
Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 1

xFS Attribute Manager Design
Curtis Anderson

1.0 Introduction
This document describes the requirements and proposed implementation for the attribute manage-
ment functions of the xFS filesystem. Note that only the attribute features are defined here,
namespace management, space management and other features are described elsewhere.

The Attribute Manager is accessible via extended VNODE calls and provides the ability to attach
a (name, value) pair to any filesystem object. This is accomplished by using the split-inode sup-
port in the Space Manager and storing specialized structures in the second “fork”. The names use
the same character set as pathnames do, while the values are short arrays of arbitrary bytes.

The reader will notice the extreme similarity between the Attribute Manager and the NameSpace
Manager designs. This is intentional, they are parallel in the system architecture and will in fact
share portions of code.

2.0 Requirements and Functionality

2.1 Requirements
Here are the external requirements for the attribute management code in xFS.

2.1.1 Standard VNODE Operations and Semantics
This filesystem has to operate in a fairly standard VFS/VNODE environment, so all the attribute-
related entry points and arguments have to be similar to, but an extension of, the existing VFS/
VNODE interfaces.

2.1.2 Fast for Small Attribute Lists
The attribute operations must be relatively fast for small numbers of attributes, but operations
with large numbers of attributes are not required to be fast. In fact, the proposed implementation
will have nearly the same performance characteristics as that of directories, but there is still no
commitment to fast access when the number of attributes grows large.

2.1.3 Associated with all NameSpace Objects
It should be possible to associate arbitrary attributes with any type of namespace object, including
directories and symlinks.

2.1.4 Internationalization
It should be possible to store attributes whose names are in an international character set.

2.1.5 Location Independence (Distributed Naming)
Hooks must be available to support the planned distributed filesystem. This implies that attributes
must be accessible remotely just as they are accessed locally.

2.1.6 SGI-Enhanced NFS Support
It is highly desirable that SGI’s superset of the NFS protocol (used between consenting SGI sys-
tems) support attribute operations.

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 2

NOTE: The enhanced protocol has not been defined yet and there is some concern about the rela-
tive timing of the enhanced NFS versus the distributed filesystem support that will appear as part
of xFS in the future.

2.1.7 Size of Attribute Values
An attribute should be able to hold a value of up to 2KB.

NOTE: There may be a call for larger values, possibly up to 16MB, but this is being resisted.

2.1.8 ACLs
The requirement for Access Control Lists (ACLs) is not limited to US Military Orange Book
security, but should also accommodate the requirements of similar “commercial security” imple-
mentations.

ACLs and other security-related tags should be treated as special forms of arbitrary attributes.

2.2 Functionality (ie: Attribute Semantics)
This section describes what attributes are and what they can do. The implementation of attributes
is described in a following section.

Arbitrary attributes are (name, value) pairs that applications and/or the system can associate will
filesystem objects. One example is tape header information for files that have migrated to off-line
storage. Another example is the character set used to encode text within a file.

Equivalents of the timestamps, etc, will not be maintained for the individual attributes (eg: there
will be no indication of when a particular attribute was last changed).

2.2.1 Attribute Naming
Attribute names will be composed of exactly the same character sets as file names, and will have
the same length restrictions. Attribute names will support international character sets, subject to
the above length restrictions. The intention is that people in Japan can use Kanji names for their
attributes.

All attribute names should be stored as a byte string and a length; in the long term, we cannot
depend on a NULL character terminating a string. Current interface styles require NULL termi-
nated strings, but the on-disk structures should support (text, length) pairs.

Name conflicts between different users of attribute names (applications) will be handled the same
way that filename conflicts between different applications is handled now: the last one overwrites
the previous ones. It is up to the application to provide a sufficiently differentiated attribute name
such that other well-behaved applications will not stomp on it. For example: “SGI_toto_...” could
be used as a prefix for all attribute names used by the “Toto” package produced by SGI.

2.2.2 Attribute Access Model
The model used to access attributes can be called the “small fixed data” model. In this case,
attributes are second class objects in the filesystem, and do not appear in the namespace. The
value of an attribute can only be a small object of a few kilobytes or less.

In this model, the way that attributes are accessed and managed is very similar to that way that the
stat() system call works. A get/set/delete operation is performed on the pathname or open file
descriptor of interest. One argument to the operation is the attribute name, while the other is a
pointer to a block of memory that contains/will-contain the complete image of the value of the
attribute being operated on.

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 3

Existing file attributes for the “data fork” such as owner, group ID, timestamps, etc. might be
made available through this type of interface.

The list of attributes that are attached to an object can be obtained with functions that parallel the
semantics of readdir() and friends for directories.

2.2.3 ACLs
ACLs and other security-related items that are usually associated with namespace objects will be
treated as special forms of arbitrary attributes. They will be accessed in the same way as the exist-
ing file attributes.

If the user has permission to read the existing UNIX attributes (eg: permissions bits), then the user
will have permission to read the names and values of all the arbitrary attributes associated with an
object. If the user has permission to write the existing UNIX attributes (eg: permissions bits), then
the user will have permission to create, modify, or delete arbitrary attributes associated with an
object.

NOTE: is this too limiting? What about groups working together on files that have 0777 permis-
sions, shouldn’t anyone be able to change an attribute value?

2.2.4 Filesystem Level Attributes
There will be some system-predefined attributes that will be associated with the filesystem itself
instead of any particular object in that filesystem. They will be available as attributes of any given
object within the filesystem, but will require different syscall arguments to obtain than the
attributes of that object. Note that these are not user-defined, the names are compiled into the ker-
nel.

This parallels the use of statfs() where superblock information is available via any object in the
filesystem.

2.2.4.1 Root vs. Non-Root NameSpaces
To facilitate the implementation of trusted system services that depend on the values of arbitrary
attributes, there must be attributes that only a superuser application can manipulate (create, delete,
or modify), independently of the permissions of the object they are attached to. However, if the
object is unlinked, then all attributes would be unlinked with it.

The chosen technique is to completely segregate normal arbitrary attributes and only-root-modifi-
able attributes into separate namespaces. Given that normal user attributes and only-root-modifi-
able attributes are in separate namespaces, there will be no possibility of name collisions or user
misuse of trusted attributes.

The interface to attribute operations will include an indication of what namespace is being
accessed. At this time, we only know of root versus non-root but there may be call for more capa-
bilities and therefore more namespaces. Note that this is orthogonal to filesystem level attributes.

2.2.5 Searching for Inodes with Specific Attributes
It would be a nice feature for desktop users (for example) to find the pathnames of all files in a
filesystem that have the given attribute, or the given value for the given attribute. Fortunately, this
is being left up to user mode applications to implement, ie: it is not in the kernel and not in this
project.

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 4

3.0 External Interfaces
Listed here are the interfaces provided to external callers, the interfaces into other kernel code
used by this module, and the dependencies that this module has on the kernel and other modules.

3.1 Supported VNODE Operations
The following newly defined VFS/VNODE operations will point into the Attribute manager code.
Since they are new, the semantics of each call are not yet defined in detail.
• vop_attribute_list - return a list of all attribute names in the way that getdents() works.
• vop_attribute_get - read an attribute and value.
• vop_attribute_set - write (possibly creating) an attribute and value.
• vop_attribute_create - create an attribute and value, fail if attribute already exists.
• vop_attribute_remove - remove an attribute.
• vop_attribute_multi - take a list of attribute operations and loop across them all.

3.1.1 IRIX Components Used
Lots of them.

3.2 Dependencies on Other xFS Components
This section lists functional and algorithmic dependencies of the Attribute manager on other mod-
ules in xFS. The Attribute manager should be able to get all of its work done via calls to Space
manager routines, buffer cache routines, and to log/recovery manager routines.

3.2.1 Space Manager
The Attribute manager is intended to be layered on top of the Space manager.

3.2.1.1 Manage the inode pool

3.2.1.2 Manage the resource/data fork split in the inode

3.2.1.3 Provide the bmap() routine

3.2.2 Log/Recovery Manager

3.2.2.1 Provide log write interfaces

3.2.2.2 Call back on log recovery
text

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 5

4.0 Major Components

4.1 List of Components
Here is a partial diagram of the Attribute Manager components and their interactions:

• Short Form Attribute Routines - manage an extremely compact representation of attribute
entries intended to maximize the number of entries that can fit into the literal space inside an
inode.

• Leaf Node Attribute Routines - manage the contents of the leaf nodes of an attribute list. Leaf
nodes are used in large attribute list B-trees and as a special case when the only node is a single
leaf node. They are indexed on the attribute ID number.

• Intermediate/Root Node Attribute Routines - implement a B*-tree using the attribute ID number
as the key, using the leaf node routines defined above to actually store the attributes.

4.2 Internal Interfaces
For each of the three components of the Attribute Manager
• There is acreate routine to build a new block of this type.
• There is anaddname routine to add a name to a block with this structure.
• There is aremovename routine to remove a name from a block with this structure.
• There is alookup routine to search for a name in a block with this structure.
• There is a migration routine to the adjacent block structure. For example: migrating from short

form to leaf node, from leaf node to full B-tree, and equivalent routines for migrating back
again.

• There is agetdents routine to return entries from the attribute list in sequence. This is equivalent
to what readdir() and friends do for directories.

The routines listed above are usually just wrappers that call work routines that are used in com-
mon by the various components. For example, the internal routine to add an attribute to a leaf
node is called by the leaf node code and by the B*-tree code when it has reached the bottom of the
tree.

There may be additional special purpose routines as well as those listed above.

Short
Form

Intermediate/Root Nodes

Leaf Nodes

Space Manager and Buffer Cache

VFS/VNODE Attribute Operations

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 6

4.3 Permanent Data Structures (ie: On-Disk)
The Space Manager will split the on-disk inode into three pieces: the UNIX guk, the data fork,
and the attribute fork. The UNIX guk is pretty traditional, while the data and attribute fork sec-
tions both have the same structure: they will either contain extent pointers, or literal data.

The Space Manager will make the size of the literal area of each fork known to the namespace and
attribute routines so that they can use space-efficient optimized structures when their data will fit
into the inode itself, and can use time-efficient structures when their data will not fit into the
inode. If the namespace code needs more space in the inode, it can call into the attribute manager
with a request that the attributes be moved out of the inode and into extents. This is covered in
more detail below.

When an attribute list is small, it is possible to store it inside the inode in place of extent pointers.
This has a tremendous appeal in that it will save an IO quite a few attribute operations. Caches
will alleviate some of the cost of such IOs, at the cost of cache management.

When an attribute list has too many entries to fit into an inode, there is little choice but to fall back
on the familiar scheme of creating blocks of entries stored in a structure that looks like a regular
file.

4.3.1 Filesystem Level Attributes
One inode in the filesystem as a whole must be partially dedicated to attribute storage. Those file-
system level attributes that are writable and have persistent storage will be stored as attributes on
inode number 0. They will use the same structures and algorithms as other arbitrary attributes.

The data fork of this inode is available for some other use.

4.3.2 Root vs. Non-Root NameSpaces
To implement separate namespaces, we will have to differentiate the attribute names in each
namespace. We will add a non-legal character to the end of all root-only attribute names, thus
ensuring that they do not collide with a user attribute of the same name and have a unique hash
value to ease searching.

4.3.2.1 Small Attribute List Support
We will use a space-efficient structure when we try to fit an attribute list into the literal area of an
inode. The entries will be packed into a flat structure and sorted.

The structure for small attribute list entries is:

count of entries

Excel

ASCII

/icons/excel

32bit

eyes-only

4

4

4

4

3 5

5

12

5

9

struct xfs_attr_shortform {
struct xfs_attr_sf_hdr {

unchar count;
} hdr;
struct xfs_attr_sf_entry {

unchar namelen;
unchar valuelen;
unchar name[1];
unchar value[1];

} list[1];
};

app

lang

path

size

priv

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 7

4.3.2.2 Large Attribute List Support
An attribute list that does not fit into the literal area of an inode will be structured as a B-tree
keyed on the hash value of the attribute name. The root, intermediate nodes, and the leaves of the
B-tree will each be sized to exactly fit into a filesystem logical block. When a single leaf node is
sufficient to store the whole attribute list, there will be no intermediate nodes, just the single leaf
node.

For our application, it is expected that only in rare cases will attribute lists use more than that a
leaf node.

The B-tree will contain its “data” (ie: the value of the named attribute) only at the leaf level of the
tree. This is known more formally as a B*-tree (or sometimes as a B+-tree). This differs from a
plain B-tree in that all the keys are in the leaves, rather than spread through the tree. Since all keys
are in the leaves, the leaf nodes can be linked together to give quick sequential access to all the
keys in the tree. Unfortunately, the attributes are sorted on attribute name hash value, not alpha-
betically, so an application would probably want to sort them before displaying them.

The structure for each B-tree leaf block in a large attribute list is:

Packed at the front are the attribute hash values and offsets of each of the strings. The offsets are
sorted on attribute hash value. Packed at the back are the strings themselves.

/icons/excel

eyes-only

7602
6459

4236
3145

5368

first used byte

run length coded map of
free space in block

nextprior

count of entries

magic number

unused space

struct xfs_attr_leafblock {
struct xfs_attr_leaf_hdr

ushort magic;
xblkno forw;
xblkno back;
ushort count;
ushort firstused;
ushort pad1;
struct xfs_attr_leaf_map

{
ushort base;
ushort size;

} freemap[LEAF_MAPSIZE];
} hdr;
struct xfs_attr_leaf_entry{

uint hashval;
ushort nameidx;
ushort pad2;

} leaves[1];
struct xfs_attr_leaf_name {

unchar namelen;
unchar valuelen;
unchar name[1];
unchar value[1];

} namelist[1];

Excel

ASCII

32bit

4

4

4

4

3 5

5

12

5

9

app

lang

path

size

priv

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 8

The structure for the B-tree root or the intermediate nodes in a large attribute list is:

Packed at the front are the B-tree elements. Each element contains the associated attribute name
hash value and the block number of the B-tree block that contains all the nodes between this key
and the key from the prior entry in this B-tree block. Entries after the last attribute name hash
value are pointed to by theafter field in the header structure.

The overall structure of the B*-tree used in a large attribute list is:

The B-tree is embedded inside a linear array of blocks, ie: a file structure. Pointers to B-tree
blocks are relative to the file, not to the filesystem.

4.3.3 ACL Storage
Access Control Lists and other security-related attributes will be stored just like all other
attributes on filesystem objects. The fact that the kernel will interpret their values doesn’t affect
their storage representation.

hashval

hashval

hashval

hashval

block number

block number

block number

block number

leaves next

count of entries

magic number

unused space

count of free blocks

free block chain

node after all entries

struct xfs_attr_intnode {
struct xfs_attr_int_hdr {

ushort magic;
unchar leavesnext;
unchar freeblks;
xblkno freechain;
xblkno after;
ushort count;
ushort pad1[3];

} hdr;
struct xfs_attr_int_entry {

uint hashval;
xblkno before;
ushort pad2;

} btree[1];
};

hash

vi nawk makecshoffon

hash hashhashhash hash

shellfastauto editor parser build

buttonhash
val

hash
val

hash
val

jeff leftblue red litup

hash hashhash hashhashhash

fore backuser dir LED

0 M

M+1 N

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 9

4.4 Working Data Structures (ie: In-Memory)
4.4.1 Inode Table
We will have a traditional incore inode table. The attribute manager will understand that when an
inode is marked as containing literal data, it must manage the attribute structures (in the com-
pressed format) inside the inode and not in a buffer.

Since we have a split inode and space is being shared between the primary fork and the attribute
fork, the namespace manager and the regular-file write code have the right to call a function in the
attribute manager asking that any attributes stored in the literal area of the inode be moved out
into newly allocated blocks. This routine will be called if a small directory (ie: in the inode) or a
small file grows large enough to need the space occupied by the attributes in the inode, but not too
large that it won’t fit into the whole literal area of the inode.

4.4.2 Filesystem Level Attributes
The filesystem attribute inode will be in the system inode table and the attribute fork will be
accessed via the existing attribute access functions.

4.4.3 Attribute Name Spaces for Root vs. Non-Root
There are no special structures for the root-only attribute namespace.

4.4.4 Attribute Structure
The attribute structures for both small and large attribute lists have already been described. The
attribute manager code will use those structures either in the incore inode itself, or in buffers that
have been read from disk.

4.4.5 ACL Storage
Access Control Lists and other security-related attributes will be stored just like all other
attributes on filesystem objects. The fact that the kernel will interpret their values doesn’t affect
their storage representation.

4.5 Algorithms
In this section pseudocode is provided for each possible operation.
• VOP_ATTRIBUTE_LIST
pseudocode
• VOP_ATTRIBUTE_GET
pseudocode
• VOP_ATTRIBUTE_SET
pseudocode
• VOP_ATTRIBUTE_CREATE
pseudocode
• VOP_ATTRIBUTE_REMOVE
pseudocode
• VOP_ATTRIBUTE_MULTI
pseudocode

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 10

4.6 Performance Characterization
4.6.1 Inode Size and Structure
It is expected that almost all namespace objects will have either no attributes or many attributes,
not just one or two. The desktop process (“WorkSpace”) will be attaching several attributes to
most files, character set encoding information may be attached to files for the international mar-
kets, and backup/restore/hierarchical-storage management processes will be storing information
in attributes.

The size of the inodes in a filesystem will be at mkfs time, per filesystem. This impacts the per-
centage of inodes where the attribute list can be stored inside the inode. We should figure out the
expected size of the attribute stream for a “normal” file before we decide on a default inode size
for the personal workstation class of machines.

4.6.2 Space Required for Attribute Names and Values
Quite a bit of space will be required on disk to store however many attribute names plus attribute
values there are on every object. There will probably be a relatively few distinct attribute names,
but with a very high replication factor.

In the future, this can be changed by the addition of a per-allocation-unit repository of the
attribute names that are used in that AU. This change would be transparent to users and could be
migrated to via an off-line filesystem modification utility. It would save most of the space occu-
pied by the multiple copies of the attribute names, but at the cost of adding a potential perfor-
mance bottleneck.

4.6.3 Scaling of Attribute Operations
Since there is no central resource being contended for here, there should be no scaling problems.

4.6.4 Access Time for Security Attributes
Security related attributes will be accessed on most (if not all) file operations in a secure environ-
ment. Their performance will be an optimized example of accessing a set of arbitrary attributes at
every file operation.

4.6.5 Filesystem Level Attributes
These are all compiled into the kernel, but use the existing functions and interfaces and so should
have the same performance characteristics as normal user attributes.

4.6.6 Attribute Name Spaces for Root vs. Non-Root
There will be no difference in performance for accessing the attribute list for normal attributes
versus accessing the attribute list for root-only attributes.

4.6.7 Small Attribute Structure
The efficiency of not having to seek the disk heads out to read another block before we can access
the attribute list will be a big win. For small attribute lists, simply reading the inode will gets us
the contents of the attribute list and allow us to continue the operation. That percentage depends
completely on the size of the inode, the size of the data fork, and how many attributes there are.

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 11

4.6.8 Large Attribute List Structure
In a B*-tree, all the keys are in the leaves so those leaves can be linked together to give quick
sequential access to all the keys in the tree. Unfortunately, the attributes will be sorted on the hash
value of their names rather than alphabetically so applications will probably want to sort the list
before displaying it.

The access time to find a give key in a B*-tree is a logarithmic function of the attribute list size,
not a linear relationship. For our application, it is expected that only in rare cases will attribute
lists use more than a leaf node. This is subject to verification, however.

4.6.9 Available Parallelism
Reading/writing attribute is impacted by the level of parallelism provided for reading/writing a
file because the underlying structure used by the Attribute Manager for an attribute list is that of a
file.

Attribute blocks will live in buffers, buffers are exclusively locked when accessed, and most
attribute operations will take place under the auspices of the transaction manager (which will hold
buffer block locks until the transaction completes), so attribute operations on a single inode will
essentially be single threaded.

4.6.10 Logging Bandwidth Required
Since normal attributes will use the same block structuring as directories, the amount of log band-
width required per attribute operation should be the same as the equivalent operation for a direc-
tory, either:
• log the whole inode with the literal attributes inside, or
• log the changed block(s) in the attribute B-tree.

4.6.11 Effect on Disk Seek Patterns
Obviously, when the attributes are literally inside the inode, there is no impact on disk seek pat-
terns (other than the lack of a required seek to access a data block).

When attributes are not literally inside the inode, a disk seek and block read will be required. To
be more specific:
• a seek and read of the whole first extent of the attribute list,
• if the desired attribute is not in the first extent (unlikely), more seeks and reads will be required.

4.7 Initialization Procedure
Mkfs will create the initial contents of the attribute fork (nothing) on each inode and will create
the filesystem level attribute fork on the reserved inode.

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 12

4.8 Logging Actions
4.8.1 Normal Operation

4.8.1.1 Types of Log Records

4.8.2 Recovery

4.8.2.1 Actions For Each Type of Log Record

4.9 Disk Transfer Policies
4.9.1 To Disk

4.9.1.1 Xfer size

4.9.1.2 Logging

4.9.2 From Disk

4.9.2.1 Xfer sizes

5.0 User Interface

5.1 System Call Interface
• attr_list() - a relative ofgetdents() that returns attribute names and sizes for an object.
• attr_get() - return the value associated with the given attribute name for the given object.
• attr_set() - set/create the given (name, value) pair on the given object.
• attr_create() - create a (name, value) pair on an object, fail if name already exists.
• attr_remove() - remove the given attribute name from the given object.
• attr_multi() - take a list of attribute operations and loop across them all.

5.1.1 Attribute Operation Arguments
Theflags arguments for the following calls include:
#define ATTR_DONTFOLLOW 0x01 /* do not follow symlinks */
#define ATTR_NOCREATE 0x02 /* don’t create on set op */
#define ATTR_FILESYSTEM 0x10 /* incl filesystem attrs */
#define ATTR_USER 0x20 /* incl user attrs */
#define ATTR_ROOT 0x40 /* incl root-only attrs */

They mean:
• ATTR_DONTFOLLOW - don’t follow symlinks, use on any operation that takes a pathname.
• ATTR_NOCREATE - don’t auto-create, fail if name doesn’t exist on a set operation.
• ATTR_FILESYSTEM - include filesystem attributes in namespace to operate on.
• ATTR_USER - include local-to-object non-root attributes in namespace to operate on.
• ATTR_ROOT - include local-to-object root-only attributes in namespace to operate on.

5.1.2 Single Attribute Operations
The single-attribute operations include:

5.1.2.1 attr_list()
int attr_list(char *path, struct attr_list_struct *list, int len,

int flags);
int attr_listf(int fd, struct attr_list_struct *list, int len,

int flags);

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 13

where:
struct attr_list_struct {

int valuelen; /* length of associated value */
int namelen; /* length of name (including NULL) */
char name[1]; /* text of name (NULL terminated) */

};

Like getdents(), successive calls will return more of the attribute list. There are also related rou-
tines:attr_open(), attr_rewind(), attr_close() that work just like theirgetdents() equivalents.

Theattr_list() calls take any combination of theATTR_FILESYSTEM, ATTR_USER, andATTR_-
ROOT flags. The namespaces will be listed in the order: user, root, and then filesystem, but note
that there is no indication of where a given attribute name came from when more than one
namespace is specified.

5.1.2.2 attr_get()
int attr_get(char *path, char *attrname, char *value, int *len,

int flags);
int attr_getf(int fd, char *attrname, char *value, int *len,

int flags);

For theattr_get() calls, thelength argument initially contains the size of the allocatedvalue
buffer. After the syscall, thelength argument contains the actual length of the associated value. If
the initial length is not sufficient to hold the attribute’s value, thelength argument is set to the
required size and an error is returned.

Theattr_get() calls take any combination of theATTR_FILESYSTEM, ATTR_USER, andATTR_-
ROOT flags. The namespaces will be searched in the order: user, root, and then filesystem.

5.1.2.3 attr_set()
int attr_set(char *path, char *attrname, char *value, int len,

int flags);
int attr_setf(int fd, char *attrname, char *value, int len,

int flags);

The attr_set() calls take only one of theATTR_FILESYSTEM, ATTR_USER, andATTR_ROOT
flags. If one is not specified,ATTR_USER is assumed. Note that to set or create anATTR_ROOT
attribute requires superuser permissions.

TheATTR_NOCREATE flag may also be set. If so, the call will fail if an attribute with this name
does not exist in the given namespace.

5.1.2.4 attr_create()
int attr_create(char *path, char *attrname, char *value, int len,

int flags);
int attr_createf(int fd, char *attrname, char *value, int len,

int flags);

Theattr_create() calls take only one of theATTR_FILESYSTEM, ATTR_USER, andATTR_ROOT
flags. If one is not specified,ATTR_USER is assumed. Note that to create anATTR_ROOT
attribute requires superuser permissions.

This call will fail if an attribute with this name already exists in the given namespace.

5.1.2.5 attr_remove()
int attr_remove(char *path, char *attrname, int flags);
int attr_removef(int fd, char *attrname, int flags);

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 14

The attr_remove() calls take any combination of theATTR_FILESYSTEM, ATTR_USER, and
ATTR_ROOT flags. The namespaces will be searched in the order: user, root, and then filesystem.
Note that to remove anATTR_ROOT attribute requires superuser permissions.

This call will fail if an attribute with this name does not exist.

5.1.3 Multi-Attribute Operations
There is also a multi-attribute operation where an array of sub-operations is passed in. Each oper-
ation has its own opcode, arguments, and return value. The argument/result structure follows:
struct attr_multi_op {

int operation; /* set/create/remove operation code */
char *attrname; /* the attribute name to operate on */
char *value; /* the attribute value to use/set */
int *len; /* the max/used length of the value */
int flags; /* flags for this sub-operation */
int error; /* error for this sub-operation */

};

Theoperation field can contain the following values:
#define ATTR_OP_GET 0x1 /* do an attr_get() */
#define ATTR_OP_SET 0x2 /* do an attr_set() */
#define ATTR_OP_CREATE 0x3 /* do an attr_create() */
#define ATTR_OP_REMOVE 0x4 /* do an attr_remove() */

In all of the multi-attribute operations, the fields in each sub-operation may contain the same val-
ues (with the same semantics) as the arguments to the corresponding single-attribute operations
above.

Where the single-attribute operation would have returned an error code from the function call, the
error field in the sub-operation structure will contain that error code. Theattr_multi() function
call itself will return an error to the caller only when atomic operations are requested (see the next
section).
int attr_multi(char *path, struct attr_multi *args, int count,

int flags);
int attr_multif(int fd, struct attr_multi *args, int count,

int flags);

Note that theflags argument to the call itself (not the sub-operation) does not have the same
semantics as theflags argument to the single-attribute operations (see the next section). Theflags
argument can contain the following values:
#define ATTR_ATOMIC 0x1 /* atomic multi-attr op */

5.1.4 Atomic Multi-Attribute Operations
If the ATTR_ATOMIC flag is set in theflags argument to theattr_multi() call, then all the sub-
operations must be successful or none of them will succeed. In this way, multiple attributes can be
set/created/removed atomically. Note that this has no meaning for theATTR_OP_GET opcode.

In the following discussion, please assume thatATTR_ATOMIC has been set in the flags argument
to anattr_multi() call.

If any of the sub-operations is anATTR_OP_SET that has theATTR_NOCREATE flag set and that
operation would fail because an attribute with that name does not already exist, then theerror
field is set and the wholeattr_multi() call will fail before doing any of the sub-operations.

Silicon Graphics Proprietary

xFS Attribute Manager Design October 7, 1993 15

If any of the sub-operations is anATTR_OP_CREATE and that creation would fail because an
attribute with that name already exists, then theerror field is set and the wholeattr_multi() call
will fail before doing any of the sub-operations

If any of the sub-operations is anATTR_OP_REMOVE and that removal would fail because an
attribute with that name does not exist, then theerror field is set and the wholeattr_multi() call
will fail before doing any of the sub-operations.

Note that onlyATTR_OP_SET sub-operations with theATTR_NOCREATE flag set,ATTR_CRE-
ATE sub-operations, andATTR_REMOVE sub-operations can cause a failure such that the whole
attr_multi() operation will fail.

Each of the sub-operations is checked for failure, even if one has already been found that will
cause the wholeattr_multi() call to fail. The error field in each sub-option will be set according to
whether that sub-operation would have succeeded or not.

The semantics described for atomic multiple attribute access can be used to:
• atomically set a group of attributes only if they all exist
• atomically set a group of attributes only if another attribute can be removed
• atomically set a group of attributes only if another attribute can be created
• atomically create a set of attributes at the same time
• atomically remove a set of attributes at the same time
• atomically create a group of attributes only if another attribute already exists and can be set
• atomically remove a group of attributes only if another attribute already exists and can be set
• etc...

5.2 Utilities
There will need to be:
• a utility to manipulate arbitrary user attributes in a generic way.
• modifications to ls(1) to show security related attributes and values (at a minimum).
• modifications to backup utilities.
• modifications to file transfer and interchange utilities (tar, cpio, rcp, cp, ...).
• modifications to the SGI-NFS protocol to pass attribute operations between consenting systems.
• etc, etc, etc...

6.0 Implementation Plan and Schedule

6.1 Features in Not Version 1
Arbitrary attributes may not be in the March release.

7.0 Initial Test Plan

