, while we are on top of filesys-'" 2 the investigation.

tem scaling issues with XFS, we are startinge improved the efficiency of buffered 1/0O
to see interactions between high bandwidth I/Qnder these loads and significantly increased
and independent cpuset constrained jobs Ofye throughput we could achieve from XFS.
large machines. These interactions are comye discovered interesting NUMA scalability

plex and are hinting that for effective deploy- jssyes and either fixed them or developed ef-
ment on large machines at high I/O bandwidthgective strategies to negate the issues.

the filesystem needs to be NUMA and I/O path

topology aware so that filesystem placementVe proved that we could achieve close to the
and 1/0 bandwidth locality to the running job physical throughput limits of the disk subsys-
can be maximised. That is, we need to be abléem with direct I/O. From analysis, we found
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that even buffered I/O was approaching physi{Lameter] Christoph Lameter,

cal NUMALIink bandwidth limits. We proved
that Linux and XFS in combination could do
this whilst maintaining reproducible and stable
operation.

[PATCH] Zone reclaim: Reclaim logic
Git commit key:
9eeff2395e3cfd05c9b2e6074ff943a34b0c5¢c21

[Hellwig] Christoph Hellwig and Nathan

We also uncovered a set of generic filesystem
issues that affected every filesystem we tested.
We solved these problems on XFS, and pro-
vided recommendations on why we think they

also need to be solved.

Scott,

[XFS] Initial pass at going
directly-to-bio on the buffered IO path
Git commit key:
f6d6d4fcd180f8e47bf6b13fc6ccelebel56d0ea

Finally, we proved that XFS is the best choice[Chinner] Dave Chinner

for our customers; both on the machines they
use and for the common workloads they run.

In conclusion, our investigation fulfilled all the
goals we set at the beginning of the task. We
gained insight into future issues we are likely

to see, and we raised a new set of questions that

need further research. Now all we need is a
bigger machine and more disks.
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