
Silicon Graphics Proprietary

xFS Kernel Threads Support October 7, 1993 1

xFS Kernel Threads Support

Doug Doucette

This document describes the kernel thread functionality and interfaces to be used by xFS.

1.0 Introduction

The xFS project will use kernel threads for its implementation. Threads improve parallelism in the
multiprocessor environment. We propose to use thread control interfaces similar to those
described in POSIX P1003.4a, Draft 7 (the current draft as of now), for two reasons:

1. We don’t have to think as hard about the interface design, compared to designing interfaces
from scratch

2. We can more easily run a user-mode simulation of the filesystem, since the thread interfaces
match the standard ones for user mode

In effect, this choice makes our upper-level kernel code “look” more like user-level code in struc-
ture. The xFS project does not, however, need the full set of interfaces defined in the POSIX spec-
ifications.

2.0 Kernel Threads Model

All kernel threads share the same address space: they are part of the kernel “process”. We assume
that a scheduling model sufficient for the kernel threads underlying user threads is sufficient for
xFS kernel threads as well.

We do not believe that it is necessary (for xFS) for the threads package to support essentially
instantaneous thread creation. xFS is willing to use a pool of threads and to create or destroy them
only when large changes in the system load require a different number of threads be available. In
particular, we do not believe that we would implement system calls by creating a thread to handle
them.

3.0 Interface Summary

For each section in the POSIX specification we will identify interfaces that we do and do not
need. In some cases, not all the functionality will be needed; these cases will be identified (even-
tually).

3.1 Process Primitives (Section 3)

forkall , pthread_atfork , pthread_kill , plus changes forwait, _exit, alarm, and signal routines
are all not needed, since we are not dealing with processes, just the threads.

Silicon Graphics Proprietary

xFS Kernel Threads Support October 7, 1993 2

3.2 Process Environment (Section 4)

This section covers variables and defined constants that allow the application to determine the
system’s configuration with respect to the threads implementation. We do not need the interfaces;
we may need to#ifdef based on the presence or absence of some features.

3.3 Language-Specific Services for the C Programming Language (Section 8)

raise, setlocale, setjmp, andlongjmp (and variants) are not needed.

3.4 Synchronization (Section 11)

Semaphore, mutex, and condition variable support is needed. Much of this can be built using cur-
rent kernel synchronization primitives. The POSIX interfaces should be supplied directly, to allow
easier movement of code from user to kernel execution.

3.5 Execution Scheduling (Section 13)

All that xFS needs is scheduling that is priority-based and round-robin (at the same priority level).
We do not need preemption for higher-priority threads except at specified (yield) points. This is
how the current kernel works, and writing arbitrarily preemptible code won’t be worth the effort
for xFS.

The interfaces can be used as in POSIX, or other simpler ones are also OK. The POSIX interfaces
are pretty complex. One set of features that is complex but we should consider including is the
priority inheritance associated with mutexes, to avoid priority inversions.

3.6 Thread Management (Section 16)

This section includes some of the thread attribute routines (pthread_attr_xxx) pluspthread_cre-
ate, pthread_join, pthread_detach, pthread_exit, pthread_self, pthread_equal, andpthrea-
d_once. These interfaces are all needed.

3.7 Thread-specific Data (Section 17)

This feature is needed, in some form. Two useful forms of the interface are described in the
POSIX specification: a single (void *) pointer per thread, which points to arbitrary per-thread
data; or, a key/value mechanism, where an opaque key is associated with each per-thread datum.
We can use the single pointer interface instead of the keyed interface, if the threads implementors
prefer that. The generality of the POSIX interface is not needed by the xFS project.

3.8 Thread Cancellation (Section 18)

pthread_cancel and its related interfaces are not needed.

Silicon Graphics Proprietary

xFS Kernel Threads Support October 7, 1993 3

3.9 Reentrant Functions (Section 19)

These changes to C library functions are irrelevant to us. The relevant corresponding kernel rou-
tines are already reentrant.

