SILICON GRAPHICS | The Source of Innovation and Discovery™

Silicon Graphics, Inc.

XFS Overview & Internals
11 - Repair

November 2006

XFS Slides 11 - Repair




Repairing Filesystems

* Filesystems can be corrupted by

— Hardware errors
 Media errors are common
* Disks are getting bigger and bigger

— To a muhc lesser degree, bugs in the filesystem

* Filesystems are able to “repair’ themselves since they consist of lists, links and
reference counts that can be validated

— But not all information is always recovered, inodes that do not have a parent
directory is common due to the directory structure being corrupted

XFS Slides 11 - Repair November 2006 | Page 2 S gi



xfs check

* xfs_check is a script that runs xfs_db to do a filesystem check.

* The "check" command in xfs_db scans all the metadata structures for
inconsistency

» xfs_check uses a different codebase to xfs_repair

— xfs_check and xfs_repair can be used to cross check each other
e xfs_check vs xfs_repair -n)

XFS Slides 11 - Repair November 2006 | Page 3

sgl



xfs_repair

xfs_repair scans the filesystem and corrects any problems encountered.
xfs_repair performs a scan and repair in seven phases.
Each phase relies on the previous phase to fix a certain class of potential errors.

xfs_repair uses libxfs which is a partial port of the XFS kernel code to user-
space.

XFS Slides 11 - Repair November 2006 | Page 4 S gi



xfs_repair — Phase 1

* Find, verify and fix superblocks.
* If a superblock is not found, xfs_repair will stop.

» Sets up a virtual mount structure for the common XFS code base (libxfs) to work
from.

XFS Slides 11 - Repair November 2006 = Page 5 Sgi



xfs_repair — Phase 2

* Checks the AG header structures (AGI, AGF and AGFL) and scans the AGF
and AGI btrees.

XFS Slides 11 - Repair November 2006 = Page 6 Sgi



xfs_repair — Phase 3

* Using the AGI btree from phase2, scan the inode tree, processing the unlinked
list for deleted inodes and finding possible missing inode clusters.

* Walk all the found inodes, recording used filesytem blocks (extents).
* For directory inodes, scan the directory structure for more lost inodes.

* Any bad inodes are trashed including unrecoverable corrupted directories.

XFS Slides 11 - Repair November 2006 | Page 7 S gi



xfs_repair — Phase 4

* Scan inode extents again. Any inode with an extent covering used data is
trashed.

XFS Slides 11 - Repair November 2006 | Page 8

sgl



xfs_repair — Phase 5

* Rebuild AG headers and structures including the AGI btree, AGF btrees and
AGFL regardless whether any errors have been found or not.

* Realtime inodes are also reconstructed.

XFS Slides 11 - Repair November 2006 | Page 9 S gi



xfs_ repair — Phase 6

* At this stage, the filesytem is in a mountable state.

* Scan the directories analysing all data.

— Any directories with any corruption are rebuilt with whatever entries can be
recovered.

— A missing root directory is recreated.

— All inodes that are in a directory are marked reached.

* At the end, any unreached inodes are put into lost+found.

XFS Slides 11 - Repair November 2006 | Page 10

sgl



xfs_repair — Phase 7

* nlinks for inodes are corrected based on the data collected in phase 6.

XFS Slides 11 - Repair November 2006 | Page 11

Sgl



Triaging xfs_check and xfs_repair problems

* Most of the time, inode information is required:

> inode <inode number>
> print

* The root inode number can be derived from the superblock:

> sb 0
> print rootino

* For directories, we can also dump the contents from the extent list shown in the inode:

> dblock <file offset in blocks>
> print

* Directories have file offsets typically starting at 0, 8388608 and 16777216. Each of these offsets stores
different information for a directory.

* The filename and inode numbers at 0, hash values at 8388608 and free space information at
16777216.

XFS Slides 11 - Repair November 2006 | Page 12 S gi



xfs_repair and xfs_check should agree

* If one of the tools reports a problem when
the other passed the filesystem, there is a
problem with one of the tools

— most likely xfs_repair

* http://oss.sgi.com/bugzilla/show_bug.cgi?id
=723

» xfs_check finds some errors on the
filesystem:

link count mismatch for inode
387655 (name ?), nlink O,
counted 2

link count mismatch for inode
13313696 (name ?), nlink O,
counted 2

link count mismatch for inode
17197100 (name ?), nlink O,
counted 2

» xfs_repair reports no problems:

XFS Slides 11 - Repair | November 2006 | Page 13

Phase 1 -
Phase 2

Phase 3

- process
Phase 4 -

Phase 6

inodes

find and verify superblock...

using internal log

zero log...

scan filesystem freespace and inode maps...

found root inode chunk

for each AG...

scan and clear agi unlinked lists...

process known inodes and perform inode discovery...

agno = 0
agno = 1
agno = 2
agno = 3
agno = 4

newly discovered inodes...

check for duplicate blocks...

setting up duplicate extent list...

clear lost+found (if it exists) ...

clearing existing "lost+found" inode

marking entry "lost+found" to be deleted
check for inodes claiming duplicate blocks...

agno = 0
agno = 1
agno = 2
agno = 3
agno = 4

Phase 5 - rebuild AG headers and trees...

reset superblock...

check inode connectivity...

resetting contents of realtime bitmap and summary

ensuring existence of lost+found directory
traversing filesystem starting at / ...

rebuilding directory inode 128

Phase 7
done

traversal finished ...

traversing all unattached subtrees ...
traversals finished ...

moving disconnected inodes to lost+found ...
verify and correct link counts...

sgl



Dump the offending inodes...

# xfs db -c "inode 387655"

core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 1 (local)
core.nlinkvl = 0
core.size = 6
core.nblocks = 0
core.extsize = 0
core.nextents = 0

next unlinked = null

u.sfdir?2.hdr.count

u.sfdir2.hdr.i8count
u.sfdir2.hdr.parent.14

XFS Slides 11 - Repair

November 2006

—c "print"

. Page 14

/dev/sda6




Mount and Repair Fails — Corrupted Log

* If the log is corrupted you will see an error like:

# mount <filesystem>

mount: Unknown error 990

# dmesg | tail -20

Filesystem “<filesystem>": xfs inode recover: Bad inode magic number

Filesystem "dm-0": XFS internal error xlog recover do inode trans(l) at line 2352 of file fs/xfs/xfs log recover.c.

Caller Oxfffffff£88307729
XFS: log mount/recovery failed: error 990
XFS: log mount failed

# xfs repair <device>
Phase 1 - find and verify superblock...
Phase 2 - using internal log
- zero log...
ERROR: The filesystem has valuable metadata changes in a log which needs to
be replayed. Mount the filesystem to replay the log, and unmount it before

re-running xfs repair. If you are unable to mount the filesystem, then use
the -L option to destroy the log and attempt a repair.
Note that destroying the log may cause corruption -- please attempt a mount

of the filesystem before doing this.

» Useful information can be collected for triage:
# /usr/sbin/xfs logprint -C <filename> <device>
# /usr/sbin/xfs logprint -t <device>

* But in this case, the only option may be to throw the log away:

# xfs repair -L

XFS Slides 11 - Repair November 2006 | Page 15




XFS Slides 11 - Repair

SP1

November 2006 | Page 16




