
Silicon Graphics, Inc.

November 2006

XFS Slides 09 - Internals

XFS Overview & Internals
09 - Internals

November 2006 Page 2| |XFS Slides 09 - Internals

XFS Architecture

• TODO: Incorporate Nathan’s stuff here

November 2006 Page 3| |XFS Slides 09 - Internals

xfs_vnodeops

• VFS system call interfaces are mapped to xfs functions in xfs_vnodeops
– fs/xfs/xfs_vnodeops.c

xfs_vnodeops {
• open, close, fid, read, write, sendfile, splice, fsync

– file descriptors

• getattr, setattr
– inode attributes - stat(2)

• attr_get, attr_set, attr_list, attr_remove
– extended attributes

• access, lookup
– inode permissions/existence

• create, remove, symlink, readlink
– regular files, special files

• readdir, mkdir, rmdir, rmdir, link, rename
– directories

• reclaim, release, inactive, iflush, bmap, flush_pages, flush_inval_pages, toss_pages
– inode / page cache state and/or lifecycle

};

November 2006 Page 4| |XFS Slides 09 - Internals

• todo: explain important vnodeops

November 2006 Page 5| |XFS Slides 09 - Internals

xfsctl

• XFS specific system calls (xfsctl()) are dispatched by xfs_ioctl()
– fs/xfs/xfs_fs.h
– fs/xfs/linux-2.6/xfs_ioctl.c

• geometry, fscounts, [get|set]resblks, shutdown, freeze/thaw
– filesystem level manipulation

• grow[fs|fslog|fsrt]
– filesystem size (and maximum inode count) expansion

• [get|set]xflags, fs[get|set]xattr, fs[get|set]xattra, dioinfo
– inode attribute information
– direct I/O parameters (min/max/align)

• allocsp, freesp, resvsp, unresvsp
– space allocation and/or preallocation

• bulkstat
– many (sequential) inode's attributes – stat(2)

• xfsdump, quotacheck, dmapi
– by-handle (open, fd-to-, path-to-, readlink, attrlist, attrmulti, ...)
– manipulating inodes by “handles” (inum/igen/fsid)

• getbmap, getbmapa, swapext
– inode data/attr fork extent information

November 2006 Page 6| |XFS Slides 09 - Internals

• todo: explain important xfsctls

November 2006 Page 7| |XFS Slides 09 - Internals

sysctl

• /usr/src/linux/Documentation/fs/xfs.txt
• irix_symlink_mode symlinks get mode 0777 by default
• irix_sgid_inherit sgid bit always inherited regardless of process gid
• inherit_nosymlinks Dont inherit symbolic links
• restrict_chown chown restricted to root
• rotorstep Number of files in AG before rotating to next group
• probe_quota Load kernel module on mount
• probe_ioops Load kernel module on mount
• probe_dmapi Load kernel moduel on mount
• age_buffer_centisecs Age of buffered data before flushing
• xfssyncd_centisecs How often xfssyncd runs
• xfsbufd_centisecs How often xfsbufd runs
• inherit_noatime Pass no accesstime tracking into file
• inherit_nodump Pass nodump flag into file
• inherit_nosync Pass nosync flag into file
• error_level Set XFS error handling level
• panic_mask Set XFS panic bits

November 2006 Page 8| |XFS Slides 09 - Internals

• dentry-state Number of directory entries
• Number of unused entries
• Reclaim >secs when short on memory
• 1 Calling shrink_dcache_pages
• file-max Maximum number of files system wide
• file-nr # files allocated
• Number of files in use
• Max number of files system wide
• inode-state Number of active inodes
• Number of free inode entries
• 1 # > inode-max so prune inode list
• inode-nr same as inode-state first two vars

November 2006 Page 9| |XFS Slides 09 - Internals

Behaviours

bhv_vfs_t
pdata
 private data
vobj
 virtual object
ops
 operations
next

xfs_quota
pdata
 xfs_mount_t
vobj
 bhv_vfs_t
ops
 xfs_qmops
next

xfs
pdata
 xfs_mount_t
vobj
 bhv_vfs_t
ops
 xfs_vfsops
NULL

November 2006 Page 10| |XFS Slides 09 - Internals

Mount Path

• xfs_fs_fill_super
– Allocate a bhv_vfs struct (vfs_allocate)
– Setup initial behaviour module chain, for all bhv_modules (bhv_insert_all_vfsops)
– Parse mount options (bhv_vfs_parseargs)

• At the end of this we have the final behaviour chain – e.g. if quota is not in use, its
removed itself from the chain (bhv_remove_vfsops)

– Perform mount (bhv_vfs_mount)
• For base XFS behaviour, we read the primary superblock, setup per-fs structures, does

log recovery, etc.
• For quota behaviour, we do the quotacheck and dquot recovery

November 2006 Page 11| |XFS Slides 09 - Internals

B-Tree

November 2006 Page 12| |XFS Slides 09 - Internals

File and Directory Operations

November 2006 Page 13| |XFS Slides 09 - Internals

Filename Lookup

November 2006 Page 14| |XFS Slides 09 - Internals

Creating a new file

November 2006 Page 15| |XFS Slides 09 - Internals

Allocating a new inode

November 2006 Page 16| |XFS Slides 09 - Internals

Adding name to directory

November 2006 Page 17| |XFS Slides 09 - Internals

Changing file attributes

November 2006 Page 18| |XFS Slides 09 - Internals

Writing to a new file / Appending to an existing file

November 2006 Page 19| |XFS Slides 09 - Internals

Reading from a file

November 2006 Page 20| |XFS Slides 09 - Internals

Seek and write to create a hole

November 2006 Page 21| |XFS Slides 09 - Internals

Read and write to a hole

November 2006 Page 22| |XFS Slides 09 - Internals

Truncate a file

November 2006 Page 23| |XFS Slides 09 - Internals

Space Allocation

• xfs_bmapi / xfs_bmap_alloc (the root of all evil!)
• Block MAP interface:
• access extent map for reading
• setup delayed allocation
• perform actual allocation
• convert unwritten extents to written extents
• Two space allocators
• Freespace B+Trees (“data”)
• xfs_bmap_btalloc
• Freespace bitmaps (“realtime”)
• xfs_bmap_rtalloc
• Other: stripe unit/width size/align, di_extsize

November 2006 Page 24| |XFS Slides 09 - Internals

Memory Allocation

• Long been a source of problems on the Linux XFS port, it is much improved
now, however.

• IRIX was very good at ensuring memory allocations succeeded, XFS written on
IRIX... you do the math.

• Special process flag added into Linux XFS zone (slab) allocation routines that
make the allocator aware of memory allocations from within a transaction.

November 2006 Page 25| |XFS Slides 09 - Internals

Metadata Buffering

• xfs_buf.c and xfs_buf.h implements the XFS metadata buffer cache on Linux
– Multi-page buffers
– Buffer “pinning”
– Several “private” buffer pointers
– Locking, iodone semaphore for I/O waiters
– Callbacks for: iodone, relse, pre-write

• In-core log buffers also implemented via xfs_buf_t and this causes some
oddities in there – sub-buffer-sized I/Os, non-page-cache buffers, etc.

• Separate address_space from bdev

November 2006 Page 26| |XFS Slides 09 - Internals

Metadata I/O Completion

• xfslogd/N (per-CPU daemon)
– Threads that handle I/O completion work for iclog buffers

• xlog_state_do_callbacks – runs multiple completions, depends on what was logged inside
this iclog buffer)

– and also metadata
• xfs_buf_do_callbacks – typically, removing from AIL and freeing up buffer_item memory

• xfsdatad/N
– will cover later, in the I/O path section
– same sort of idea though

November 2006 Page 27| |XFS Slides 09 - Internals

Delayed write buffers

• xfsbufd
– kernel thread, one per filesystem device
– walks the xfs_buftarg_t (“buffer target”) hash table finding delayed write buffers
– buffers timestamped when queued
– can tweak the age at which unpinned and dirty metadata buffers will be considered

for flushing
• /proc/sys/fs/xfs/age_buffer_centisecs

– tunable daemon wakeup interval
• /proc/sys/fs/xfs/xfsbufd_centisecs

November 2006 Page 28| |XFS Slides 09 - Internals

I/O Path

• read and write family of syscalls
– both buffered and direct I/O
– xfs_lrw.c

• Inode locking (i_mutex/iolock/ilock)
• DMAPI integration
• Delayed allocation

– Initial write reserves space only, allocation at writeout time

• get_block_t interface
– (inode, iblock, buffer_head, “create” flag)

• struct buffer_head
– (b_state, b_blocknr, b_size, ...)

November 2006 Page 29| |XFS Slides 09 - Internals

sync(2)

• XFS implements an optimisation to sync(2) of metadata:
– XFS will only force the log out, such that any dirty metadata that is incore is written

to the log only, the metadata itself is not necessarily written
– This is safe, since all change is ondisk
– File data is guaranteed too (even barriers)

• freeze/thaw, remount,ro and unmount do guarantee both log and metadata
• Applications like grub have been bitten in the past, but fixed nowadays

November 2006 Page 30| |XFS Slides 09 - Internals

Data writeout

• Triggered by the VM subsystem
– xfs_aops.c::xfs_vm_writepage(s)
– xfs_aops.c::xfs_page_state_convert

• Page cache pages attached to inodes via a radix-tree (2.6)
– inode->i_mapping and page->mapping
– XFS does its own writeout, sort of (due to delayed allocation and unwritten extents)

• Walk through 2.6 writepage...
– still use buffer_heads for per-fsbno state
– xfs_ioend_t - goes direct-to-bio for actual write, with >1 page at a time

November 2006 Page 31| |XFS Slides 09 - Internals

Transactions

• tp = xfs_trans_alloc(type);

• error = xfs_trans_reserve(tp, data, log, rt, ...);

• Then make changes, allocate space, free space, etc.
• Attach superblock/inode(s)/buffers/... to transaction, logging ranges within these

objects, typically, e.g. via:
• xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

• error = xfs_trans_commit(tp);

November 2006 Page 32| |XFS Slides 09 - Internals

INCORE
ONDISK

ICLOGS LOG
ITEMS

METADATA
BUFFERS

COMMIT X,Y

X,Y

X,Y

November 2006 Page 33| |XFS Slides 09 - Internals

