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xFS NameSpace Manager Design

Curtis Anderson

1.0  Introduction
This document describes the requirements and proposed implementation for the namespace man-
agement functions of the xFS filesystem. Note that only the namespace features are defined here,
attribute management, space management and other features are described elsewhere.

The NameSpace Manager supports all the traditional name-related VNODE operations by storing
specialized structures (a directory) inside the logical address space provided by a “file”. The
Space Manager provides the “file” abstraction and allows the caller to set the inode type as it
desires.

The reader will notice the extreme similarity between the NameSpace Manager and the Attribute
Manager designs. This is intentional, they are parallel in the system architecture and will in fact
share portions of code.

2.0  Requirements and Functionality

2.1 Requirements
Here are the external requirements for the namespace management code in xFS.

2.1.1 Standard VNODE Operations and Semantics
This filesystem has to operate in a fairly standard VFS/VNODE environment, so all the existing
namespace-related entry points and arguments have to be available and working.

2.1.2 Fast for Large and Small Directories
The namespace operations must be fast for any size of directory, not just “normal” sizes. One of
the goals of the namespace design is to efficiently support very large single directories.

2.1.3 Internationalization
It should be possible to store file names in an international character set, and file contents should
be tagged so that processes can determine the character set used inside them.

2.1.4 Location Independence (Distributed Naming)
Hooks must be available to support the planned distributed filesystem. These will take the form of
“mount point” type inodes and possibly remote device access, but may not be available in the first
release.

2.1.5 IPC Rendezvous Nodes
An inode type will be provided that is similar to named pipes or sockets. It will provide an inter-
process communication conduit that will have more capabilities that a named pipe or socket.



Silicon Graphics Proprietary

xFS NameSpace Manager Design October 7, 1993 2

Specifically, it will be able to take part in naming operations. There will be a way for a user pro-
cess to ask that for any naming operations that attempt to pass through the inode, the remaining
piece of the pathname will be passed out to the process. The intent is to allow active user pro-
cesses to be full participants in the namespace. It should be very easy to build a new filesystem
type in user mode with these IPC nodes.

IPC nodes may not be available in the first release.

2.2 Functionality (ie: NameSpace Semantics)
This section describes all the objects that are visible in the namespace, and their associated
semantics. The implementation of these objects is described in a following section.

2.2.1 Object Types
This section lists the different types of objects that exist in the namespace, and what their seman-
tics are.

2.2.1.1 Files, Directories, Symlinks
These types will have the same semantics that they do in IRIX today. Note that directories will
have a different internal structure, but that readdir() and friends will be supported.

2.2.1.2 Pipes, Sockets, Device Nodes
Until the distributed filesystem support appears, these types will have the same semantics that
they do in IRIX today. When the distributed system support appears, these questions will need to
be answered:
• How will a pipe act if the two opening processes are on different machines?
• What should the “originating address” of a socket be if the system managing the filesystem is

not the system managing the process?
• Should we provide transparent access to devices that are attached to remote machines?

2.2.1.3 Mount Points
These are a special inode type that is just a holder for the UUID of the filesystem we want access
to. It is somewhat analogous to a symlink in that the UUID specifies where to continue pathname
resolution.

When a pathname is being resolved and one of these inodes is found in the middle of the path-
name, the filesystem will return a message to the upper layers of the kernel saying that pathname
resolution should continue from the indicated point on the indicated system (ie: whatever is left of
the pathname, on the system that is managing the indicated filesystem).

One method of multi-hop pathname resolution would have the kernel on the system that ran into
the mountpoint inode pass a message on to the kernel managing the “next” filesystem to continue
pathname resolution, without involving the “originator” system. This has a severe drawback when
one system in that chain fails.

Returning a message to the originating kernel rather than just passing it along allows the originat-
ing kernel to know who is doing processing on its behalf. The originating kernel can then tell if
the remote system has gone down or is just slow.

During system boot or when a fragmented network is reconnected, mountpoint inodes come in
very handy. As soon as the volume manager has a complete image of a volume ready, it can
invoke the filesystem recovery manager. As soon as that is done, the filesystem UUID can be
announced to the world and operations can start. Note that an administrative “mount” operation is
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not required. In the case of reassembling a fragmented network, this technique works especially
well, since only the fact that the filesystem UUIDs are now available needs to be transferred and
the whole “fragmented” section of the network becomes visible again.

2.2.1.4 IPC Nodes
IPC nodes are complicated beasties. Processes attached to them can:
• Participate in pathname operations via passing pathname fragments in and out.
• Provide “file descriptor” support in that they can respond to filesystem operations (eg: read/

write/stat/etc.).
• Lots more neato things....

2.2.2 Pathnames
The pathnames that xFS will support will be 8-bit clean, and will be stored as a (bytes, length)
pair, but the interface will still use NULL-terminated strings (ie: the unicode standard will not be
supported in this release). We should plan ahead for the possibility of supporting the unicode stan-
dard where a NULL byte doesn’t terminate a string.

A pathname will be limited to MAXPATHLEN bytes. Note that in a multi-byte character set, the
number of “characters” will be less than the number of bytes. This also applies to the max length
of a file name (a pathname component).

The upper layer VFS/VNODE code will need to be able to find “/”, and the xFS filesystem code
will need to be able to find “.” and “..”, but that seems to be the only characters that the kernel
needs to parse for in the pathname.

2.2.3 Mounting of Filesystems
Until the distributed filesystem support comes along, we may not implement mount-point type
inodes, so we will use a traditionalmount command to initiate kernel activity on a filesystem.

2.2.3.1 MountPoint Type Inodes
This is an inode type that contains the UUID of the new filesystem, and is used something like a
traditional symlink. It provides the UUID of the filesystem to continue pathname resolution with.

We must support the library interfaces that let programs read the /etc/mtab file. The filesystems
that are currently mounted will depend on other nodes in the local cluster being up, and network
connections to more remote systems being up. The list of currently mounted filesystems could be
a fairly dynamic thing.

The /etc/mtab file will be managed just the way it is today by non-xFS filesystems, but xFS file-
systems will not be recorded in the /etc/mtab file. The library routines will present all of the non-
xFS entries in the file, and will then use system calls to query the kernel as to what xFS filesys-
tems are currently mounted.

3.0  External Interfaces
Listed here are the interfaces provided to external callers, the interfaces into other kernel code
used by this module, and the dependencies that this module has on the kernel and other modules.

3.1 Supported VNODE Operations
The following VFS/VNODE operations will point into the NameSpace manager code. The
semantics of each call are already defined.
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• vop_open
• vop_getattr
• vop_setattr
• vop_access
• vop_lookup
• vop_create
• vop_remove
• vop_link
• vop_rename
• vop_mkdir
• vop_rmdir
• vop_readdir
• vop_symlink
• vop_readlink
• vop_pathconf

3.2 IRIX Components Used
Lots of them.

3.3 Dependencies on Other xFS Components
This section lists functional and algorithmic dependencies of the NameSpace manager on other
modules in xFS. The NameSpace manager should be able to get all of its work done via calls to
Space manager routines, buffer cache routines, and to log/recovery manager routines. It will also
need to interact with the Attribute Manager to manage the space inside an inode.

3.3.1 Space Manager
The NameSpace manager is intended to be layered on top of the Space manager.

3.3.1.1 Manage the inode pool

3.3.1.2 Provide the bmap() routine

3.3.2 Log/Recovery Manager

3.3.2.1 Provide Log Write Interfaces

3.3.3 Attribute Manager

3.3.3.1 Provide a PushOut procedure
text goes here



Silicon Graphics Proprietary

xFS NameSpace Manager Design October 7, 1993 5

4.0  Major Components

4.1 List of Components
Here is a partial diagram of the NameSpace Manager components and their interactions:

• Short Form Directory Routines - manage an extremely compact representation of directory
entries intended to maximize the number of entries that can fit into the literal space inside
an inode.

• Leaf Node Directory Routines - manage the contents of the leaf nodes of a directory. Leaf nodes
are used in large directory B-trees and as a special case when the only node is a single leaf
node. They are indexed on a hash value computed from the file name.

• Intermediate/Root Node Directory Routines - implement a B*-tree using a hash value computed
from the file name as a key, using the leaf node routines defined above to actually store the
directory entries.

• IPC Nodes - implement the ability for a user process to be a full participant in namespace opera-
tions and in file descriptor based I/O. Used to implement special filesystems in user-mode.

• Mount Point Nodes - used as a symbolic continuation/redirection point in the namespace of a
distributed system.

4.2 Internal Interfaces
For each of the three components of the NameSpace Manager that relate to directories:
• There is acreate routine to build a new block of this type.
• There is anaddname routine to add a name to a directory with this structure.
• There is aremovename routine to remove a name from a directory with this structure.
• There is alookup routine to search for a name in a directory with this structure.
• There is a migration routine to the adjacent directory structure. For example: migrating from

shortform to leaf node, from leaf node to full B-tree, and equivalent routines for migrating
back again.

• There is agetdents routine to support readdir() and friends.

Short
Form

Intermediate/Root Nodes

Leaf Nodes

VFS/VNODE NameSpace Operations

Space Manager and Buffer Cache

Mount-
Point
nodes

IPC
Nodes
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The routines listed above are usually just wrappers that call work routines that are used in com-
mon by the various components. For example, the internal routine to add a name to a leaf node is
called by the leaf node code and by the B*-tree code when it has reached the bottom of the tree.

There may be additional special purpose routines as well as those listed above.

4.3 Algorithms
In this section pseudocode is provided for each possible operation.

4.3.0.1 vop_open, vop_lookup, vop_access, and vop_create
pseudocode

4.3.0.2 vop_getattr and vop_setattr
pseudocode

4.3.0.3 vop_remove
pseudocode

4.3.0.4 vop_link
pseudocode

4.3.0.5 vop_rename
pseudocode

4.3.0.6 vop_mkdir, vop_rmdir, and vop_readdir
pseudocode

4.3.0.7 vop_symlink and vop_readlink
pseudocode

4.3.0.8 vop_pathconf
pseudocode

4.4 Permanent Data Structures (ie: On-Disk)
The Space Manager will split the on-disk inode into three pieces: the UNIX guk, the data fork,
and the attribute fork. The UNIX guk is pretty traditional, while the data and attribute fork sec-
tions both have the same structure: they will either contain extent pointers, or literal data.

The Space Manager will make the size of the literal area of each fork known to the namespace and
attribute routines so that they can use space-efficient optimized structures when their data will fit
into the inode itself, and can use time-efficient structures when their data will not fit into the
inode. If the namespace code needs more space in the inode, it can call into the attribute manager
with a request that the attributes be moved out of the inode and into extents. This is covered in
more detail in the External Interfaces sections of this document and the Attribute Manager Design
document.

When a directory is small, it is possible to store it inside the inode in place of extent pointers. This
has a tremendous appeal in that it will save an IO at something like half of all naming operations.
Name caches will alleviate some of the cost of such IOs, at the cost of cache management.

When a directory has too many entries to fit into an inode, there is little choice but to fall back on
the familiar scheme of creating blocks of entries stored in a structure that looks like a regular file.
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4.4.1 Small Directory Support
We will use a space-efficient structure when we try to fit a directory into the literal area of an
inode. The entries will be packed into a flat structure and sorted.

Unlike traditional UNIX directories, when an xFS directory is in this compacted form “.” and “..”
will not have explicit representations. The parent directory will simply have a dedicated field, and
the self-reference “.” will be calculated on the fly.

The structure for small directory entries is:

4.4.2 Large Directory Support
A directory that does not fit into the literal area of an inode will be structured as a B-tree keyed on
the hash value of the filenames stored in that directory. The root, intermediate nodes, and the
leaves of the B-tree will each be sized to exactly fit into a filesystem logical block. When a single
leaf node is sufficient to store the whole directory, there will be no intermediate nodes, just the
single leaf node. For our application, it is expected that only in rare cases will directories use more
than that a leaf node.

Note that we are using a hash value calculated from the filename as the key into the B-tree and
leaf blocks, not the filename itself.

In the B-tree and leaf node directory format, rather than complicate the B-tree structure by having
dedicated fields for “.” and “..” as in the compact directory format, we will represent the parent
directory, “..”, and the self-reference, “.”, with actual entries.

The B-tree will contain its “data” (ie: the inode number of the referenced object) only at the leaf
level of the tree. This is known more formally as a B*-tree (or sometimes as a B+-tree). This dif-
fers from a plain B-tree in that all the keys are in the leaves, rather than spread through the tree.
Since all keys are in the leaves, the leaf nodes can be linked together to give quick sequential
access to all the keys in the tree.

struct xfs_dir_shortform {
struct xfs_dir_sf_hdr {

unchar par-
ent[8];

unchar count;
} hdr;
struct xfs_dir_sf_en-

try {
unchar inum-

ber[8];
unchar

namelen;
unchar

name[1];

parent dir inumber

baker

count of entries

charlie

able

delta

zulu

I-6546

I-6523

I-4253

I-9833

I-1263

4

7

5

4

5
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The structure for each B-tree leaf block in a large directory is:

Packed at the front are the hash value and offsets of each of the strings. The entries are sorted on
hash value. Packed at the back are the inode numbers, string lengths, and the strings themselves.

first used byte

run length coded map of
free space in block

hashval
hashval
hashval
hashval
hashval

nextprior

count of entries

magic number

unused space

baker

charlie

able

delta

zulu

I-6546

I-6523

I-4253

I-9833

I-1263

4

7

5

4

5

struct xfs_dir_leafblock {
struct xfs_dir_leaf_hdr

ushort magic;
xblkno forw;
xblkno back;
ushort count;
ushort

firstused;
ushort pad1;
struct xfs_-

dir_leaf_map {
ush-

ort base;
ush-

ort size;
} freema-

p[LEAF_MAPSIZE];
} hdr;
struct xfs_dir_leaf_entry

{
uint hashval;
ushort nameidx;
ushort pad2;

} leaves[1];
struct xfs_dir_leaf_name
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The structure for the B-tree root or the intermediate nodes in a large directory is:

Packed at the front are the B-tree elements. Each element contains the associated hash value and
the block number of the B-tree block that contains all the nodes between this key and the key from
the prior entry in this B-tree block. Entries after the last hash value are pointed to by theafter field
in the header structure.

The overall structure of the B*-tree used in a large directory is:

The B-tree is embedded inside a linear array of blocks, ie: a file structure. Pointers to B-tree
blocks are relative to the file, not to the filesystem.

hashval block number

hashval block number

hashval block number

hashval block number

leaves next

count of entries

magic number

unused space

count of free blocks

free block chain

node after all entries

struct xfs_dir_intnode {
struct xfs_dir_int_hdr {

ushort magic;
unchar leavesn-

ext;
unchar free-

blks;
xblkno

freechain;
xblkno after;
ushort count;
ushort pad1[3];

} hdr;
struct xfs_dir_int_entry

{
uint hashval;
xblkno before;
ushort pad2;

hash03

hash
value

hash
value

hash
value

ditzy cup

card

birdbat

axe

ark

able dup corp

corn

cine

I-3352 I-553 I-1163

I-7936 I-6287 I-1930 I-2752 I-8002

I-7723 I-5294

I-4823

I-6619

0 M

M+1 N

hash05

hash02

hash08

hash11hash10

hash06 hash09hash07

hash01

hash04

hash12
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4.5 Working Data Structures (ie: In-Memory)
4.5.1 Inode Table
We will have a traditional incore inode table. The namespace manager will understand that when
an inode is marked as containing literal data, it must manage the directory structures (in the com-
pressed format) inside the inode and not in a buffer.

Since we have a split inode and space is being shared between the primary fork and the attribute
fork, the namespace manager has the right to call a function in the attribute manager asking that
any attributes stored in the literal area of the inode be moved out into newly allocated blocks. This
routine will be called if a small directory (ie: in the inode) grows large enough to need the space
occupied by the attributes in the inode, but not too large that it won’t fit into the whole literal area
of the inode.

4.5.2 Directory Structure
The directory structures for both small and large directories have already been described. The
namespace manager code will use those structures either in the incore inode itself, or in buffers
that have been read from disk.

4.6 Performance Characterization
4.6.1 Inode Size and Structure
This table compares the approximate storage efficiency of small structured directories (ie: inside
the inode) for various sizes of inodes for a typical kernel source tree on campus. This table
assumes that an inode will contain 64 bytes of fixed fields and have 9 bytes of overhead per entry.

The size of the inodes in a filesystem will be stored in the superblock for that filesystem. In the
first release we may only support a single inode size, but we want the flexibility in the data struc-
tures to allow us to have different inode sizes per filesystem.

4.6.2 Small Directory Structure
The efficiency of not having to seek the disk heads out to read another block before we can access
the directory will be a big win. For a large percentage of directories, simply reading the inode will
gets us the contents of the directory and allow us to continue the naming operation. This table
assumes that an inode contains 64 bytes of fixed fields.

TABLE 1. Small Format Directory Efficiency

Dirs that fit

128B inode 27%

256B inode 62%

512B inode 85%

1024B inode 95%

TABLE 2. Number of User-Settable Keys in a Small Directory versus Inode Size

128B
inode

256B
inode

512B
inode

1KB
inode

8 Byte Filenames 3 10 25 55

32 Byte Filenames 1 4 10 23
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4.6.3 Large Directory Structure
A large directory will be structured as a B*-tree keyed on the hash value of the filenames. A B*-
tree improves on a plain B-tree in that since all the keys are in the leaves, those leaves can be
linked together to give quick sequential access to all the keys in the tree. The access time to find a
give key in a B*-tree is a logarithmic function of the directory size, not a linear relationship as in
most other UNIX namespace schemes.

For our application, it is expected that only in rare cases will directories use more than a single
leaf node.

4.6.4 Directory Inode Allocation Policy
One possibility for improving naming efficiency is to have the inode allocation policy try to clus-
ter directory inodes within the inode list of an AllocGroup. The intent is to increase our odds of
reading in about-to-be-accessed inodes along with the inode of current interest. It would increase
our cache hit ratio.

4.6.5 Available Parallelism
Reading/writing a directory entry is impacted by the level of parallelism provided for reading/
writing a file because the underlying structure used by the NameSpace Manager for a directory is
that of a file.

Directory blocks will live in buffers, buffers are exclusively locked when accessed, and most
directory operations will take place under the auspices of the transaction manager (which will
hold buffer block locks until the transaction completes), so operations on a single directory inode
will essentially be single threaded.

4.6.6 Logging Bandwidth Required
Directory operations will usually require one of:
• log the directory inode with the literal directory inside, or
• log the changed block(s) in the directory B-tree.
In the first case, we will log the whole inode, while in the second case we will log as many full
blocks as have changed in the operation.

Note that directory operations are usually a part of a larger operation such as removing a file. In
such a case, an inode would be modified as part of the same transaction, thereby requiring more
log bandwidth than just the operation on the directory per se.

4.6.7 Effect on Disk Seek Patterns
Obviously, when the directory is literally inside the inode, there is no impact on disk seek patterns
(other than the lack of a required seek to access a data block).

When the directory is not literally inside the inode, a disk seek and block read will be required. To
be more specific:
• a seek and read of the whole first extent of the directory
If the desired filename is not in the first extent (unlikely), more seeks and reads will be required.

TABLE 3. Number of User-Settable Keys in a Large Directory Leaf versus Logical Block Size

512B LBS 1KB LBS 2KB LBS 4KB LBS 8KB LBS

8 Byte Filenames 19 39 80 162 326

32 Byte Filenames 9 20 41 82 166
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4.7 Initialization Procedure
Mkfs will create theroot andlost+found directories when it lays out the filesystem.

4.8 Logging Actions
4.8.1 Normal Operation

4.8.1.1 Types of Log Records

4.8.2 Recovery

4.8.2.1 Actions For Each Type of Log Record

4.9 Disk Transfer Policies
4.9.1 To Disk

4.9.1.1 Xfer size

4.9.1.2 Logging

4.9.2 From Disk

4.9.2.1 Xfer sizes

5.0  User Interface

5.1 System Calls

5.2 Utilities

6.0  Implementation Plan and Schedule

6.1 Features Not in Version 1
6.1.1 IPC Nodes
IPC nodes may not appear in the March release.

6.1.2 Mount Points
Mount point nodes may not appear in the March release.

7.0  Initial Test Plan


