
Silicon Graphics, Inc.

Presented by:

August 9, 2006

Exploring High Bandwidth Filesystems on
Large Systems

David Chinner
Jeremy Higdon

Background

• History of filesystem performance comparisons on small machines.

• Indicate the maximum performance achievable by a small number of disks, not
the maximum the kernel or the filesystem can achieve.

• Increasing bandwidth requirements from customers:
– Past: < 300MiB/s from 2.4.x kernels.

– Present: 1-2GiB/s from early 2.6.x kernels.

– Future: > 5GiB/s from current 2.6.x kernels.

Background, Part 2

• Dual- and multi-core CPUs are leading to higher parallelism on mainstream
servers and desktops.

• Memory Capacity:
– Increasing substantially faster than disk transfer rates.

– More disks required to fill memory at the same proportional rate.

• Storage per disk:
– Increasing faster than transfer rates.

– Less disks are required for a given storage capacity.

– Need to maximise per-disk throughput.

Need To Know.....

• Can we reach the physical hardware limits on a big machine?

• Is Linux stable under these loads?

• What VM issues arise under these loads?

• Are there NUMA issues we need to address?

• Do we have new file fragmentation problems?

• Are there other bottlenecks we do not know about?

• Can we expect customer workloads to achieve the same results?

Test Hardware

• Altix 3700:
– 24x 1.5GHz Itanium 2 CPUs.

– 24GiB RAM.

– Cache coherent NUMALink 4 interconnect between nodes.

– 36 x 133MHz PCI-X slots directly attached to the interconnect.

– 64 HBAs, U320 SCSI and Fibre Channel.

– 256 disks, 4 to each controller.

• Theoretical maximum sustained disk throughput is approximately 11.5GiB/s.

• Memory bandwidth and bi-sectional interconnect bandwidth substantially higher
than this.

Machine Topology

Test Methodology

• Many configuration variables to be explored such as:
– Volume and block device parameters.

– different filesystems and filesystem parameters.

– different I/O sizes and thread counts.

– memory and process placement.

• PCP (http://oss.sgi.com/projects/pcp) used to archive monitored parameters for
off-line analysis.

• Many parameters to be monitored including:
– CPU, disk and memory utilisation.

– VM behaviour.

– Filesystem and volume manager behaviour (if supported)

Test Methodology

• Test Preparation:
– Configure volume and filesystem with specific test parameters.

– Mount filesystem, write out N “read” files with increasing levels of parallelism, then
unmount filesystem.

• Repeat for different numbers of threads and I/O block sizes:
– Mount filesystem.

– Read n “read” files using I/O size B.

– Unmount, remount filesystem.

– Write n “write” files using I/O size B after first truncating them to zero length.

– Unmount filesystem.

Volume Layout

• 1024 character line length limit for dmsetup:
– Could not set up a flat 256 disk RAID-0 stripe.

– Roughly 90 disks to a stripe was the limit.

• 2-tier RAID-0 stripe using MD and DM:
– 4x64 disk DM RAID-0 stripes.

– MD RAID-0 stripe of DM volumes.

– Same stripe unit and stripe width as a flat stripe.

• SGI's XVM volume manager was used to confirm that the 2-tier stripe gave
equivalent performance to a flat stripe.

• Stripe unit and width were varied to find the configuration that resulted in optimal
throughput.

Results: Baseline XFS

• SuSE Linux Enterprise Server 9, Service Pack 2.

• Buffered I/O, 128KiB I/O size.

Results: Baseline XFS

• SuSE Linux Enterprise Server 9, Service Pack 2.

• Buffered I/O, 128KiB I/O size.

Results: 2.6.15-rc5 Write

• 2.6.15-rc5, sn2_defconfig kernel build, no debugging options, kdb on.

• Buffered write I/O, 256KiB I/O size.

Results: 2.6.15-rc5 Write

• 2.6.15-rc5, sn2_defconfig kernel build, no debugging options, kdb on.

• Buffered write I/O, 256KiB I/O size.

Buffered Write: Not so Good in 2.6.15-rc5

• XFS substantially slower in 2.6.15-rc6 than SLES9 SP2.
– contention on the in-core superblock lock at >= 4 parallel write threads.

• Only EXT2 shows increasing throughput across tests, but even this was
suboptimal:

– At peak throughput the disks were sustaining >70,000 small write I/Os per second.

– Disks were IOP saturated, not bandwidth saturated.

• JFS, ReiserFS and EXT3 do not scale to 2 parallel write threads due to lock
contention.

• ReiserFS made extremely progress at greater than 8 parallel write threads
– Tests were terminated at less than 10% completion after allowing several hours of

additional runtime.

Results: 2.6.15-rc5 Read

• 2.6.15-rc5, sn2_defconfig kernel build, no debugging options, kdb on.

• Buffered read I/O, 256KiB I/O size.

Results: 2.6.15-rc5 Read

• 2.6.15-rc5 sn2_defconfig kernel build, no debugging options, kdb on.

• Buffered read I/O, 256KiB I/O size.

Buffered Read: Better, but still problems

• XFS was substantially faster than the SLES9 SP2 baseline:
– Disks approaching 90% utilisation.

– sustaining 13,000 I/Os per second to reach 6.3GiB/s.

• EXT3 has a similar throughput curve to XFS, but:
– disks are IOP saturated.

– sustaining > 60,000 I/Os per second to reach 4.5GiB/s.

• XFS and EXT3 have equally CPU efficient read paths.

• ReiserFS and JFS showing signs of lock contention limiting read throughput.

• EXT2 does not scale as well as expected from the buffered write results.

Issue #1 - Fragmentation

• Over multiple test runs, EXT2 and EXT3 had widely varied read throughput
despite relatively consistent write throughput.

– A result of fragmentation during the preparation stage.

– Different fragmentation patterns each run.

– Creates hot spots in the disk subsystem.

– Increases disk seeks and decreases I/O sizes.

– Run to run reproducibility is non-existent.

1 2 4 8

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

Best

Worst

Parallel Read Threads

E
X

T
2

 R
e
a
d
 T

h
ro

u
g
h

p
u

t
(M

iB
/s

)

• EXT2 variation shows an order of
magnitude between best and worst case
results.

• This is on a fresh filesystem!

Issue #1 – Fragmentation

• Only XFS, JFS and ReiserFS consistently gave the same results over repeated
test runs.

• Hard to draw any conclusions about file layout and fragmentation from the JFS
and ReiserFS results:

– Throughput limited by lock contention, not the disk subsystem.

• XFS rarely fragmented the files:
– Typical results after parallel writes were 50-100GiB extents on disk guaranteeing

large, sequential disk I/O.

– Separate test runs often ended with identical allocation patterns.

– Run to run throughput variation was within +/- 3%.

Issue #2 - Spinlocks

• All filesystems except EXT2 and JFS showed signs of spinlock contention in their
write paths

– JFS had sleeping lock contention in the write path.

• JFS and ReiserFS also showed spinlock contention in their read paths.

• Analysis of contention performed on XFS:
– Fundamental problem is a ­>prepare_write() call for every filesystem block being

written.

– 175,000 calls/s at 700MiB/s for a 4KiB block size filesystem.

– ~5.6us to obtain a spinlock and execute a function call, a memory read, two likely
branches, a subtraction, a memory write and then drop the spinlock.

– Does not scale past 4 concurrent write threads.

Issue #2 – Spinlocks

• Need to batch contiguous ­>prepare_write() calls to reduce the number of calls
and lock traversals.

• Only a partial solution as contention will still occur given enough CPUs all writing
at the same time.

• Each filesystem needs to be analysed separately to determine and fix the
contention causing bottlenecks.

• For high end scalability, spinlocks on globally contended structures need to be
avoided entirely.

– Use sleeping locks if lock contention cannot be avoided.

Issue #3 – Memory Reclaim Behaviour

• Main problem is ensuring pdflush can keep up with the rate pages are being
dirtied.

• With multiple write threads, we end up with kswapd doing all the writeback rather
than pdflush:

– Results in random offset writeback.

– I/O sizes decrease due to less effective write clustering.

– Delayed allocation cannot prevent fragmentation entirely.

1 2 4 8 16 32

0

100

200

300

400

500

600

700

800

900

1000

Parallel Write Threads

A
v
e
ra

g
e
 I
/O

 S
iz

e
 (

K
iB

)

Issue #3 – Memory Reclaim Behaviour

• pdflush running at 100% CPU with only 4 parallel write threads running.

• At 8 parallel write threads, pdflush almost never ran:
– kswapd consuming 70-80% of a CPU per node.

– On aggregate, the kswapd threads consume more CPU time than the writing
processes.

• Making background write-back scale better would help prevent the kswapd write-
back overload condition:

– wb_kupdate() is single threaded so is limited in the amount of work it can do.

– write-back contends for cache lines with concurrent writers and kswapd threads

Improvements

• Improvements were made to:
– XFS

• to solve lock contention problems.

• to achieve large I/O sizes on small block size filesystems.

– VM
• To improve pdflush and memory reclaim interactions.

• SN2 specific improvements.

– Tuning
• to improve memory locality and interconnect loading.

XFS Improvements #1

• Need to solve in-core superblock lock contention:
– we need a distributed free space counter.

– accuracy a requirement due to the counter being used to detect full filesystem
conditions.

– no global lock or cache line sharing in the fast path.

– but still needs locking in the fast path to enable accurate summation of counters when
required.

• The implementation uses:
– per-CPU counters and locks.

– a balancer that does accurate summation and distribution across all CPUs.

– When the filesystem is full, it falls back to the existing slow method to ensure accuracy
without requiring repeated, costly rebalancing.

XFS Improvements #2

• XFS's buffered write I/O size has been limited to the number of filesystem blocks
it can put in a single bio due to it's use of submit_bh():

– 512KiB maximum I/O size on 4KiB block size filesystems.

– 2MiB maximum I/O size on 16KiB block size filesystems.

– due to using a bio vector per bufferhead.

• Christoph Hellwig and Nathan Scott converted XFS to build it's own bio vectors
and use submit_bio().

• Maximum I/O size XFS can issue is now determined by:
– Maximum number of vectors in a bio.

– Page size.

– Underlying hardware limits.

VM Improvements #1

• A kernel upgrade from 2.6.14 to 2.6.15-rc5 showed a dramatic improvement in
buffered read speeds from the same filesystem configuration:

– 2.6.14 sustained approximately 4GiB/s (same as baseline results).

– 2.6.15-rc5 sustained 6.3GiB/s.

• Dean Roe had, independently, been working on improving TLB flushing on the
SN2 platform:

– Uses hardware based global TLB flush calls rather than generic global flush.

• Global TLB flush speed has a major impact on memory reclaim speed.

• Buffered read I/O scalability appears to be limited by memory reclaim speed and
scalability.

VM Improvements #2

• Christoph Lameter's node local memory reclaim was the main area of interest:
– reduces cross-node cache line traffic during reclaim.

– prefers to reclaim clean pages on a specified node before trying to allocate from a
different node.

• Major differences in behaviour:
– kswapd never ran:

• All memory reclaim occurred directly in the allocation path from clean pages.

– pdflush throughput increased by an order of magnitude:
• Now sustains >5GiB/s write-back using less than half a CPU.

– CPU usage was greatly reduced at low thread counts as there were no kswapd
processes running.

– Buffered reads were now clearly I/O bound.

Tuning Improvements

• Memory distribution was the main problem:
– I/O hardware was spread evenly throughout the interconnect.

– but page cache or direct I/O buffers were not.

– unbalanced interconnect traffic.

– both hot and idle nodes in the machine.

• 'numactl ­i all':
– spreads page cache and direct I/O buffers evenly across all nodes.

– balanced interconnect traffic.

– improved throughput by up to 75%.

• Block device read ahead needed increasing to keep all disks in the stripe busy on
buffered read I/O.

Results: Improved XFS, Buffered Writes

• 2.6.15-rc5 plus all listed improvements

• Baseline results from SLES9 SP2

• Buffered write I/O, 256KiB I/O size.

Results: Improved XFS, Buffered Writes

• 2.6.15-rc5 plus all listed improvements

• Baseline results from SLES9 SP2

• Buffered write I/O, 256KiB I/O size.

Results: Buffered Writes

• No adverse memory reclaim behaviour.

• No decrease in I/O sizes as load increases.

• pdflush no longer stressed by writeback.

• XFS throughput scales independently of filesystem block size.

• No apparent contention points at > 5GiB/s write throughput.

• Substantial reductions in CPU usage.

Results: Improved XFS, Buffered Reads

• 2.6.15-rc5 plus all listed improvements

• Baseline results from SLES9 SP2

• Buffered read I/O, 256KiB I/O size.

Results: Improved XFS, Buffered Reads

• 2.6.15-rc5 plus all listed improvements

• Baseline results from SLES9 SP2

• Buffered read I/O, 256KiB I/O size.

Results: Buffered Read

• 7.6GiB/s sustained read throughput.

• No apparent memory reclaim issues.

• XFS scales independently of filesystem block size.

• No apparent scalability bottlenecks, but efficiency is reducing as the number of
concurrent readers and throughput increases.

– indicates some limit is being approached.

What is limiting throughput?

• Buffered read I/O sustained 7.6GiB/s
– Disk subsystem theoretically capable of > 11GiB/s.

• Memory access patterns on read is:
– FC HBA -> memory -> CPU -> memory.

– 11/12ths of the memory operations are remote due to memory placement.

– ~21GiB/s of bi-sectional interconnect bandwidth utilised at this throughput rate.

• Interconnect saturation!

• Need a bigger machine with greater bi-sectional interconnect bandwidth to
achieve higher throughput from buffered I/O.

Interconnect Saturation

Direct I/O?

• With Direct I/O, we can avoid two of the three memory operations involved with
buffered I/O if we don't touch the data buffers with the CPU

– Should be able to achieve maximal throughput from disk subsystem

• 2.6.15-rc5, 512MiB I/O size, memory interleaved across all nodes.

Read Write Overwrite

0

0.5
1

1.5
2

2.5

3
3.5

4

4.5
5

5.5
6

6.5
7

7.5

Single Threaded Direct I/O Throughput

XFS

EXT3

S
u
st

a
in

e
d
 T

h
ro

u
g
h
p
u
t

(G
iB

/s
)

Direct I/O?

• Multiple read threads on XFS results in sustained throughput of 10GiB/s and peak
at over 10.7GiB/s of throughput.

• EXT3 suffers from severe fragmentation under parallel direct I/O write threads and
only achieves 60MiB/s write speed.

Read Write Overwrite

0

1

2

3

4

5

6

7

8

9

10

18 Thread Direct I/O Throughput

XFS

EXT3

S
u
st

a
in

e
d
 T

h
ro

u
g
h
p
u
t

(G
iB

/s
)

Futures

• SAS, PCI-e, multi-core CPUs and NUMA all moving rapidly into mainstream:
– issues seen in this investigation will become mainstream problems in the next 1-2

years.

– need to ensure Linux operates effectively on systems of this size sooner rather than
later.

• Simple jobs scale well but we are already seeing interactions with high bandwidth
I/O and independent cpuset constrained jobs.

– Indicates the need for filesystems to become NUMA and I/O path topology aware.

– Filesystem placement and hence I/O bandwidth locality needs to be more finely
controlled.

Futures

• Need to minimise disk seeks at all costs:
– Disk sizes increasing faster than seek rates.

– Smarter allocation algorithms are the key to achieving this goal.

– Problems seen (and solved) at the high end are now becoming mainstream issues.

• Intrinsic parallelism of the average computer is increasing, so effective parallel
allocation algorithms are becoming a necessity in Linux filesystems.

Conclusion

• Achieved throughput close to physical limits:
– of the disk subsystem with direct I/O on XFS.

– of the NUMALink interconnect with buffered I/O on XFS.

• Uncovered a set of generic filesystem scalability issues that affect every
filesystem we tested.

• Solved the scalability problems we encountered in XFS and the VM running
buffered I/O.

• Proved that XFS is the best choice for our customers: both on the machines they
use and the common workloads they run.

Questions?

