Silicon Graphics Proprietary

XFS Project Architecture

Curtis Anderson
Doug Doucette
Jeff Glover
Wei Hu
Michael Nishimoto
Geoff Peck
Adam Sweeney

1.0 Introduction

This project is concerned with producing a next generation file system and volume manager for
IRIX. Included in this project are changes to the underlying disk drivers, buffer cache, and virtual
memory support. Also included are additional semantics added for reasons such as standardiza-
tion, new products, new markets, etc.

2.0 Goals and Requirements

2.1 High-level goals

» Large systems must be saleable as scientific file and compute servers, as commercial data pro-
cessing servers, and as digital media servers.

* The same software must be able to run on all supported SGI machines, in particular small
machines must be supported well.

* The file system should replace EFS (the current SGI file system) completely, i.e. it should do
everything that EFS does.

» The volume manager should replace the current two volume managers completely.
* The file system must out-perform EFS on benchmarks that represent useful activity.

» The file system must support high availability by recovering quickly from failures and by keep-
ing its disk-based data in a consistent state at all times.

* The file system and volume manager design must support future extensions in certain specific
areas, i.e. high availability, distributed file systems, and user transactions.

2.2 Detailed requirements

The goals from section 2.1 have guided us in determining a detailed set of requirements for the
project. These are broken up into groups below. Items inmpkementationsections are not
really requirements in the same sense thafuhetionalityitems are; they represent our current

XFS Project Architecture October 8, 1993 1



Silicon Graphics Proprietary

ideas about how to fulfill the functional requirements. In each section, the items are not in any
particular order.

2.2.1 File System Requirements

2.2.1.1 File system functionality

Implement asynchronous I/O, direct I/O, and synchronous I/O as is done in EFS, in addition to
normal (buffered) 1/O.

Efficient support for very large files, where very large means a 64 bit size. There must be little
or no performance penalty to access blocks in different areas of the file. Some disk space pen-
alty (for indices, for example) is allowed to increase performance. Linear searches through the
file system data structures to get to blocks at the end of a large file are unacceptable.

Efficient support for sparse files. Arbitrary holes must be supported, areas of the file which
have never been written and which read back as zeroes. The representation must be disk-space
efficient as well as cpu-time efficient in retrieval of old data and insertion of new data. There is
no requirement to detect blocks of zeroes being written in order to replace them with holes (nor
Is it forbidden). This capability is important for some scientific and compute-intensive applica-
tions, as well as for Hierarchical Storage Management (HSM).

Efficient support for very small files, under 1KB or so. A normal root or usr file system has
many such files, as does a file system which contains program sources. Most symbolic links fit
into this category, as well.

Efficient support for large directories, both for searches and for insertions and deletions. This
implies some index scheme, to avoid linear searches through a long directory.

The time to recover from failure does not increase with the size of the file system. The time is
allowed to increase with the level of activity in the file system at the time of the failure. The
recovery scheme must not scan all inodes, or all directories, to ensure consistency. This implies
that consistency is guaranteed by use of a log, since the alternative (synchronous behavior as in
MS-DOS) is unacceptably slow.

Recovery never backs out changes that were committed after returning successfully to the user.
Some operations must be synchronous, at least as far as the log writes are concerned. Certainly
this includes file creation and deletion, and does not include ordinary (buffered) writes.

Supports ACLs and other POSIX 1003.6 functionality. This includes some form of support for
Mandatory Access Controls, Information Labeling, and auditing.

Supports extents, contiguous regions in a single file. Contiguity is defined with respect to the
underlying logical volume, not with respect to the actual disk space. It is not a requirement that
the extents be exposed in the programming interface to the user. This is primarily a perfor-
mance issue but we may choose to make the extent sizes visible or settable per-file.

Supports multiple logical block sizes, ranging from the disk sector size up to something large
like 64KB or 256KB. The block size is set at file system creation time. It is the minimum unit
of allocation in the file system (except for inodes, which can be smaller).

XFS Project Architecture October 8, 1993 2



Silicon Graphics Proprietary

Supports multiple physical sector sizes. This allows us to support different disk hardware with-
out a built-in reliance on a particular formatted sector size. Smaller sector sizes yield less total
useable disk space, so more efficient use of current disks can be made by increasing the sector
size.

Allow the file system to change size on-line, possible automatically as well as by administra-
tive command. The file system’s underlying space (volume) can grow, so the file system must
be able to use the new space. It is also possible to allow communication between the volume
manager and the file system so that the file system will ask the volume manager to grow the
underlying volume when the file system is getting full (this is a low priority goal, not a require-
ment). It is not a requirement to allow on-line shrinking of a file system; it is a requirement to
allow off-line shrinking.

Allow the separation of file system space between inodes and data to change on-line. This
implies dynamic allocation of the space for inodes as the only reasonable implementation.

Note that any mechanism which yields different numbers of inodes in each allocation group

implies some sort of indexing scheme to find the inodes.

It must be possible to attach arbitrary attributeto any object in the namespace. An arbitrary
attribute is a (name, value) pair where the name is a printable string and the value is a smallish
string of arbitrary bytes.

High throughput for file server and compute server applications. In particular, the NFS perfor-
mance must make our system price/performance competitive. Compute server applications
need high single-file throughput.

Extremely high throughput for video server applications. This means that sequential access to
large files must be very fast. This will be done via directives from the application about
required read/write performance rates.

Fast, guaranteed response time for digital media and other real-time applications. In part, this
requirement will be met by providing portable interfaces for real-time programming defined in
POSIX 1003.4; this includes preallocation of blocks to files.

High throughput for random access to very large databases, via direct I/O and asynchronous I/
O. Such applications may elect to bypass the buffer cache and implement their own cacheing.

Backup and HSM interfaces for Epoch and similar systems are supported. File migration and
backup tools are supported or supplied by us. Backup tools allow full and incremental backups
in a reasonable length of time, even for systems with very large amounts of online storage.

It must be possible to restore filesystems from backup media after a disaster, in a reasonably
short amount of time. File restore must also allow selection of individual files to restore, and
must allow the backup media to be remote from the file system.

Support low-power machines with the ability to turn off the disk drives when they are not in
use, and turn them on again when needed.

2.2.1.2 File system implementation

The file system is implemented under vnodes, possibly extended from the current ones. Other
file systems (excluding EFS) in IRIX continue to run with little or no implementation effort.
EFS must continue to run, but may have impaired performance.

XFS Project Architecture October 8, 1993 3



Silicon Graphics Proprietary

File system is implemented as a journalled file system. This is implied by the requirement for a
small recovery time for large filesystems.

May be implemented using message passing and kernel threads. The former allows later distri-
bution in a network, but costs some performance in the local case. The latter may allow greater
ease of implementation.

Implement so that a user-mode simulation of the file system is functional and usable for debug-
ging and performance modelling.

Support large, sparse files using a B-tree as the index to the data blocks, replacing the current
direct and indirect blocks scheme. This makes the performance of these files acceptable. Any
equivalent index scheme will do as well.

Delay allocation of user data blocks when possible to make blocks more contiguous. This
allows us to make extents large without requiring the user to specify extent size, and without
requiring a file system reorganizer to fix the extent sizes up after the fact.

Store symlinks and other small files in the inode when possible. By doing so, we save a disk
block and the time to read it.

Support directories with some form of indexed structure, so that searches are faster for large
directories. Some form of B-tree will work.

2.2.2 Volume Manager Requirements

A volume manager is an integral part of the next generation file system. The volume manager pro-
vides an operational interface to the system’s disks and isolates the higher layers of the file system
from the details of the hardware.

2.2.2.1 Volume manager functionality

Auto-assembly of logical volumes. The volume manager will be able to assemble logical vol-
umes by scanning the hardware on the system and reading all the disk labels.

Mirroring (plexing) of storage. Flexibility is required, we do not want to require duplexing
entire disks, or limiting to two plexes.

Disk striping. Required for performance on large systems.

Concatenation of storage sections. Should be able to build arbitrarily large volumes, up to the
64 bit limit.

On-line configuration changes. The volume manager will support the restructuring of logical
volumes (e.g., adding a new plex, growing, shrinking), without requiring the volume to be dis-
mounted.

Separate logging, data and unreliable sub-volumes. Logging sub-volumes are needed by the
file system. Unreliable sub-volumes are needed by multimedia file systems. Each should be
sized and organized independently in its portion of the volume.

High throughput for file server applications. The performance penalty for using the volume
manager should be vanishingly small in normal operation.

XFS Project Architecture October 8, 1993 4



Silicon Graphics Proprietary

» Support of RAID devices at their full performance. Implies large transfers generated from the
file system code, through the volume manager, down to the RAID driver.

» Support of RAID in software, as opposed to purely hardware RAID implementations, which
appear to the system as large disks.

» Fast, guaranteed response time for digital media and other real-time applications.

» Support multiple logical sector sizes (one per volume). This supports the equivalent file system
requirement.

* The new and old volume managers (lv, not Veritas) must be able to run in the same system. It is
not a requirement to run a \eritas volume in the same system. This allows a gradual
changeover to the new file system and volume manager, since the only way to convert data
from EFS to xFS is to dump and restore it.

* EFS and non file system applications must be able to run on top of the new volume manager.
Ordinary driver interfaces must be presented to these clients, even if XFS doesn't use them.

» Provide for future support of multiple-access (dual-ported) disk controllers. Necessary for real
high-availability applications.

» Provide for future dynamic relocation of control for a volume. Necessary for high availability.

2.2.2.2 Volume manager implementation

* The volume manager will store all configuration data on the disk labels themselves. These
labels will be replicated so that a logical volume can be assembled even if some pieces are
missing.

» Write-logging (on disk) of blocks that will be changed to reduce the need for plex copies after
a system restarts after a crash.

» Logging of written blocks (in memory) when volume is incomplete. Necessary for high avail-
ability (fast recovery from a disk failure).

* A reduced functionalityightweightvolume manager may be produced for smaller system con-
figurations. This volume manager would support only concatenation, plexing, strping, and soft-
ware RAID. Disk media will be completely compatible between the full and lightweight
volume manager implementatiofS.eoff: what is left out?]

2.2.3 Buffer cache and virtual memory support

Need to be able to keep blocks from going to disk until prerequisite blocks have gone out. This
is required to ensure consistency in a journalled file system.

2.3 Possible requirements
» Support DFS vnode interfaces. This will wait until we figure out what is happening with DFS.

* We may need to allow the user to ensure that their files are contiguous, implying that there is
some way to display layout information, and some way to make a file contiguous.

* We may need a file system reorganizer program, to improve file contiguity in the background.

XFS Project Architecture October 8, 1993 5



Silicon Graphics Proprietary

3.0 Design Overview

3.1 xFS File System

The xFS file system isjaurnalled file system. This means that updates to file system metadata
(inodes, directories, bitmaps, etc.) are written to a serial log area on disk before the original disk
blocks are updated in place. In the event of a crash, such operations can be redone or undone
using data present in the log, to restore the file system to a consistent state. This implementation
technique replaces the use of a file system check and repair program (fsck) before mounting file-
systems that were active when a system crash occurred. Since a full file system check takes an
amount of time proportional to the size of the file system, we must avoid it to meet our availability
goals. Therefore, we choose the logging mechanism for our implementation.

3.2 XFS Volume Manager

The xFS volume manager (also known as xlv) is intended to replace both the IRIS Iv volume
manager and the Veritas Volume Manager products. Xlv creates an abstraction of a sequence of
logical disk blocks to be used by the xFS file system. The sequence of disk blocks can be assem-
bled by concatenating, plexing (copying), and striping (including RAID) across a number of
physical disk drives. Xlv ensures that plexed data is kept consistent across all plexes.

3.3 xFS Growth Path

In the long run, we expect to add user-level transactions to the file system, at which time selected
user data will be logged along with the filesystem metadata. This feature will make it practical for
user applications to easily implement databases and database-like systems on top of this file sys-
tem.

The other major future change anticipated is that the file system will be distributed over multiple
computers (referred to as nodes), connected by a fast local area network. This technology will
allow us to provide high availability to user data in the event of failure of a node. For instance,
nodes might share disk controllers via multiporting, where only one node at a time uses the disks
attached to the controller. To achieve consistent operation, the nodes must communicate with each
other.

In order to achieve transparent high availability in such an environment, file system naming must
be location independent: a file’s name must be the same no matter where it is being named from,
or which machine has mounted the file system containing it.

The first release will have neither the distributed capabilities nor transactions, but the architecture
is designed to accommodate both. The intent is to make future additions to the implementation
easier to do by putting a little more effort in up front.

XFS Project Architecture October 8, 1993 6



Silicon Graphics Proprietary

4.0 The Big Picture

The following is the current architectural diagram for the xFS project.

FIGURE 1. xFS Architectural Diagram

System Call and VNODE Interface

A A 4 A

™ Attribute Mgr NameSpace Mgr
A 4
A
q Space Manager Lock Mgr
m
» Log Manager
i

Buffer Cache

A

Volume Manager

Disk Drivers

The structure of xFS is similar to that of a conventional file system with the addition of the vol-
ume manager between the disk drivers and the file system code and the log manager. The follow-
ing sections describe the functionality of each component in the architectural diagram.

5.0 System Call and Vnode Interfaces

The file system related calls are implemented here: read, write, open, ioctl, etc., for all file system
types. The operations are then vectored out to different routines for each file system type through
the vnode interfaces.

Both 32-bit and 64-bit interfaces are supported, where those are supported by the underlying OS
and hardware. The semantics of 32-bit applications operating naively on files longef&han 2
bytes are defined in the paper “64 Bit File Access”.

The vnode interfaces also allow interoperation with remote clients such as NFS. In a future
release the vnode interface may be expanded to support DFS semantics.

XFS Project Architecture October 8, 1993 7



Silicon Graphics Proprietary

When xFS is distributed, references to remote files will come through the vnode layer and be

turned into messages if the references cannot be satisfied locally. On receipt of a distributed file
system request message, the node owning the file system will send a call through its vnode layer
to get data in and out of the file system.

There will be new system call and vnode operations to support Hierarchical Storage Management
(HSM) and backup applications; these are currently being designed by an industry-wide working
group (DMIG, Data Management Interfaces Group).

There will also be new system call and vnode operations to support extended attributes. There
may be a standard proposed for the system call interfaces for these soon, but in all likelihood not
before we must ship to customers. One possibility is that we will tell internal customers and ISVs
about the new interfaces, with the caveat that they will be replaced with POSIX-compliant inter-
faces when those exist. Another possibility is that both sets of interfaces will be supported, one set
as a library built on the other set.

6.0 Lock Manager

The lock manager implements locking on user files (fcntl and flock calls). For the first release the
lock manager is identical to the current implementation. The performance in the non-distributed
case must be no worse than that of the current EFS implementation.

In the future, user transactions and distributed locking will be supported. These will cause the
lock manager implementation to expand in size and complexity. A distributed two-phase commit
protocol will be implemented to allow transactions in the distributed system. Also, some form of
distributed deadlock detection will be implemented, possibly using timeouts.

7.0 NameSpace Manager

The namespace manager implements file system naming operations, translating pathnames into
file references. A file is identified internal to the file system by its file system and its inode num-
ber. The inode is the on-disk structure which holds information about a file; the inode number is
the label (or index) of the inode within the particular file system. Files are also identified inter-
nally by a numeric value unique to the file, called the file unique id.

File systems may be identified either by a “magic cookie”, typically a memory address of the root
inode, or by a file system unique id. File system unique id’s are assigned when the file system is
created and are associated uniquely with that file system until the file system is destroyed. An
additional temporary unique id, the file system 1/O unique id, is created whenever a file system is
mounted, and is valid only for the duration of the mount. The file system I/O unique id is used for
dynamic reconfiguration in the distributed version of xFS.

The namespace manager manages the directory structures and the contents of the inode that are
unrelated to space management, such as file permissions and timestamps. Requests from other
systems via NFS come into the system wifileeahandlewhich the namespace manager uses to

find the inode. The file handle includes enough information to deduce the file system, the inode,

XFS Project Architecture October 8, 1993 8



Silicon Graphics Proprietary

and which version of the file is meant (inodes may be reused). Requests from other nodes in a dis-
tributed XFS file system would enter with a file system unique id and inode number, and a file
unique id, and be validated at this level (to see that the two forms of identification match).

The namespace manager may have a cache to speed up naming operations. The details of the
name translation are hidden from the callers.

In the distributed system, we have yet to decide whether the distributed nature of the naming
should be transparent (single system view) or visible (multiple system view). (Indeed, different
sites may prefer one model over the other, or some customer might even want both models within
a single installation.) The issue is whether or not it is necessary to know what machine is manag-
ing a file system to name a file within the file system. If the machine name is embedded in the
pathname (as in DFS, for example) then the machine controlling access to the file system cannot
change without clients being aware of the change. If the machine name is not in the pathname, but
rather the file system can move easily from machine to machine, and the file system name and
location is broadcast when it moves, then this can change without knowledge of user or user pro-
grams.

The current design of the namespace manager’s mount semantics have a file system node called a
mount pointwhich replaces the empty-directory mount points of the current file system. The
mount point node contains a file system unique id. When a mount point which refers to a remote
file system is encountered during a naming operation, a message is sent to the remote machine
which is managing the file system with that file system unique id, along with the naming request,

to complete the operation.

It is possible that alternate or extended naming schemes may be implemented in user mode by
allowing the entity at the other end of the message queue to be a program. This will not be imple-
mented in the first release of the system.

8.0 Attribute Manager

The attribute manager implements file system attribute operations: storing and retrieving arbitrary
user-defined attributes associated with objects in the namespace. Arbitrary attributes are (name,
value) pairs where the name is a printable string and the value is a smallish string of arbitrary
bytes. Attributes may be controlled either by user applications or by the kernel (ACLs, Trusted
IRIX attributes). Certain attributes are pre-defined by the system and may be accessed using both
existing UNIX interfaces and the new attribute access system calls. (For example: file access and
modification times.) The system call interfaces for controlling attributes have not yet been
defined.

An attribute is stored internally by attaching it to the inode of the referenced object. The attribute
manager manages the attribute structures that are associated with inodes. However, the attribute
manager does not manage those fields which are handled by the namespace manager such as file
permissions and timestamps.

No storage for arbitrary attributes is allocated when an object is created, and any attributes that
exist when an object is destroyed are destroyed as well. Attributes are not shared between inodes.

XFS Project Architecture October 8, 1993 9



Silicon Graphics Proprietary

Access control lists are handled as a special case of attributes; these can be shared between
inodes. There will be no method faster than the equivalenfiofl do locate all the objects in a
filesystem that have certain attributes or attribute values.

Some system utility programs will be modified to know about attributes, for exapwi# copy
selected attributes of a file when it copies the file. The system backup utility will back up and
restore the attributes of an object when that object is backed up or restored.

Standard NFS does not support attributes beyond the traditional UNIX set, so these attributes will
not be visible in any way to a client that is accessing an XFS filesystem via standard NFS. NFS
mounted file systems will continue to operate as if this feature did not exist.

SGI has an extended version of the NFS protocol that it can speak with other SGI systems. This
version may be extended to know about attributes if the distributed system implementation will
not be ready in time for the majority of customers of attributes.

For the distributed system case, using the XFS internal protocols, attributes will be accessible in
just the same way that other filesystem objects are accessible. There should be no difference
between accessing attributes on an object that is managed locally from accessing attributes on an
object that is managed remotely.

9.0 Space Manager

The space manager manages the allocation of disk space within a file system. It is responsible for
mapping a file (a sequence of bytes) into a sequence of disk blocks. The internal structure of the
file system - allocation (cylinder) groups, inodes, and free space management - are controlled by
the space manager, as well as the above mapping function.

The space layout choices in the design are influenced by the requirements to support very large
files and file systems efficiently, including the possibility of sparse 64 bit files. The space manager
is also responsible for optimizing the layout of blocks in a file to avoid seeking during sequential
processing, and keeping related files (those in the same directory) close to each other on the disks.

Each file system is divided into log, metadata, data, and real-time sub-volumes. Normally, the
data sub-volume and the real-time sub-volume do not exist. If the data sub-volume exists, then
ordinary user data is stored in it, otherwise in the metadata sub-volume. Data blocks for real-time
files are stored in the real-time sub-volume, if it exists, otherwise in the data sub-volume if it
exists, otherwise in the metadata sub-volume. All file system data is stored in the log and meta-
data sub-volumes.

The space manager divides each file system metadata and data sub-volume into a ralimber of
cation groups When the data sub-volume exists, the allocation group contains blocks from both
the metadata and data sub-volumes. Each allocation group has a collection of inodes and data
blocks, and data structures to control their allocation. The blocks containing inodes are allocated
dynamically from the data block pool, to permit more efficient use of disk space. Knowledge of
the location of the sequence of inode blocks for an allocation group is kept the same way it is for
ordinary files (in a B-tree).

XFS Project Architecture October 8, 1993 10



Silicon Graphics Proprietary

Free blocks in an allocation group are kept track of via one of two schemes. The first scheme uses
a bitmap and a set of counters organized by starting bitmap block and 4lezl@f the free

extent. The second scheme uses a pair of B-trees, one indexed by size of the free extent (and sec-
ondarily by the starting block), the other indexed by the starting block of the free extent. The
scheme to be used will be chosen later, after both methods have been prototyped and their perfor-
mance analyzed.

The real-time sub-volume is divided into a number of fixed-size extents. The size is chosen at
mkfs time; it is expected to be large (say on the order of 1MByte). The size does not have to be a
power of two, just a multiple of the file system block size; it should be the ideal I/O size for that
volume configuration, or a multiple of it. A single extent in the metadata sub-volume contains an
allocation bitmap for the real-time sub-volume extents; another extent contains summary infor-
mation per bitmap block (number of free extents). This alternate method of allocation is chosen
for the real-time sub-volume due to the improved performance possible because of the fixed-size
extents.

Storage for files is represented in one of three ways, depending on the size and contiguity of the
file. For small files, the data in the file is stored in the inode. For medium files, the inode contains
pointers to extents containing the file data. For large files, the inode contains the root block of a B-
tree indexed by logical position in the file, where the records point to disk extents containing the
file data. This storage structure allows for large fragmented and large sparse files to be imple-
mented efficiently, at the cost of some overhead to manage the B-tree indices.

An active file system may be extended by adding more space to the underlying volume. This oper-
ation is supported on-line by the space manager, which receives a request to expand the file sys-
tem and updates on-disk and in-memory structures to implement it.

In a future implementation it may be required to support splitting the control of space manage-
ment in a single file system over multiple nodes of the system. There will be no effort in the first
implementation to take this into account.

10.0 Log Manager

All changes to file system metadata (inodes, directories, bitmaps, etc.) are serially logged to a sep-
arate area of the disk space. There is a separate log for each file system. The log allows fast recon-
struction of a consistent and correct file system (recovery) if a crash intervenes before the
metadata blocks are written to disk. The log space is allocated independently from the file system
space for safety; this separation is managed by the underlying volume manager. The log manager
utilizes information provided by the space manager to control the sequencing of write operations
from the buffer cache, since specific log writes must be sequenced before or after data operations
for correctness if there is a crash.

The space and name manager subsystems send logging requests to the log manager. Each request
may fill a partial log block or multiple blocks of the log. The log is implemented as a circular
sequential list which wraps when writes reach the end. Each log entry contains a log sequence
number, so that the end of the log may be found by looking for the highest sequence number. On

XFS Project Architecture October 8, 1993 11



Silicon Graphics Proprietary

plexed volumes, the buffer cache is also responsible for inserting log records for non-metadata
blocks, so that the volume manager’s write-change log does not need to be used by the file sys-
tem. This allows the system to keep the plexes of a volume synchronized with each other in the
event of a crash between writes.

After a crash, the log must be recovered before the file system can be used. Operations which are
recorded and are complete in the log but are not yet stored in the data area of the file system are
re-done so that the file system data reflects a correct and consistent state. The log manager’s role
in this is to identify the log records and to call other pieces of the file system to perform recovery
operations.

Log operations are blocked together to get higher throughput on the log portion of the volume.
The block is called a log record. Typically, log records are written asynchronously; the log man-
ager can be directed by higher levels of the system to force writing of the current log record as
soon as possible. A given log write cannot be started until the previous one finishes.

11.0 Buffer Cache

The buffer cache is a cache of disk blocks for the various file systems local to a machine (node).
Read requests may be satisfied from the buffer cache; write requests may write into the cache.
Cache entries are flushed when new entries are needed, in an order which takes into account fre-
guency (or recency) of use, and file system semantics. File system metadata as well as file data is
stored in the buffer cache. User requests may bypass the cache by setting flags (O_DIRECT); oth-
erwise all file system 1/0O goes through the cache.

The current buffer cache interfaces will be extended in two ways. First, 64-bit versions of the
interfaces will be added to support XFS’s 64-bit file sizes. Second, a transaction mechanism will
be provided. This will allow buffer cache clients to collect and modify buffers during an opera-
tion, send the changed buffers to the log manager, and release all the buffers after successful log-

ging.

In the future distributed system, a buffer cache will hold data for filesystems remote to a machine.

12.0 Guaranteed Rate I/O

xFS will support digital media applications with a guaranteed rate I/O mechanism. This will allow
applications to specify “real-time” guarantees for the rate at which they can read or write a file.
The application will specify a rate of X bytes per Y seconds for a given file, possibly beginning at
some future time, and the file system will reserve the bandwidth of all underlying devices to meet
the requested guarantee. If the bandwidth is not available the application’s request will be refused.
Note that this mechanism is device and topology independent; it can, for example, be extended to
a distributed system with no change to application code.

The only new interface to the user will be that used to make a bandwidth reservation. This will
take the form of a new ioctl() call on a file or a new system call. All data accesses will be made
with standard read() and write() system calls.

XFS Project Architecture October 8, 1993 12



Silicon Graphics Proprietary

Guaranteed rate 1/0 will have very little impact on the buffer cache, because programs which uti-
lize this mechanism will typically be required to use direct I/O and will thus completely avoid the
buffer cache. It will, however, have an impact on the disk drivers. These must be modified to rec-
ognize guaranteed rate requests and to schedule them in a real time manner. The disk and volume
drivers will also be required to export an interface for acquiring their response time and band-
width characteristics for use by the reservation scheduling module.

The knowledge of what bandwidth is available for reservation will most likely be pushed out into

a user level reservation scheduling daemon. The daemon will have knowledge of the characteris-
tics and configuration of the disks and volumes on the system (including backplane and SCSI bus
throughput), and it will be the responsibility of this daemon to track both current and future band-
width reservations.

13.0 Volume Manager

Within each logical volume, the volume manager implements multiple sub-volumes, which are
separate linear address spaces of disk blocks in which the file system stores its data and log
blocks. Each subvolume is madepattitions (real, physical regions of disk blocks) composed by
concatenation, plexing (copying), and striping. The volume manager is responsible for translating
logical addresses in the linear address spaces into real disk addresses. Where there are multiple
copies of a logical block (plexing), the volume manager writedl toopies, and reads froemy

copy (since all copies are identical). The volume manager is responsible for maintaining the
equality of plexes across crashes and both temporary and permanent disk failures. In future sys-
tems, volumes will be spread across nodes of the system and will be accessible from multiple
nodes.

A volume used for file system operations is composed of at least two subvolumes, one for log and
one for data. Each subvolume consists of a number of plexes. Plexes are individually organized
and map different portions of the subvolume’s address space. A plex consists of a sequence of
volume elements each of which maps a portion of the plex’s address space. Volume element can
then be striped across a number of disk partitions.

To support plexing on non-xFS volumes, the volume manager will maintain an on-disk write log
to keep track of changed blocks. This allows the volume manager to synchronize the data on all
the plexes without copying the full contents of the plex. When the volume manager is providing
plexing support for an xXFS file system, the volume manager interfaces will allow the file system to
do the write logging.

14.0 Disk Drivers

Disk drivers are the same as in traditional and current IRIX systems, except for ordering con-
straints needed by the log and volume managers and rate guarantees. In particular, it must be pos-
sible for the volume manager to be certain that a write request has actually been completed, not
merely cached for later writing. It should also be possible for the volume manager to specify that

a given write not be reordered - that all blocks passed to the driver before this block will be writ-

XFS Project Architecture October 8, 1993 13



Silicon Graphics Proprietary

ten before this block is written, and all blocks passed to the driver after this block will be written
after this block. (If non-ordered writes are not available on a particular driver, the volume man-
ager can synthesize this behavior by waiting for completion, but this is much less efficient.)

15.0 Administration

XFS administration includes the utilities needed to create and maintain volumes and file systems.
It also includes programmatic interfaces for volume control, file system control (mount, unmount,
etc.), backup and restore, hierarchical file systems, etc. In the future, administration support will
be expanded to allow remote access to volumes and file systems, for mounting, backup, etc.
Graphical interfaces will be provided by the system administration group in MSD for the new
tools that need it, i.e. volume administration.

16.0 Threads, Messages, Memory Allocation (Kernel Services)

The project will make use of new kernel services at some point, not necessarily in the first (non-
distributed) release. The underlying communication between certain modules will be by message
passing in the remote cases in the future implementation, otherwise by ordinary procedural inter-
faces. The implementation will be based on kernel threads to increase parallelism. The threads
will pass messages to each other through message queues. There may also be memory allocation
enhancements to support the file system and its messages. None of this will be present in the first,
non-distributed, release.

17.0 Inter-module Communication

Communication between major xFS modules will be done by messages where that gives us an
advantage. This will happen either if the sender is remote, in a distributed system, or if additional
performance (parallelism) can be gained by using messages. We expect to use messages from the
vnode layer to the file system implementation layers in the distributed cases, and procedure calls

in the local cases. Disk drivers do not need a message interface; the volume managers can com-
municate with each other. Administrative interfaces must all be message-based so that administra-
tive utilities can be run remotely to the administered object. The log manager interfaces do not
need to be message-based, as log accesses are never remote. The name manager needs message
interfaces to deal with mount points for remote file systems encountered during pathname parsing.

Communication is addressed to a message queue, identified either by a unique id or by an address;
the address is allowed only in the case where the queue is known to be local. The unique id is
associated with the queue when it is created. A message queue may be serviced by one thread or
by several threads. The message-passing routines are simple synchronous and asynchronous
gueueing routines. For the remote case we will need to implement a communication manager to
identify the machines associated with each unique id, and to packetize and transmit the messages.
In the local case this module is a simple routine that handles the translation of unique id’s to mes-
sage queue addresses, and queues the message appropriately.

XFS Project Architecture October 8, 1993 14



Silicon Graphics Proprietary

Proper assignment of unique id’s, whereby the non-timestamp portion of the unique id is adminis-
tered in a rational way, will mean that the administration tasks will scale. The goal is to have a
unique id space that can be interpreted correctly over a wide area network, so that filesystems can
be mounted and accessed from very remote systems.

XFS Project Architecture October 8, 1993 15



