Silicon Graphics Proprietary

64 Bit File Access

Adam Sweeney

1.0 Introduction

In order to support the access of 64 bit files from 32 bit applications, new interfaces must be
defined which take 64 bit parameters. These interfaces must be cleanly supported in the kernel,
without the information of whether an application is 64 or 32 bit filtering down below the system
call level. This document describes the new interfaces to be used to access 64 bit files from 32 bit
applications, the policies involved in 64 bit file access, and the changes necessary to kernel inter-
nals to support 64 bit files.

It is important to understand that the need for these extensions is only to allow 32 bit applications

to access 64 bit files. They are not needed by 64 bit applications or by 32 bit applications which
have no need to deal with 64 bit files.

2.0 New Interfaces

2.1 New User Visible Types

To support the access of 64 bit files, the following new types will be exported for use by user pro-
grams.

2.1.1 offe4 t

The off64_t type will be defined as “long long.” This will make it a 64 bit value useful for speci-
fying 64 bit file offsets and sizes.

2.1.2 stat64

The new system calls will include extended stat(2) calls. They will all use the new stat64 struc-
ture.

TABLE 1. stat64 structure definition

field name field type comments
st _dev dev_t

st padl long[3]

st _ino ino_t

st_mode mode_t

st_nlink nlink_t

st_uid uid_t

st_gid gid_t

64 Bit File Access October 7, 1993 1

Silicon Graphics Proprietary

TABLE 1. stat64 structure definition

field name field type comments
st_rdev dev_t
st_pad long[2]
st_size offé4_t now 64 bits
st pad3 long
st_atim timestruc_t
st_mtim timestruc_t
st_ctim timestruct_t
st_blksize long
st_blocks long
st_fstype char[_ST_FSTYPSZ]
st_pad4 long[8]
2.1.3 flock64

In order to allow file record locking on large files, the fcntl(2) system call will be extended to
accept a flock64 structure as defined below.

TABLE 2. flock64 structure definition

field name field type comments
|_type short

|_whence short

|_start offé4_t 64 bits

| _len off64 _t 64 bits
|_sysid long

|_pid pid_t

pad long[4]

2.1.4 rlim64_t and rlimit64

The addition of large files requires the resource limit subsystem to understand limits which are
greater than 32 bits in length. For this we will add extended setrlimit(2) and getrlimit(2) system
calls which work with 64 bit values.

The rlim64_t will be defined as “unsigned long long rlim64_t.” The rlimit64 structure will be:

TABLE 3. rlimit64 structure definition

field name field type comments
rlim_cur rlime4 _t 64 bits
rlim_max rlim64 _t 64 bits

2.1.5 fpos64 t

The standard 1/O library routines fsetpos() and fgetpos() use the fpos_t type to describe file off-
sets. It would be nice if we could just extend this type to 64 bits, but then we would break old

64 Bit File Access October 7, 1993 2

Silicon Graphics Proprietary

applications which use it. Therefore we will define the new type fpos64_t which will be fpos_t’s
64 bit equivalent. It will be defined as “long long fpos64 _t.”

2.2 New and Extended System Calls

This section describes each of the new and extended system calls to be added to support 64 bit file
access.

2.2.1 stat64(), fstat64(), Istat64()

These routines are the 64 bit equivalents of the 32 bit stat(), fstat(), and Istat() system calls. They
take a pointer to a stat64 structure in place of the stat structure accepted by the 32 bit versions.

TABLE 4. stat64 system call prototypes

int stat64(const char *path, struct stat64 *buf);
int fstat64(int fildes, struct stat64 *buf);

int Istat64(const char *path, struct stat64 *buf);

2.2.2 truncate64(), ftruncate64()

These are the 64 bit equivalents of the 32 bit truncate() and ftruncate() system calls. In place of an
off t they take a off64 _t to specify the new length of the file.

TABLE 5. truncate64 system call prototypes

int truncate64(const char *path, off64_t length);
int ftruncate64(int fildes, offé4_t length);

2.2.3 Iseek64()

This is the 64 bit equivalent of the 32 bit Iseek() system call. It takes a off64_t in place of an off t
to specify the offset amount, and it returns a off64_t in place of an off t.

TABLE 6. Iseek64 system call prototype
off64_t Iseek64(int fildes, off64_t offset, int whence);

2.2.4 mmap64()

This is a version of the mmap() system call which allows the caller to specify a 64 bit file offset. It
replaces mmap()’s off _t file offset parameter with a 64 bit off64_t value.

TABLE 7. mmap64 system call prototype

void *mmap64(void *addr, size_t len, int prot, int flags, int fildes, off64_t offset);

64 Bit File Access October 7, 1993 3

Silicon Graphics Proprietary

2.2.5 getrlimit64(), setrlimit64()

In order to access or set file size limits which are greater than 64 bits, 64 bit versions of the rlimit
system calls will be added. These will use the rlimit64 structure in place of the rlimit structure.

TABLE 8. rlimit64 system call prototypes

int getrlimit64(int resource, struct rlimit64 *rlp);
int setrlimit64(int resource, const struct rlimit64 *rlp);

2.2.6 fentl()

The fentl() system call will be extended by adding new operations. These new operations are:
« F_GETLK64

F_SETLK64

F_SETLKW64

F FREESP64

F_ALLOCSP64

All of these operations are equivalent to those without the ‘64,” and they are different only in that
they take a pointer to a flock64 structure in place of an flock structure.

2.3 New Library Interfaces

The standard I/O library will be extended so that 64 bit files can be accessed with the standard I/O
file access model. The new interfaces are described below.

2.3.1 fseek64()

This is a version of the fseek() call which takes a 64 bit value for an offset and returns the new file
offset as a 64 bit value.

TABLE 9. fseek64 function prototype
off64_t fseek64(FILE *file, off64_t offset, int whence);

2.3.2 ftell64()

This is a version of the ftell() call which returns a 64 bit value for the current file offset.

TABLE 10. ftell64 function prototype
off64_t ftell64(FILE *file);

64 Bit File Access October 7, 1993 4

Silicon Graphics Proprietary

2.3.3 fgetpos64(), fsetpos64()

These are versions of the fgetpos() and fsetpos() routines which take pointers to fpos64_t parame-
ters rather than fpos_t.

TABLE 11. fgetpos64 and fsetpos64 function prototypes
int fgetpos64(FILE *file, fpos64_t *pos);
int fsetpos64(FILE *file, const fpos64_t *pos);

2.3.4 ftw64(), nftw64()

If it is considered worthwhile, the file tree walk library routines will be extended to support stat64
structures instead of stat structures.

3.0 Semantics and Error Returns

This section explains what happens when the old interfaces are used to access large files. It is
important to make this behavior consistent, but there do not seem to be any clearly “correct”
answers here.

3.1 The Model

The model described below is almost identical to one presented by Convex in the Winter 1992
USENIX conference proceedings. Their model seems to be consistent and easily implementable
without any major drawbacks, so | am using most of it.

32 bit programs either recognize the existence of large files or they do not. Those that do will be
using new interfaces to access these files. Those that do not will see all files as having a maximum
size of 2GB-1 bytes. Data beyond offset 2GB-1 in a file will be inaccessible by applications which
do not recognize the existence of large files, and the size of a file which is greater than 2GB-1 will
not be visible to an application which does not know of such files. The implications of these state-
ments are explained below.

3.1.1 open()

In order for the system to be able to determine that a program is aware of large files, the program
must “tell” the system. This will be done with a new open flag O _LARGEFILE. Opening a file
with this flag allows the program to see the file as larger then 2GB-1 if it is so.

This flag will be inherited across both fork(2) and exec(2). This behavior is pretty much defined
by the implementation, because the file structure in the kernel is shared across these calls and that
is where the open flags are kept.

64 Bit File Access October 7, 1993 5

Silicon Graphics Proprietary

3.1.2 fentl()

In addition to specifying the O_LARGEFILE flag to open, a program may get the equivalent
effect by setting the FLARGEFILE flag for the file with fcntl(F_SETFL).

3.1.3 fopen(), fdopen(), freopen()

These open routines will accept an added flag, the
specifying O_LARGEFILE to the open() system call.

flag. This will have the equivalent effect of

3.1.4 write()

In order for a 32 bit program to write beyond offset 2GB-1 in a file, it must have set the FLARGE-
FILE flag for the file. If the program has not done so and it attempts to write beyond offset 2GB-
lin the file, write() will return -1 and errno will be set to EFBIG. Actually, a write which starts
before 2GB-1 and extends beyond it will first return as a partial write with write() returning the
number of bytes written before the 2GB-1 boundary was reached. The next write() call would
then return -1 with errno set to EFBIG.

3.1.5 read()

In order for a 32 bit program to read beyond offset 2GB-1 in a file, it must have set the FLARGE-
FILE flag for the file. If the program has not done so and it attempts to read beyond offset 2GB-1
in the file, read() will return -1 and errno will be set to EFBIG. As with write(), read() will actually
do a partial read up to the 2GB-1 boundary and return EFBIG on the subsequent read() call.

3.1.6 Iseek()

It is not possible for a 32 bit program to use seek to manipulate the file offset beyond 2GB-1,
because the 32 bit value returned by Iseek() cannot correctly describe the new offset. If a program
attempts to manipulate the seek offset beyond offset 2GB-1 in the file, Iseek() will return -1 and
errno will be set to EFBIG

3.1.7 truncate(), ftruncate()

Since these system calls take only 32 bit values for the new file size, the worst they could be doing
is to shrink a file from greater than 2GB-1 in size to less than 2GB-1. This will be allowed.

3.1.8 mmap()

If the sum of the offset and length parameters to mmap() is greater than 2GB-1 and the application
has not set the FLARGEFILE flag in the file, then the call will fail returning -1 and setting errno
to EFBIG.

64 Bit File Access October 7, 1993 6

Silicon Graphics Proprietary

3.1.9 stat(), fstat(), Istat()

Each of these calls returns the attributes of the specified file in a stat structure. The stat structure
has only a signed 32 bit field in which to store the size of the file. If any of these calls is used on a
file whose size is greater than 2GB-1, then the system call will return -1 and errno will be set to
EFBIG.

It has been suggested that the stat calls return successfully instead of failing and put 2GB-1 or -1
in the st_size field of the stat structure. This behavior, however friendly, will not notify the user
that he or she is doing something wrong, and it can lead to incorrect and possibly damaging
behavior by a correctly written program. Returning the EFBIG error should make it clear to the
user what the problem is, and it should also cause most applications to exit somewhat cleanly.

3.2 More Implications

The FLARGFILE flag will be set explicitly by the open() and fcntl() calls. It will be set implicitly

by calls to Iseek64(), fstat64(), and ftruncate64(). The reason for this is that these calls indicate
that the caller understands 64 bit files even if he or she did not say so explicitly. For the Iseek64()
call it is necessary to turn on the flag or fail the call. This is because if we allow the call to succeed
and set the file offset beyond 2GB-1 but do not set the flag, subsequent reads and writes will fail.
The other two will set the flag just to be consistent.

Another issue involves NFS access to large files. There is no way to communicate O _LARGE-
FILE or a 64 bit file size or offset across the network using the NFS protocol. NFS accesses
requiring information on the size of the file, which is all of them, will just have to fail.

4.0 Required Library Changes

Some parts of the libraries will need to be changed to use the new and extended interfaces defined
above. The standard I/O code will be changed to use 64 bit file offsets and the new system calls
internally. Other routines within libc such as opendir() and remove() will be changed to use the
new system calls as well. It is not yet clear what changes if any will be necessary in other librar-
ies.

5.0 Required Utility Changes

This section attempts to list the utility programs which must be changed to use the new 64 bit file
access primitives. It does not include those which are file system specific and must be changed if
the file supports 64 bit files anyway (e.g. dump, fsck).

Is, cp, my, rcp, ftp, find, tail, cat, sh, csh, ksh, tcsh, dd, tar, cpio, cmp, od, compress, quotas, tail,
bru, diff, wc, du, odiff

64 Bit File Access October 7, 1993 7

Silicon Graphics Proprietary

6.0 Required Kernel Changes

The goal of the changes to the kernel will be to support the following:

» 32 bit kernels without 64 bit files (K32FS32)

» 32 bit kernels with 64 bit files (K32FS64)

* 64 bit kernels with 64 bit files (K64FS64)

This support will be based on the compile time definitions indicated in parantheses in the list

above. Whether or not we want to ship both the K32FS32 and the K32FS64 versions, however, is
guestionable. The arguments for each are:

For small systems we do not want to pay the increased memory and computational overhead
associated with supporting 64 bit files.

Not supporting 64 bit files on all systems implies that we will have hardware independent func-
tionality available on some platforms and not on others. While the 64 bit access interfaces will
remain, there will be no way to access beyond 2GB-1 bytes in a file.

This is more a policy decision than anything else. The code will support all three types of kernels.

6.1 Kernel Type Changes

All of the types associated with file offsets will need to be expanded to 64 bits in K32FS64 and
K64FS64 kernels. These changes will all be confined to the kernel and will not be user visible.
The types to be changed are listed below.

» off_t -- This will become a 64 bit value.
e daddr_t -- This will become a 64 bit value.

e vattr_t -- The vnode attributes structure will be changed to contain a 64 bit value for the file
size.

* uio_t -- The uio structure’s uio_offset, uio_limit, and uio_blkno fields will be expanded to 64
bits.

» pfdat_t -- The pfdata structure’s pf_pageno field will be expanded to 52 bits, increasing the size
of the pfdat structure by 32 bits.

* pgno_t -- This will become a 64 bit value for describing pages associated with very large file
offsets.

» file_t-- The f_offset field will be expanded to 64 bits.

» user_t -- The file offset fields in the user structure, u_r.r_off and u_offset, will be expanded to
64 bits.

* rlim_t -- This will become a 64 bit value for describing file size limits in a 64 bit file system.

 rlimit -- The rlim_cur and rlim_max fields of this structure are both rlim_ts, so this structure
will be expanding.

» flock_t-- The |_start and |_len fields are of type off_t, so they will be growing to 64 bits.

64 Bit File Access October 7, 1993 8

Silicon Graphics Proprietary

* reg_t -- The r_fileoff field of the region structure is an off_t that will expand to 64 bits. The
r_maxasize field may not need to be expanded and if not its type will be changed. The pregion
structure will not need to be expanded, although the types of its p_offset adn p_pglen fields
will be changed to they are 32 bit values in a K32FS64 kernel.

e swapres_t, xswapres_t, swapent_t, swapinfo_t -- These structures will be modified so that in
K32FS64 kernels the off_t and pgno_t type fields will remain 32 bit values.

* buf_t-- The b_offset and b_blkno fields of the buf_t will be growing to 64 bits.
6.2 Kernel Routine Changes

All of the code in the kernel manipulating off_ts will need to be checked to make sure it does not
depend on an off_t being the same size as an int or a long.

64 Bit File Access October 7, 1993 9

