Silicon Graphics Proprietary

XFS Simulation Environment

Doug Doucette

1.0 Introduction

This is the design document for the simulation environment (scaffolding) for xFS.

2.0 Goals and Requirements

Allow user mode debugging of all XFS project file system components. Excludes volume man-
ager (xlv) from the set of things we want to debug, at least for now.

Allow integration and testing of all file system components (again, except xlIv).

Changes to file system components to work in the simulation environment must be minimal
and limited to#ifdefs.

Allow multi-user testing.
Present a transparent interface to applications, except for linking differently.
Run on unmodified 5.x machines (at least). [No kernel changes.]

Use disk space identified by pathname and range of addresses for the data and log spaces.
Allow either raw disk or ordinary files to be used.

3.0 Design Alternatives

There are three major design alternatives we could use to meet some or all of the goals and
requirements listed above. Roughly, they are:

1. #fdef the utilities to avoid name conflicts, and link all the utilities together with the file system

code. Each user “process” gets its own sproc, and all the “kernel” data is shared. The “shell” is
just some simple command lookup code.

. Utilities link with a library which replaces all the file name and file descriptor calls; the library

intercepts calls into the simulated filesystem and passes calls to real filesystems onto the ker-
nel. The intercepted calls turn into messages to a set of server sproc’s which implement the file
system.

. The simulation registers itself as an NFS server for the simulated mount point, and runs as a

user mode NFS server. No wrapper library is needed.

Any of these could be implemented. Each has differing implementation cost and a different set of
problems and benefits.

XxFS Simulation Environment October 7, 1993 1



Silicon Graphics Proprietary

Alternative 1 requires the most in the way of source changes to the utilities and test programs,
since they must be changed to avoid overlapping names with each other and with the kernel file
system code. Fork calls must be intercepted, and turned into sproc calls; exec calls must be inter-
cepted and turned into function calls to other “programs” linked in. The real shells may be too
complex to make work this way, but probably a simple shell can be written as the top level com-
mand interpreter; on the other hand, this means that scripting would be difficult, so maybe it is a
requirement to makseh work. There is no protection for programs from each other, nor for the
kernel from the programs. Memory allocation, if done with malloc, would be problematic since
programs don’t normally release their memory before exiting; otherwise the malloc implementa-
tion needs to be replaced with some code that can find the “process” memory and release it.

Alternative 2 simulates the actual user/kernel split well. There is an implementation cost in mak-
ing the message-passing system call library work. Not all system calls can be implemented in a
straightforward way to reference the simulated file system: exec, for instance (and mmap), are dif-
ficult. We can use a real shell program. Utility changes will be minimal (turning off multiprocess-
ing). The set of pathname functionality that can easily be implemented is a little restricted, but not
too bad - the problems arise through operations such as .. through the root of the simulation.

In both alternatives 1 and 2, kernel code surrounding the filesystem must be simulated. This
includes things like vnode support, memory allocation, and so on.

Alternative 3 changes this by turning the simulation into an NFS server. There are absolutely no
changes required to the utilities, not even relinking. The scaffolding is a little more difficult, since

a user-mode NFS server must be written. Operations which can’'t be done through NFS, or which
NFS clients turn into something else, won't be seen by the simulation. For example, memory
mapped files (and exec) will work, but the NFS operations are just reads and writes. For another
example, there’s no way to simulate new semantics such as extended attributes, without extending
the NFS protocol to support them. (Note that we would in all likelihood wish to do that eventu-
ally, for the real product, in any case.)

4.0 Design Overview

The fundamental idea behind the simulated xFS filesystem is that applications can use files in the
simulated filesystem as though they were normal, real, kernel-implemented files.

User programs will link with a library replacing certain system calls (all the filesystem related
ones) with wrappers. The wrappers will intercept calls aimed at files in the simulated filesystem.
Each such call will result in a message being sent to a “monitor” process associated one-to-one
with the user process. The monitor process is the bulk of the filesystem simulation.

The monitor contains all the xFS filesystem code as well as “scaffolding” code which replaces
both the kernel services that the filesystem uses (page cache, memory allocation, locking) and the
mechanisms to get from system calls to the filesystem code in a real kernel (syscall, vnodes, etc).
The underlying disk driver accesses are replaced by writes to the disk space being used for the
filesystem. The monitor processes for a given filesystem simulation share state in shared memory
(and on disk) and communicate with each other as necessary.

XxFS Simulation Environment October 7, 1993 2



Silicon Graphics Proprietary

The monitor process is created and destroyed by the library code linked with the user program.
The local configuration - in particular, the mount point, disk space, etc. - is taken from environ-
ment variables by the library code, so that users of the simulation can share a single filesystem if
they desire, and can have a private filesystem otherwise.

5.0 Design Details
How do we identify opens (pathnames) that are being simulated?

Assume that each filesystem simulation is started by a mkfs followed by a mount. The mount
identifies the disk space(s) and the pathname to the simulation. Since creation of a new file type
requires kernel changes, we will make the mount point be a symbolic link to a nonexistent name.
Then we can catch pathname uses that fail, and look at them to see if the name matches a known
mount point, and simulate the pathname use (open, chdir, etc.).

Actually since the current directory of a process is part of the process’ real state, all pathname ref-
erences that are relative to it must be checked as well. Issue: do we deal with symlinks into the
simulation?

5.1 User Library Design

As mentioned above, we can make pathname references run the normal call then intercept the fail-
ure cases. We then maintain a “file table” for each file being simulated, so we can intercept system
calls with file descriptor arguments. In order to keep the problem simple, we need to actually have

a real open file descriptor behind each simulated file; the file descriptor doesn't need to refer to

anything useful.

The user programs communicate with the monitor programs by some convenient mechanism; |
suggest that pipes or System V messages or shared memory are adequate. | have no interest in
dealing with sockets, and | don't think it's required that the simulation support a multi-machine
environment either. The messages will need to encapsulate all the information that would be
transmitted in a system call, including things like pathnames. The monitor side can be assumed to
have as much state as the kernel side of a process, since that’s what it's simulating.

5.2 Kernel System Call Side Design

The top level is the message receipt and breakout into individual routines, analogous to the
syscall() code. This then gets us down into versions of the routines such as read(), ioctl(), etc.
These can be rewritten for the simulation, in general; if it is easier in some cases to use the real
code then we can do that. We will need to simulateitlstructure and process structures to sup-

port such code.

The next level takes us through vnode structures and the file system switch to the xFS code. The
vnode support will need to be present intact; only xFS files will be supported, though.

XxFS Simulation Environment October 7, 1993 3



Silicon Graphics Proprietary

5.3 Kernel Support Side Design

* Vnodes

* Memory Allocation

» Locking

» Coordination with other monitors: control data is in shared memory

What we need to do here is list the files that will be present intact (besides the actual filesystem

code), and the routines that will be faked and stubbed to support them. The way this is done is to

take the EFS code, and examine all the undefined symbols. For each such symbol, we either add
the file that supplies it intact (thus generating more undefined symbols), or stub out the routine or

variable. In rare cases we may want to #ifldefs to the file. We repeat this procedure until it con-
verges.

6.0 Implementation Schedule

* Implement and then test with EFS first. This should be done before the first integration and
testing of XFS code could be done.

XxFS Simulation Environment October 7, 1993 4



