Silicon Graphics Proprietary

XFS Transaction Mechanism

Adam Sweeney

1.0 Introduction

This document describes the transaction model to be used by xFS. It also specifies the interfaces
exported to support this model. The model must support transactional updates of both file system
meta data and user data. It should provide a clean, efficient interface to the logging and recovery
mechanisms provided by the log management code. This mechanism must also be cleanly inte-
grated with the system buffer cache code.

The xFS transaction mechanism will consist of a set of routines and data structures forming a
layer above the buffer cache, inode management, and logging interfaces. It will manage the lock-
ing of resources and the necessary ordering of writing changed resources back to disk. This will
be done with interfaces very similar to traditional buffer and inode managment interfaces as well
as a few new, transaction-specific routines.

2.0 The Model

The xFS transaction model will support image and a limited form of operation logging. Operation
logging, however, will be used only when image logging is insufficient or overly cumbersome for
the required operation. The reason image logging will be the preferred mechanism is that it is sim-
pler to implement and use. The transaction model is most easily described by a general descrip-
tion of how it is used. This is outlined below.

2.1 The Steps of a Transaction

Step 1 Allocate a Transaction

The first step in performing a transaction is to allocate a transaction structure and unique transac-
tion identifier. This structure will be used to track all of the important events and information
associated with an individual transaction. The transaction identifier will be used to tag all data in
the on disk log which are related to a given transaction.

Step 2 Reserve Log Space

Once a transaction has been allocated, log space for that transaction must be reserved. Log space
reservation is used to ensure that we never overrun the tail of the log. The transaction user must
specify the maximum amount of log space that will be necessary to perform the given transaction.
When each transaction ensures that there is enough log space for it to commit before locking any
resources, we can avoid a very serious potential deadlock. The deadlock occurs when there is not
enough log space for an active transaction to commit, but the tail of the log cannot be moved for-

XFS Transaction Mechanism October 7, 1993 1

Silicon Graphics Proprietary

ward because the dirty resource logged at the tail which must be flushed to move the tail is locked
by the active transaction. By ensuring that each transaction will have enough space to commit
before allowing it to lock any resources we avoid this deadlock.

If the amount of free log space needed by a transaction is not currently available, the transaction
will sleep until it becomes available or give up. Space will be freed up as transactions commit and
dirty resources are flushed out to disk. Determining the necessary amount of space for a given
transaction may be difficult, but we will just have to do so by looking at what can be logged by a
given transaction.

Step 3 Lock Resources

Actually, this step and the step below are intermingled by the transaction user. This step consists
of calls to read in and lock resources such as buffers and inodes. Most transactions must follow
two phase locking, meaning that no resource locked as part of a transaction can be unlocked until
all resources to be locked as part of that transaction have been locked. That is, sequences such as
lock A, unlock A, lock B are illegal. Also, no modified resource can be unlocked until the transac-
tion has been committed to the in-core log. Once a transaction’s modifications have been commit-
ted to the in-core log, all resources locked by that transaction can be released. This is because all
changes are being serialized by the log. Any change made to a resource after a previous change to
it has been logged will always appear to happen after the first, which is the correct behavior.

There are cases where an unmodified resource can be unlocked before some other resource is
locked by a transaction, but these are specialized cases. One occurs in tree locking where in some
cases a parent node may be unlocked once its child node is locked. The ability to take advantage
of such cases will be provided by the transaction mechanism, but we must take care in using it.

Step 4 Modify Resources/Specify Operations

Once aresource is locked as part of a transaction it can be modified. The parts of a resource which
are changed must be remembered so that they can be written to the log as part of the transaction
commit. A modified resource cannot be unlocked until the transaction commits.

The transaction user at this stage can also create transaction operation structures for use in opera-
tion logging. These structures will describe the operation being performed for use by the log
recovery code in the event of a system failure.

Step 5 Commit Transaction

Once all of the necessary resource changes have been completed, the transaction can be commit-
ted. Transaction commit will record all resource modifications and transaction operations in the
in-core log, pin all resources in memory until the transaction makes it to the on-disk log, and
unlock all resources associated with the transaction. At this point the transaction is not yet perma-
ment. It becomes permanent when the in-core log is written out to the on disk log. The user of the
transaction mechanism at this point can either consider him or herself done and forget about the
transaction or wait for the transaction to be written to disk.

XFS Transaction Mechanism October 7, 1993 2

Silicon Graphics Proprietary

Another wrinkle in transaction commit is that the transaction user will be able to specify whether
or not a given locked resource should be unlocked. There are certain long running transactions
which will actually be implemented as multiple transactions. These will require keeping some of
their resources locked across all of the involved transaction commits.

Once a resource is unlocked by a transaction it is eligible for use by other transactions. This may
result in the resource being associated with multiple transactions simultaneously. This will be
handled cleanly by the transaction mechanism without any special intervention by the transaction
mechanism user.

Step 6 Log Write Completes

At some point the in-core log will be written out to disk, and at that point the transaction has
become permanent and its modified resources can be unpinned. This will be performed automati-
cally by the transaction mechanism. The transaction structure will also be freed at this time.

All modified resources and operation records associated with the transaction will be placed in the
Active Items List (AIL) at this time as well. This is a list used by the transaction and logging code
to track the location of active data in the log. A modified resource recorded in the log is active
until the copy recorded in the log is written out to the on disk image of the resource. Tracking the
location of dirty items in the log allows us to prevent the overwriting of the tail of the log.

Step 7 Modified Resource is Flushed

When a resource is unpinned because the log write containing its modifications has completed,
that resource is eligible to be flushed out to disk. This will happen when the resource is to be
reused for something else, the tail of the log approaches the location of the resource in the log, or
some cleaning entity such as the bdflush daemon pushes it out. Once the dirty in-core copy of a
resource is flushed to its on disk image, the resource will be removed from the AIL. At that point
the resource has no ties to the transaction system and the cycle is free to start over again.

3.0 Transaction Mechanism Interfaces

This section describes the function and structure interfaces exported for use by the transaction
mechanism users. Interfaces for performing all of the steps described in the section above are
specified here. They will be listed in an order comparable to that of the previous section.

3.1 Function Interfaces

This section describes the function interfaces to be used by file system code for performing
atomic updates to file system data and meta-data. The design of these interfaces is driven by how
they will be used. | have tried to encapsulate the common actions which will be performed by file
system code in order to reduce redundant functionality throughout the file system. The result of
this is that there are a few completely new transaction specific routines and many more extended
buffer cache and inode management routines. While, as described in a following section, the

XFS Transaction Mechanism October 7, 1993 3

Silicon Graphics Proprietary

internal structure of the transaction layer is designed to be independent of the type of data being
logged, the interface routines described here are quite type dependent. They will have knowledge
of both the management of the objects they manipulate and the internals of the transaction mecha-
nism.

3.1.1 xfs_trans_t *xfs_trans_alloc(struct mount *mp, uint type, uint reserve, uint flags)

This is the routine called to allocate a transaction structure and reserve log space for that transac-
tion. If the flags parameter is set to TRANS_NOSLEEP, then the routine will return NULL if it
cannot reserve the requested amount of log space rather than sleeping until it is available. The
mount point structure should be that of the file system the transaction will be manipulating, and
the type field should specify the transaction type. These types will be enumerated later.

3.1.2 void xfs_trans_callback(xfs_trans_t *trans, void(*)(xfs_trans_t*, void*) callback, void
*arg)

This routine allows the transaction user to specify a routine to be called upon the completion of
the log write which writes the transaction to the on disk log. The user is also allowed to specify a
pointer which will be passed to the callback in addition to the transaction structure. This routine
will be called before the normal transaction completion processing, but not in place of it. The
transaction structure and its contents should not be modified by this routine.

3.1.3 buf_t *xfs_trans_getblk(xfs_trans_t *trans, dev_t dev, daddr_t blkno, int len)

This is called to assign a buffer to the specified block(s). If the buffer already exists and is locked
by someone else, the routine will sleep until it becomes available. If the buffer is already locked
within the given transaction it is just returned to the caller. If the buffer is not yet in the cache it
will be allocated and returned to the user. The buffer is always locked upon return to the caller.

This routine will allocate an xfs_buf log_item structure for the buffer if it does not yet have one.
This structure (described in detail below) is what is used by the transaction code internals to
manipulate buffers within a transaction.

3.1.4 buf t*xfs_trans_bread(xfs_trans_t *trans, dev_t dev, daddr_t blkno, int len)

This routine is just like xfs_trans_getblk(), except that it ensures that the buffer is completely read
in from disk before returning it to the caller.

3.1.5 buf _t*xfs_trans_getchunk(xfs_trans_t *trans, vnode_t *vp, struct bmapval *obmap,
struct cred *cred)

This routine is just like xfs_trans_getblk(), except that the buffer specified is a part of the chunk
cache rather than the block buffer cache. This is used for getting buffers associated with file data
within a transaction.

3.1.6 buf_t *xfs_trans_chunkread(xfs_trans_t *trans, vnode_t *vp, struct bmapval *bmap,

XFS Transaction Mechanism October 7, 1993 4

Silicon Graphics Proprietary

struct cred *cred)

This routine is just like xfs_trans_getchunk(), except that it ensures that the buffer is read in
before returning it to the caller. This routine differs from xfs_chunkread() in that only a single
bmapval structure can be specified.

3.1.7 void xfs_trans_brelse(xfs_trans_t *trans, buf_t *bp)

This routine releases the given buffer which must have been allocated with one of the above
xfs_trans_xxx() buffer allocation routines or added to the transaction with xfs_trans_bjoin(). This
will decrement the lock recursion count on the given buffer. If the count goes to 0 the buffer will
be unlocked and disassociated from the transaction. The buffer must not have been modified
within this transaction, because we have no way to restore it to its previous state.

If the xfs_buf log_item structure associated with the buffer is not needed because the buffer has
no logged data, then it will be freed.

3.1.8 void xfs_trans_bjoin(xfs_trans_t *trans, buf_t *bp)

This routine is called to add an already locked buffer to the given transaction. Use of this routine
is discouraged, but there may be some cases where it is necessary. If the buffer does not yet have
an xfs_buf_log_item structure associated with it one will be allocated.

3.1.9 void xfs_trans_bhold(xfs_trans_t *trans, buf_t *bp)

This routine can be called with a buffer locked within the transaction to prevent the buffer from
being unlocked when the transaction commits. It is the responsibility of the caller to track the
buffer and unlock it eventually.

3.1.10 void xfs_trans_iget(xfs_trans_t *trans, xfs_ino_t ino, struct xfs_inode **ipp)

This routine will return the inode with number ino in the ipp parameter. The file system to which
ino is relative is already known since it was specified in xfs_trans_alloc(), so it is not necessary to
specify it here. The inode is returned locked to the caller, and if it is already locked within the
transaction it is simply returned to the caller.

3.1.11 void xfs_trans_irelse(xfs_trans_t *trans, struct xfs_inode *ip)

This routine releases the given inode which must have been allocated with xfs_trans_iget() or
added to the transaction with xfs_trans_ijoin(). The inode is unlocked and disassociated from the
transaction. The inode must not have been modified within the scope of the transaction.

XFS Transaction Mechanism October 7, 1993 5

Silicon Graphics Proprietary

3.1.12 void xfs_trans_ijoin(xfs_trans_t *trans, struct xfs_inode *ip)

This routine is called to add an already locked inode to the given transaction. Use of this routine is
discouraged, but there may be some cases where it is necessary. If the indoe does not yet have an
xfs_inode_log_item structure associated with it one will be allocated.

3.1.13 void xfs_trans_ihold(xfs_trans_t *trans, struct xfs_inode *ip)

This routine can be called with an inode locked within the transaction to prevent the inode from
being unlocked when the transaction commits. It is the responsibility of the call to track the inode
and unlock it eventually.

3.1.14 void xfs_trans_log_buf(xfs_trans_t *trans, buf_t *bp, uint first, uint last)

This routine is called to notify the transaction that bytes first through last inclusive of the given
buffer have been modified and must be logged at commit time. The transaction layer is free to log
more bytes than those specified, but it must log at least bytes first through last.

3.1.15 void xfs_trans_log_inode(xfs_trans_t *trans, xfs_inode *ip, uint fieldmask)

This routine is called to notify the transaction that the fields indicated in the fieldmask bitmask
have been modified and must be logged. The values to be specified in fieldmask will be defined
later.

3.1.16 void xfs_trans_log_op(xfs_trans_t *trans, xfs_log_item_t *op)

This routine will add the log operation structure given to the list of things which need to be logged
when the transaction commits.

3.1.17 trans_id_t xfs_trans_id(xfs_trans_t *trans)

This function returns the unique transaction id of given transaction structure. This is for use in log
operations which require making references to other transactions.

3.1.18 void xfs_trans_commit(xfs_trans_t *trans, uint flags)

This routine moves all data which has been specified as needing to be logged to the incore log. All
resources which are logged are pinned, and all resources are unlocked unless it has been specified
that they should not be. If the flags specify that the log should be flushed immediately then it will

be done before returning to the caller. The flags may also indicate that the caller cannot sleep (per-
haps when calling from an interrupt handler), in which case the unlocking of resources and copy
into the log will happen asynchronously. Finally, the flags can indicate that the caller wants to
wait for the commit of the transaction to the on disk log before returning.

XFS Transaction Mechanism October 7, 1993 6

Silicon Graphics Proprietary

If nothing has been logged within the transaction, then almost none of the above will occur.
Instead, all resources will be unlocked unless it has been specified that they should not be, any
transaction completion function will be called, and the transaction structure will be freed.

3.1.19 void xfs_trans_cancel(xfs_trans_t *trans)

This is called to cancel a transaction by unlocking all of its resources. None of the buffers or
inodes can be modified within the transaction when this is called, because there is no way to
restore them to their previous states.

3.2 Exported Structures

3.2.1 xfs_log_item

In order to keep the transaction management code simple and modular, all logged structures will
be manipulated through a common internal interface. This interface will allow the code to manage
buffers, inodes, and log operation structures identically. The xfs_log_item is the common struc-
ture among all things which can be logged. It consists of a small amount of data and a vector of
function pointers used to manipulate the log item. It is the function pointers which contain the

type specific code for manipulating various types of log items. The xfs_log_item is defined as:

field name type comment

li_parent struct xfs_log_item * active item list pointers

li_left struct xfs_log_item *

li_right struct xfs_log_item *

li_type unsigned int item type label

li_lsn xfs_Isn_t log sequence number of
the location of the item
in the log

li_ops xfs_item_ops_t* item specific operation
pointers

The xfs_item_ops structure is defined as:

field name type comment

iop_size uint (*)(xfs_log_item?*) Return the amount of space
needed to log the item

iop_format void (*)(xfs_log_item*, caddr_t) Write data to be logged into the
given buffer

iop_pin void (*)(xfs_log_item*) Pin the item in memory

iop_unpin void (*)(xfs_log_item?*) Unpin the item

iop_trylock uint (*)(xfs_log_item®*) Lock the item

iop_unlock void (*)(xfs_log_item?*) Unlock the item

iop_committed xfs_Isn_t(*) (xfs_log_item*, xfs_I- Notify item of its latest Isn, let it

sn_t) return new Isn if any for the AIL
iop_push void (*)(xfs_log_item*) Try to flush the item to its on

disk image because its space in
the log needs to be reused.

XFS Transaction Mechanism October 7, 1993 7

Silicon Graphics Proprietary

The behavior of each of the functions in the xfs_item_ops structure is described below.

3.2.1.1 uint iop_size(xfs_log_item_t *item)

This will be called by the transaction layer to determine how much space is needed to log the
given item. This number should include the space for a header describing the item and its on disk
location, information describing which parts of the item are being logged, and the actual data
from the item.

3.2.1.2 void iop_format(xfs_log_item_t *item, caddr_t buf)

This will be called after a call to the iop_size routine to put the data to be logged into the in-core
log. The buffer given to the routine will be aligned on at least a 32 byte boundary. The routine
should record enough information to allow the recovery code to understand and restore the item
being logged. This should include (as mentioned above): a header describing the item and its on
disk location, information describing which parts of the item are being logged, and the actual data
from the item.

The first 8 bytes of data written by the format function must consist of a 4 byte log item type field
followed by a 4 byte unsigned integer field indicating the size of the entire log item record in the
log.

3.2.1.3 void iop_pin(xfs_log_item_t *item)

This will be called to pin the given item in memory. The item is guaranteed to be locked when this
routine is called. After this call, it must be impossible to flush the item to disk until the corre-
sponding call to iop_unpin().

3.2.1.4 void iop_unpin(xfs_log_item_t *item)

This will be called to unpin a given item. It should release the item to be flushed to disk whenever
it is convenient.

3.2.1.5 uint iop_trylock(xfs_log_item_t *item)

This routine is called to attempt to lock the given item. It should attempt to lock the item, but it is
not allowed to sleep because it will be called holding a spin lock. The routine should return 1 on
success and 0 on failure.

3.2.1.6 void iop_unlock(xfs_log_item_t *item)

This function will be called to unlock the item once its transaction has committed.

XFS Transaction Mechanism October 7, 1993 8

Silicon Graphics Proprietary

3.2.1.7 xfs_Isn_t iop_committed(xfs_log_item_t *item, xfs_Isn_t Isn)

This will be called when a log write completes to notify the log item that it has been committed to
disk and to determine if the position of the log item in the AIL should change. It passes in the
LSN of the log write which just completed. The routine should return the new LSN to be used to
place the item in the AIL. This should be the LSN of the copy of the item in the log which is fur-

thest back in the log but is still needed for recovery. This gives the item control over when its log
images become inactive.

If the routine returns the value -1, then the position of the item in the AIL will not be updateed and
the item will not be referenced again by the committed transaction. The same behavior will occur
if the routine returns the same value that is in item->xli_Isn before the call. If the value returned is
different, then the xli_Isn field of the item will be changed to the returned value and the location
of the item in the AIL will be updated to reflect this value.

3.2.1.8 void iop_flush(xfs_log_item_t *item)

This routine will be called to asynchronously write the item out to disk. It is guaranteed that the
item has already been successfully locked by a call to iop_trylock(). If the item is no longer dirty
when this is called, then it should just return immediately. It is alright for this routine to sleep if it

must, but this is discouraged.

4.0 Transaction Mechanism Internals

This section describes the internal structures, interfaces, and algorithms of the transaction layer.

4.1 Transaction Structure

The transaction structure is used to track all of the information relevant to a given transaction. The
xfs_trans structure is described below:

field name field type comment

t tid xfs_trans_id_t transaction id

t reserve uint log reservation amount

t type uint transaction type

t_forw struct trans * active transaction list pointer

t_back struct trans * active transaction list pointer

t_sema sema_t transaction commit completion semaphore

t_mountp struct mount * pointer to mount structure of file system

t_callback void(*)(xfs_trans_t*, transaction completion callback function
void*)

t item_descs_free uint count of free item descriptors

t_item_descs log_item_chunk _t first chunk of log item descriptors

The log items currently associated with a transaction are tracked by a chunk list of log item
descriptor structures. These form a list of structures pointing to log item structures. We can't link

XFS Transaction Mechanism October 7, 1993 9

Silicon Graphics Proprietary

through the log item structures because a single log item can be associated with multiple transac-
tions simultaneously, although it can only be locked by one at a time. The chunk list reduces the
number of allocations and deallocations we need to do. The t_item_descs_free field tracks the
number of free log item descriptors in the chunks that have already been allocated. Tracking this
number prevents us from searching for free descriptors which are not there. The xfs_log_item_-
desc structure is defined as:

field name field type comment
lid_item xfs_log_item_t * log item pointer
lid_flags uint misc information

These log item descriptors are kept in a chunk list of the following xfs_log_item_chunk structure:

field name field type comment

lic_next struct xfs_log_item_chunk* next chunk

lic_free uint free descriptor mask
lic_descs struct xfs_log_item_desc[15] log item descriptors

When checking to see if an item is already locked by a transaction, we could search the log item
descriptor list for the item. However, this would get really slow when the number of already
locked items grows large. Instead, we’ll be using the structures usually used to look up such
items, for example the buffer cache hash table, and looking at the actual item to decide if we
already have it locked. This will require an extra pointer to the transaction structure in each item,
not in the log item structure, but it is required for adequate performance.

4.2 Active Item List

All'log items which reside in the active portion of the on disk log, meaning that their changes have
not yet been flushed to their on disk images, will be linked into the Active Item List (AIL). This
list (it will probably actually be a balanced tree for performance reasons) will be sorted by the log
sequence numbers of the items, and it will be used to track the tail of the log. When an item is
flushed to its on disk image it will be removed from the AIL, and when it is re-logged it will be
moved up in the AIL according to its new log sequence number. There will be one AIL per file
system. Each will be guarded by a spinlock which must be held for moving, adding, or removing
an item in the AlL.

The log manager will have a process responsible for pushing the tail of the log forward when the
head of the log starts to approach the tail. This is what the iop_flush() routine of each log item is
to be used for. The log manager process will do the following to push an item out of the AlL:

Obtain the AIL spinlock. Find the first log item in the AIL. Call item->iop_trylock() to attempt
to lock the item. If we succeed, unlock the AIL spinlock and then call item->iop_flush(). If we
fail then look for other items which need to be pushed. We will assure that if the item is locked,
then the one holding the lock will flush the buffer when unlocking it. The items will be
removed from the AIL by their /O completion routines, because that is when we know that on
disk log image of the item is no longer needed.

XFS Transaction Mechanism October 7, 1993 10

Silicon Graphics Proprietary

4.3 Buffer Log Item

The buffer log item is the log item structure expanded for the extra needs of logged buffers. To
most of the transaction code it will look like a common log item, but it will contain buffer specific
data for use by the buffer specific log item operations. The xfs_buf log_item structure is defined
as:

field name field type comment

bli_item xfs_log_item_t common item structure

bli_buf buf t* real buffer pointer

bli_recur uint lock recursion count

bli_map_size uint size of the dirty bitmap in bytes
bli_dirty_map uint[1] variable sized bitmap of dirty 128 byte

regions in the buffer to be logged

The buffer pointer points to the buffer described by this item structure, and the recur field is used
to track the number of times the buffer has been locked within the current transaction. The dirty
bitmap and its size field are used to track which bytes in a buffer need to be logged when the cur-
rent transaction is committed.

For buffers, all logging will be cumulative. What this means is that all dirty data in a buffer which
has not yet been flushed back to disk will be logged each time the buffer is logged, whether the
dirty data belongs to the current transaction or not. This will allow us to move the buffer forward
in the AIL each time it is logged, and we will only need to track a single LSN for each buffer.

4.3.1 Buffer Log Item Operations

4.3.1.1 void xfs_buf _item_format(xfs_log_item_t *buf_item, caddr_t buffer)

The image of the buffer log item will be laid out in the following xfs_buf log_format structure:

field name field type field size

blf type uint 4 bytes

blf_size uint 4 bytes

blf _dev dev_t 4 bytes

blf_blkno daddr_t 8 bytes

blf_map_size uint 4 bytes

blf data_map uint[blf_map_size / 4] multiple of 4 bytes

blf padding uint pad to 32 byte boundary

blf data uint[variable] 128 byte blocks of data as indicated by

blf _data_map bitmap

The type field will indicate that this is a buffer log item. The size field will indicate the total size

of the log item. The device field indicates the number of the device this data is to be written to,

and the block number field gives the starting block for the data described in this log item. The map
size and data map fields describe which data for the given block are logged by this item, and the
actual data is written in the data field in 128 byte chunks. The data field is padded to start on a 32
byte boundary so that data copies go faster.

XFS Transaction Mechanism October 7, 1993 11

Silicon Graphics Proprietary

4.3.1.2 uint xfs_buf_item_size(xfs_log_item_t *buf_item)

This just returns the amount of space needed for the structure described in the xfs_buf_item_for-
mat() description.

4.3.1.3 void xfs_buf_item_pin(xfs_log_item_t *buf_item)

This function will assert that the buffer is locked and then call bpin() on the buffer associated with
the buffer log item.

4.3.1.4 void xfs_buf_item_unpin(xfs_log_item_t *buf_item)

This function will simply call bunpin() on the buffer associated with the buffer log item.

4.3.1.5 int xfs_buf_item_trylock(xfs_log_item_t *buf_item)

This will perform a cpsema() on the semaphore of the buffer associated with this buffer log item.
If it can grab the buffer, it will remove it from the free list, claim the buffer, and return 1. If it can-
not get the buffer semaphore, then it will return O.

4.3.1.6 void xfs_buf_item_unlock(xfs_log_item_t *buf_item)

This will be called to unlock a buffer log item previously locked via a call to an xfs_trans “get
buffer” routine (e.g. xfs_trans_bread()). It will do this by a call to xfs_brelse() with the buffer
associated with the given buffer log item. If the buffer has no data in the active or in-core logs,
then the xfs_buf log_item structure is no longer needed, and it will be freed before releasing the
buffer.

4.3.1.7 xfs_Isn_t xfs_buf_item_committed(xfs_log_item_t *buf_item, xfs_Isn_t Isn)

This routine will always return the Isn value passed in to it. This is because the buffer always rel-
ogs all dirty data in the buffer, so the most recent log version is the only one needed.

4.3.1.8 void xfs_buf_item_flush(xfs_log_item_t *buf_item)

This function will write the buffer out to its place on disk if it is still necessary. First it will check
that the buffer is marked B_DELWRI. If this flag is not set then the routine will just unlock the
buffer and return. If the flag is set, then it will call bawrite() with the buffer to write it out asyn-
chronously.

The 1/0 completion routine for the buffer will remove the xfs_buf log_item structure from the
AlL, free it, and unlock the buffer.

XFS Transaction Mechanism October 7, 1993 12

Silicon Graphics Proprietary

4.4 Inode Log Item

The inode log item structure, like the buffer log item structure, will extend the common log item
structure with inode specific data. The xfs_inode_log_item structure will look like:

field name field type comment

ili_item xfs_log_item _t real log item
ili_inode xfs_inode_t* real inode

ili_recur uint lock recursion count
ili_field_mask uint logged field mask

The inode field will point to the inode associated with this inode log item, and the recur field will
count the number of times the inode has been locked recursively. The fieldmask field will be a bit-
map of fields in the inode which have been dirtied and need to be logged.

As with buffers, inode logging will be cumulative. All dirty fields in the inode will be logged
every time the inode is logged in order to keep inodes seeing heavy traffic moving forward in the
log.

4.4.1 Inode Log Item Operations

4.4.1.1 void xfs_inode_item_format(xfs_log_item_t *inode_item, caddr_t buffer)

The inode log item will be laid out in log with the following xfs_inode_log_format structure:

field name field type field size comment

ilf_type uint 4 bytes log item type indicator

ilf_size uint 4 bytes log item size indicator

ilf_ino xfs_ino_t 8 bytes inode number of inode

ilf_blkno daddr_t 8 bytes block number where inode lives
ilf_blkoff uint 4 bytes offset in disk block of inode
ilf_field_mask uint 4 bytes logged field mask

ilf_data uint[variable] n*4 bytes logged inode data

The inode number field gives the unique identifier of the inode being logged mainly for sanity
checking. The block number and block offset fields are used to determine where on disk the
logged data needs to reside. The field mask is a bitmask indicating which fields in the inode have
been logged, and the data field contains the data from the in core inode image which is logged.
The in core inode image is used rather than an on disk image in order to push the work of transla-
tion onto the recovery process. This is simply an optimization for the common case, which is that
we are logging data that is never looked at by the recovery code.

4.4.1.2 unit xfs_inode_item_size(xfs_log_item_t *inode_item)
Simply return the size of the structure described above.
4.4.1.3 void xfs_inode_item_pin(xfs_log_item_t *inode_item)

This will just call xfs_inode_pin() with the inode associated with the given inode log item.

XFS Transaction Mechanism October 7, 1993 13

Silicon Graphics Proprietary

4.4.1.4 void xfs_inode_item_unpin(xfs_log_item_t *inode_item)

This will just call xfs_inode_unpin() with the inode associated with the given inode log item.

4.4.1.5 void xfs_inode_item_trylock(xfs_log_item_t *inode_item)

This will perform a cpsema() on the semaphore of the inode associated with this inode log item. If
it can grab the inode, it will return 1. If it cannot get the inode semaphore, then it will return 0.

4.4.1.6 void xfs_inode_item_unlock(xfs_log_item_t *inode_item)

This will simply release the semaphore of the inode associated with inode log item.

4.4.1.7 xfs_Isn_t xfs_inode_item_committed(xfs_log_item_t *inode_item, xfs_Isn_t Isn)

This routine will always return the Isn value passed in to it. This is because the inode always rel-
ogs all dirty data in the inode, so the most recent log version is the only one needed.

4.4.1.8 void xfs_inode_item_flush(xfs_log_item_t *inode_item)

This routine is called to flush the inode associated with the given inode log item out to its on disk
image. The inode must already be locked when calling this routine. This will get the buffer for the
disk block containing the inode, copy the latest image of the inode into it, and write out the disk
block asynchronously. The inode log item will attach itself to the buffer via the fsdata pointer of
the buffer, so buffers containing inode blocks cannot be logged since that would use the same
pointer. There is no need to log the buffers, however, because all they contain is inodes which are
logged independently. The iodone routine of the buffer will be set to xfs_inode_item_done()
which will remove the inode log item from the AIL and release the buffer and inode locks.

This will require holding the inode lock across the disk write. We could go with a more compli-
cated scheme which did not keep the inode locked, but the only inodes being flushed will be those
which have not been used recently. Inodes which are being modified all the time will be moving
forward in the log all the time and will not need to be flushed. For this reason | am going to go
with the simple but less concurrent scheme for now. If this turns out to be a problem we will
revisit it.

4.5 Block Zero Operation and Don’t Block Zero Operation Log Items

This section describes the use of operation log items to perform block zeroing of newly allocated
blocks. It is meant to provide an example of how operation log items can be used to implement
transactions in the proposed framework.

Block zeroing is used to prevent the user from finding trash in a file when space is allocated to a
file but the system crashes before the allocated space can be initialized. In XFS blocks will be allo-
cated immediately prior to the writing of those blocks, and this section describes a means by

XFS Transaction Mechanism October 7, 1993 14

Silicon Graphics Proprietary

which we can ensure that the blocks are zeroed in the event of a crash without actually zeroing
them before allocating them. This will be a big performance win.

4.5.1 Block Zero Operation Log Item

The transaction which allocates additional blocks for a file will log a block zero (BZ) operation
record along with the data for allocating the new blocks for the file. This record will be recognized
by the recovery code to indicate that the blocks it specifies should be filled with zeros if a corre-
sponding don’t block zero (DBZ) operation record is not found further down in the log. The corre-
sponding DBZ record will be recognized by the fact that it contains the xfs_trans_id of the BZ
record it is paired with. The xfs_bz_log_item structure given to xfs_trans_log_op() will consist
of:

field name field type comment

bzli_item xfs_log_item_t common log item
bzli_ex_count uint number of extents to zero
bzli_extents xfs_extent_t[variable] array of extents to zero

The extent count and extent array fields will be used to record all of the extents which need to be
zeroed in the case of a crash. The block zero operation log item operations are described below.

4.5.1.1 void xfs_bz_item_format(xfs_log_item_t *bz_item, caddr_t format)

The image of the BZ operation log item will be laid out in the following xfs_bz_log_format struc-
ture:

field name field type field size

bzlf_type uint 4 bytes

bzlf _size uint 4bytes

bzlf_ex_count uint 4 bytes

bzlf_extents xfs_extent _t[] bzlf_ex_count * sizeof(xfs_extent_t)

This fields here correspond directly to those in the xfs_bz log_item structure described above.

4.5.1.2 uint xfs_bz_item_size(xfs_log_item_t *bz_item)

This will return the size of the structure to be written by xfs_bzop_item_format().

4.5.1.3 xfs_Isn_t xfs bz _item_committed(xfs_log_item_t *bz_item, xfs_Isn_t Isn)

This routine will always return the Isn value passed in to it. The block zero item will only be
logged once, so the value passed in is the only location of the item in the log.

All of the other operations of the xfs_bz_log_item structure will simply return without doing any-
thing. The only one which might have something to do is the flush routine, but given that the data
write will start immediately and the DBZ item will be logged as soon as the data write completes
there does not seem to be much to do even from the flush routine.

XFS Transaction Mechanism October 7, 1993 15

Silicon Graphics Proprietary

4.5.2 Don't Block Zero Log Item

The DBZ item will be logged upon the completion of the data write to the newly allocated blocks.
Once this item makes it to the on disk log, the recovery manager will not zero the allocated blocks
in the event of a crash. the xfs_dbz_log_item structure is defined as:

field name field type comment

dbzli_item xfs_log_item_t common log item

dbzli_bz trans_id xfs_trans_id trans id of BZ transaction

dbzli_extent xfs_extent_t extent not to zero

dbzli_bz_item xfs_bz_log_item_t* pointer to BZ log item

dbzli_trans xfs_trans_t * DBZ preallocated transaction

dbzli_buf item xfs_log_item_t * log item attached to buffer before the
DBZ item was added

dbzli_buf_iodone void(*)(struct buf *) iodone function attached to the buffer

before the DBZ item was added

The transaction id field identifies the transaction id of the block zero transaction. This will be
placed in the log to indicate which BZ transaction is cancelled by the DBZ transaction. The extent
field will describe the exact extent not to zero in the so that the case in which a single BZ opera-
tion describes multiple extents each can be handled cleanly. The block zero item pointer tracks the
log item for the block zero operation. This pointer will be used to remove the block zero operation
from the AIL once the DBZ operation is in the on disk log. The transaction pointer field points to
a transaction structure to be used to log the DBZ operation. Finally, the log item pointer will be
used to hold a pointer to any log item which was attached to the buffer before the DBZ item is
added to the buffer and the iodone function pointer field will any corresponding iodone function.
This will allow us to attach a DBZ item to a buffer which already has a buffer log item attached to
it for some reason. The DBZ item operations are described below:

4.5.2.1 void xfs_dbz_item_format(xfs_log_item_t *dbz_item, caddr_t buffer)

The image of the DBZ operation log item will be laid out in the following xfs_dbz_log format
structure:

field name field type field size
dbzlf_type uint 4 bytes
dbzlf_size uint 4 bytes
dbzIf trans_id xfs_trans_id_t 8 bytes
dbzlf_extent xfs_extent t 9 bytes

The transaction id field identifies the BZ operation with which this DBZ operation is paired, and
the extent field identifies the extent in the BZ operation which should no longer be zeroed.

4.5.2.2 void xfs_dbz_item_size(xfs_log_item_t *dbz_item)

Return the size of the structure described above in xfs_dbz_item_format.

XFS Transaction Mechanism October 7, 1993 16

Silicon Graphics Proprietary

4.5.2.3 xfs_Isn_t xfs_dbz_item_committed(xfs_log_item_t *dbz_item, xfs_Isn_t Isn)

This routine will always free the DBZ log item and return -1. The -1 return value will prevent the
transaction code from making further references to the DBZ log item.

The rest of the log item operations for the xfs_dbz_log_item all just return without doing any-
thing.

45.3 The BZ/DBZ Transaction

This section describes how the BZ and DBZ log items will be used to implement transactional
block zeroing. The basic idea is that the BZ item must remain an active item in the log until all of
the data for the newly allocated blocks has been written. This ensures that the blocks will be
zeroed if the data does not make it to disk. Each data write will have a “reference” to the BZ item,
and when each completes it can remove its reference. When the last reference is removed, mean-
ing that all of the data has been written, the BZ item can be removed from the AIL and can thus be
over-written in the log because it is no longer needed. At the completion of each data write, in
addition to removing a reference to the BZ item, a DBZ item will be logged so that if the BZ item

is not overwritten in the log the data just written will not be replaced by zeros by the recovery
code. The steps involved in this rather extended transaction are outlined below:

First, perform a space allocation transaction which includes a block zero operation for all the
allocated blocks and commit the transaction.

Then for each individual extent which was allocated: allocate a DBZ log item and a transaction
with which to log it, allocate a buf_t to perform the data write if necessary, attach the transac-
tion structure to the DBZ item and attach the DBZ item to the buffer, modify the iodone routine
of the buffer to point to xfs_dbz_iodone(), and write the data asynchronously.

When the data write completes, xfs_dbz_iodone() will be called by the interrupt handler. Using
the pointer to the BZ item contained in the DBZ item, the routine should decrement the number
of extent pointers in the BZ item by 1. If this brings the count to 0, then the BZ item should be
removed from the AIL and freed. Then the DBZ item should be asynchronously (since we
can't sleep from the interrupt handler) logged and committed using the transaction structure
allocated earlier. Finally, if there was another log item attached to the buffer when the DBZ
item was attached to it, the other log item should be reattached to the buffer, its iodone routine
should be restored, and iodone() should be called on the buffer (recursively but that's OK).

When the log write completes, xfs_dbz_item_committed() will be called. This will just free the
DBZ item.

5.0 Transaction Layer - Log Manager Interfaces

TBD.

XFS Transaction Mechanism October 7, 1993 17

Silicon Graphics Proprietary

6.0 Transaction Layer - Buffer Cache Interactions

See the document “xFS Buffer Cache” for a description of buffer cache interfaces to be used by
XFS and their interaction with the xFS transaction mechanism.

XFS Transaction Mechanism October 7, 1993 18

