XORP PIM-SM Routing Daemon
Version 1.1

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

April 13, 2005

1 Introduction

1.1 Overview

This document provides an overview of the XORP PIM-SM [2] RugiDaemon. It is intended to provide
a starting point for software developers who wish to modiig software.

A router running PIM-SM interacts with other PIM-SM routeasd multicast group members, com-
putes the multicast routing state, and installs the coordipg multicast forwarding state in the multicast
forwarding engine.

The chosen architecture for the XORP PIM-SM implementagiophasizes on correctness and extensi-
bility rather than high performance or minimal memory faoth PIM-SM is a fairly complicated protocol,
therefore it is very important that the implementationdals closely the protocol specification. Otherwise,
premature optimization or “cutting corners” might intr@guproblems that are difficult to find. Only after
the implementation is well tested, we would try to optimibede parts of the implementation that should
prove to be a bottleneck.

Currently (April 2005), the PIM-SM implementation is bassuthe specification in the following doc-

uments:
edraft-ietf-pimsmv2-new 09.{ps,txt} (The core PIM-SM specification).

e draft-ietf-pimsmbsr-03.{ps, txt} (The Bootstrap mechanism specification).

The only major features not implemented yet are SSM supparsacurity.

1.2 Acronyms

Acronyms used in this document:

e MFC: Multicast ForwardingCache: another name for an entry in the multicast forwardimgjres
(typically used on UNIX systems).

MFEA : MulticastForwardingEngine Abstraction

MLD/IGMP : MulticastL istenerDiscoveryl nternetGroup ManagemeniProtocol

MRIB : MulticastRouting I nformationBase

e PIM-SM: Protocoll ndependeni ulticast-SparseM ode

RIB: Routing InformationBase

1.3 PIM-SM Design Architecture Overview

Get/set configuration or running state info Get protocol-related statistics
(to/from user and/or RTRMGR)

PimNode
PimConfig — Multicast forwarding
T ‘ RpTable Stg to the MFEA
Set MRIB info (from RIB)
PimMrt PimMribTable
[T\ [1\ Receive MFEA signals
L Receive membership
I PimScopeZoneTable info (from MLD/IGMP)
y
PimVif | PimVif | PimVif | PimVif | PimVif | PimVif ~
Receive vif info
(from MFEA or RTRMGR)

Send/receive PIM messages
(to/from MFEA)

Figure 1: PIM-SM design overview
Figure 1 provides a general overview of the PIM-SM compasieRbr each component there is a C++
class with exactly the same name. The main components aféylatescribed below:

e PimNode: a representation of a single PIM-SM routing urétd.,a virtual PIM-SM router). Typi-
cally, there would be a single PimNode per PIM-SM router.

e PimVif. PIM-specific virtual (network) interface that is used fondimg and receiving PIM control
packets.

e PimScopeZoneTablethe table that contains information about scoped zones.
e PimMrt: PIM-specific multicast routing table.

e PimBsr: the PIM-Bootstrap mechanism unit.

e RpTable: the table with the PIM-SM RP information.

e PimMribTable: the table with the MRIB information.

e PimConfig: contains PIM-specific configuration.

Those components are described in details in Section 2.nfermation about the interaction between
the PIM-SM and other modules see [1].

2 Components Description

2.1 PimNode Description

PimNode is a representation of a single PIM-SM routing uait).(a virtual PIM-SM router). Typically,
there would be a single PimNode per PIM-SM router. Howevesome cases a PIM-SM router may have
more than one routing unit. For example, it could have oneNeide for IPv4, and another one for IPv6
multicast routing. Further, if we want to run PIM-SM in a silaion environment, each PIM-SM router
within that simulation will be represented by a single Pindieo

From a developer’s point of view, PimNode contains all treestelated to the PIM-SM routing unit,
and exports the front-end interface to interact with that. uror example, PimNode contains the methods
to start/stop or configure PIM-SM, to send/receive PIM aanpackets to/from the routing unit, or to get
protocol-related statistics. Those methods are describé following files:

e pi n pi m_node. hh
e | i bproto/proto_node. hh

e |ibproto/proto_unit.hh

PimNode itself does not implement the mechanisms to coneateniwith other routing unitse(g.,to
send or receive control packets to/from the network), oreidgym other PIM-independent operations such
as installing multicast forwarding entries in the multiclswarding engine. Those mechanisms are outside
the scope of PimNode, and must be implemented separately.

PimNode contains several pure virtual methoglg(j oi n_rul ti cast _group() is used to join a
multicast group on an interface) that must be implemented btiass that inherits PimNode. For example,
XrIPimNode is a class that uses PimNode as a base classfiitie uses XRL-based communication
mechanisms between PimNode and other XORP components stioh lIFEA and MLD/IGMP modules.

By default, PimNode is disabled; therefore, on startup istine enabled explicitly.

2.2 PimVif Description

PimVif is a PIM-specific virtual (network) interface that issed for sending and receiving PIM control
packets. It includes the methods for processing and comgd3iM control messages, as well as various
state per interfacee(g.,the information about PIM-SM neighbors).

Typically, there would be one PimVif per network interfaaeels as physical interface, tunnel, or the
loopback interface. In addition, there would be one speRialVif virtual interface: the PIM Register
virtual interface that is used for sending and receiving PRBgister messages. Not all virtual interfaces
are used by PIM; for example, all interfaces that are notigadt capable, and the loopback interface are
ignored for multicast routing.

Typically, from developer’s point of view, all interactiomith PimVif would be through PimNod&

The public interface for PimVif contains the methods to rpatate a virtual (network) interface. Those
methods are to start/stop/enable/disable a virtual etetfand to configure it. The methods are described
in the following files:

e pi M pi myvif.hh
e |libxorp/vif.hh

e | ibproto/proto_unit.hh

PimVif contains state such as PIM Hello related informatiand protocol-related statistics for this
virtual interface. Also, all the PIM-specific methods forrgiag or constructing PIM control messages
when a PIM packet is received or sent are implemented as aeeihd?imVif. The parsing or construc-
tion of each message type is implemented in a separate fite avitame prefix opi m prot o. For
example,pi m_prot o_cand_r p_adv. cc implements sending and receiving of PIM Candidate-RP-
Advertisement messages. The handing of other messageisyipggdemented in similarly named files.

By default, each PimVif is disabled; therefore, on startupust be enabled explicitly.

2.3 PimScopeZoneTable Description

PimScopeZoneTable is a table that contains informatiomtabcoped zones. There is one such table per
PimNode. This table is used to check whether various contesdsages are allowed to be sent or accepted
a specific network interface

By default, PimScopeZoneTable is emptg;, there are no scoping zone restrictions.

2.4 PimMrt Description

PimMrt is the PIM-specific multicast routing table. It is tbentral and most important component: its state
is modified by the PIM control messages, and the output oftitesmulticast forwarding state information
that is installed in the multicast forwarding engine.

The multicast routing table is composed of four tables. Hablke contains PimMre entries (described
in file pi M pi m nre. hh):

For simplicity, currently (April 2005) there are few ocaass when XrlPimNode uses direct access to PimVif.
2Note that in the current implementation (April 2005) the BitnpeZoneTable is used only for PIM Bootstrap messagekeln t
future, the scope zone information would be used for othetrobmessages as well.

e (*,*,RP) multicast routing table. This table contains ai*(RP) multicast routing entries. For
simplicity of implementation, this table contains an (R®) entry for each RP in the RpTable, even
if no (*,*,RP) Join messages for that RP were received. Témior for this table returns the entries
ordered by their RP address: the numerically smallest addsefirst. Note that each PimMre entry
in this table has the source address set to the RP addrestheagdoup address set to zeia(
| PvX: : ZER(()).

¢ (*,G) multicast routing table. This table contains all (J,@ulticast routing entries. Each entry in that
table contains a pointer to the corresponding (*,*,RP)yefar that group, or NULL if the group has
no RP yet. The iterator for this table returns the entriegi@d by their group address: the numerically
smallest addresses first. Note that each PimMre entry irtable has the source address set to zero
(e, PvX: : ZER(()).

¢ (S,G) multicast routing table. This table contains all (Sp@ulticast routing entries. Each entry in
that table contains a pointer to the corresponding (*,Gjyefiar that group, or NULL if there is no
(*,G) entry. It also contains a pointer to the correspondi&gs,rpt) entry if such entry exists (seen
below). There are two iterators for this table: an iteratorthe entries ordered by the numerically
smallest source address first, and an iterator for the erdraered by the numerically smallest group
address first.

e (S,G,rpt) multicast routing table. This table containg |G, rpt) multicast routing entries. Each entry
in that table contains a pointer to the corresponding (*,@pyefor that group, or NULL if there is
no (*,G) entry. It also contains a pointer to the correspogdiS,G) entry if such entry exists. There
are two iterators for this table: an iterator for the entiedered by the numerically smallest source
address first, and an iterator for the entries ordered byuheerically smallest group address first.

For simplicity of implementation, currently (April 2005)r®BMrt contains one more table: PimMrtMfc
PIM-specific table with Multicast Forwarding Cache (Pimyntries (in the future, this table may be
moved out of PimMrt to PimNode). This table contains all iistthat have been installed in the multicast
forwarding table in the multicast forwarding engine. Cathg (April 2005), those entries are source-group-
specific, and are installed “on-demand&(, only if there is an active source for some multicast group). |
the future, group-specific entries may be supported as asduming that that multicast forwarding engine
supports (*,G) multicast forwarding entries).

In addition to the above tables, PimMrt contains a mechari@ntracking dependencies among the
PimMre and PimMfc entries, as well as the PimMre and PimMfgetielencies on external state such as
the RP set or the MRIB information. For example, if the MRIB &ospecific network prefix changes, then
all PimMre and PimMfc entries that depend on that networkipraust be updated accordingly. A single
change may trigger a number of operations that must be peefibon a number of entries, therefore we
need to carefully track the state dependency. Below is a samnof some of the events that may trigger
actions to process entries in PimMrt:

e RP-Set changee.q.,if there is any change to the RP-Set that affects the grotpRPanapping.

e MRIB change: any change in the underlying unicast routirg #éffects the Reverse-Path Forwarding
information toward an RP or a source.

3(** RP) entry is an entry that matches all multicast grothgt use one specific RP.

e Next-Hop PIM neighbor change: any change to the set of Plightmirs that may affect the Next-Hop
PIM Router toward a destination.

e Reception of a PIM Join/Prune message.

e Reception of a PIM Assert message.

e Add/deletion of a local multicast member.

e Change in the Designated Router on an interface.

e Change in the IP address or IP subnet on an interface.
e Start or stop a virtual interface.

e Addition or deletion of a PimMre entry.

A complete list of all input events that may trigger actionsiifilepi mf pi m_nre_track_state. hh
(see tha nput _state_t | NPUT_STATE * events).

In some cases, keeping track of the entries that need to begzed for a given input event is relatively
simple. For example, if the MRIB for a network prefix change®cessing all (S,G) PimMre entries that
might be affected can be done by using the source-first atefat the (S,G) multicast routing table, and
then iterating over all (S,G) PimMre entries whose souraress matches that network prefix. However,
in other cases we cannot use those table iterators. For éxaifnign RP is deleted, we need to process all
corresponding (*,G) entries that match to that RP, and tesiga them to a new RP. In that case, to keep
track of the dependencies between the RP and the (*,G) sntidéeh RP entry in the RpTable contains a list
of PimMre entries that match to that RP. Similarly, each PimBitry (an entry that contains information
about a PIM neighbor) contains a list of all PimMre entrieatthise that PIM neighbor as the Next-Hop
Router toward the RP or the source.

The dependency tracking mechanism needs to solve anotbigepr. for each input event, find all the
operations and their ordering that need to be performed ore s the PimMre and PimMfc entries. The
solution chosen to solve this problem is to enumerate alliplesinput events and output operations, and to
compute in advance a table. Lookup to this table for a giveantievent returns a list of the ordered output
operations that need to be performed for that event.

If there are just few input events and output operationsjghirbe possible to create such table manually.
However, there are tens of input and output events, thexréfos not feasible to crate manually such table.
The solution is on startup to automatically compute thisetdlased on a set of rules about the various state
dependencies as defined in the PIM-SM spec. Those stateddapmes are derived from the macros in the
PIM-SM protocol specification. For example, the specif@atiocument contains macros like:

piminclude(S G =
{ all interfaces |I such that:
((I_amDR(I) AND lost_assert(S,G1) == FALSE)
OR AssertWnner(S,G1l) == nme)
AND | ocal _receiver_include(S,Gl) }

Then, the corresponding state dependency rule in the ingsigation is:

voi d
Pi mteTrackState::track_state_piminclude_sg(list<PinmfeActi on> action_|ist)
{

track_state_i_amdr(action_list);

track_state | ost_assert_sg(action_|ist);

track_state_assert_w nner_sg(action_list);

track_state_ | ocal _receiver_include_sg(action_|ist);

In other words, if the value of ost _assert (S, G 1) for example changes, then the value of
pi minclude(S, G must be recomputed. However, we may have some state depgnddes for
| ost _assert (S, G 1) itself, hence if we combine all state dependency rules, weregresent the de-
pendencies with a collection of uni-directional graphsef ito create the list of actions for each input entry,
we need to consider all paths from the graph node for thatt iepury to all reachable output actions. The
uni-directional graphs creation and the extraction of this lof actions for each input entry is performed
once on startup. The result lists are saved internally é8ionMrt, and used during processing of input
actions.

Finally, the last major problem that the dependency tragkiechanism needs to solve is how to process
a large number of entries triggered by a single event witlstpjtping processing of other components in
the router €.9.,receiving PIM control packets, or responding to a command lsgthe CLI). This problem
requires attention because the implementation is sitgesatied, therefore if processing a single event takes
too long, the rest of the pending events may be processedt®elg.,if the periodic sending of PIM Hello
messages is delayed for too long, the PIM neighbors may tibtags router). The solution of this problem
is to voluntarily suspend the processing if it is taking tond, then save the necessary state to continue the
processing sometime later, and finally return control tocthrgrol loop which handles all events. Typically,
the processing of some event may take too long if there igga lanmber of PimMre or PimMrt entries that
need to be processed (for example, thousands of (*,G) ertribe RP for those entries changes). In that
case, we use “time-slices” to compute how long has takenribeepsing so far. In the above example, we
check the processing time after we process each (*,G) eifitttye elapsed time is above a threshoddg(,
100ms), we save the appropriate state to continue the giogester €.g.,in the above example we save
the address of the next multicast group to process).

All dependency tracking processing and time-slicing usegM?eTask entries to keep the appropriate
state. There is a single list of PimMreTask entries per Pidéjand the list is FIFO: new tasks are added to
the end of the lists, and the task at the front of the list ic@ssed until it is completee.@.,within one or
several time-slices).

2.5 PimBsr Description

PimBsr is the PIM-Bootstrap mechanism unit. It implemehtsBootstrap mechanism as described in [3].
There is one PimBsr unit per PimNode. The main purpose of ith&8# is to run the Bootstrap mechanism,
and to update accordingly the RpTable with the current RP-Se

The data contained in PimBsr is organized as described befamBsr keeps three lists of BsrZone
entries: one list for the active BSR zones, a second listdbatains information about expiring Candidate-
RPs for group prefixes that the lastest Bootstrap messageotlidontain information about, and a third
list for the locally configured Cand-BSR zones and/or Cafdi#ormation. On startup, the active and

expire BSR zone lists are empty. If the node is configured aaralidate-BSR and/or a Candidate-RP, this
information will be added to the third list; otherwise thigt s also empty.

Each scope zone is identified by a scope zone ID, and a flag. adheffirue, indicates that this is scoped
zone, otherwise the zone is non-scoped. The scope zonehb ietwork prefix address that corresponds to
that zone. By definition, scoped zones cannot overlap, fitverd is not permitted to configure the PimBsr
with overlapping scoped zones and/or to accept Bootstragsages with scoped zones that overlap. If the
zone is non-scoped, then the scope zone ID is set to the asilti@se prefix addresise(, 224.0.0.0/4 for
IPv4 or FF00::/8 for IPv6).

Each BsrZone contains information about the current BSRHat zone, and a list of BsrGroupPrefix
entries for that zone. Each BsrGroupPrefix corresponds tolticast group prefix within that zone that has
Candidate-RPs, and contains the list of BsrRp entries fan €andidate-RP for that prefix.

All information from the Bootstrap and Candidate-RP meesag kept in the above data structures.
Further, those structures are used to keep various timelsauto timeout Candidate RPs or to timeout
the current BSR. If the RP-Set is changed after receiving atd@p message or after a timeout of an
Candidate-RP, then the RpTable is updated accordingly.

2.6 RpTable Description

RpTable is the table that contains the current RP-Set. Tikeme table per PimNode. This table is updated
by PimBsr if the RP-Set is propagated through the Bootstraphanism, or by PimConfig if the RP-Set is
configured manually.

RpTable contains a list of all RPs with one PimRp entry per BPhpulticast group prefix. To compute
the RP for a given group, we just scan the whole list to find tke Rpically, the list of RPs would be
relatively short, therefore for simplicity we scan the wdbst. If the overhead becomes too large, then the
scan can be optimized by grouping the Candidate-RPs for g@aelp prefix, and by considering only the
Candidate-RPs with the highest priority.

If the RP-Set is modified, then all affected PimMre and PimMiftries must be updated accordingly.
For this reason, each PimRp entry contains lists of the Piendhd PimMfc entries that map to that RP. If
the RP is removed, then each of the entries on those listsnapped to the new RP for its group. This is
achieved by scheduling a PimMreTask by the PimMrt, thatqeeré the appropriate dependency actions for
each entry.

The RpTable may contain one special PimRp entry with an RReadaf all-zeroes.g.,| PvX: : ZERQ()).
This entry is used to keep the lists of all PimMre and PimMftries that have no RP yet. If a new RP is
added to the RpTable, then all entries that have no RP yetracessed to find if some of them may map to
this new RP. Those who do map to the new RP are moved to themjgieolist for that RP.

2.7 PimMribTable Description

PimMribTable is the table with the MRIB information. The MRIs used to compute the Reverse-Path
Forwarding information toward the RPs (needed by the (£),R*,G) and (S,G,rpt) state), and toward each
active multicast sender (needed by the (S,G) state). Tfosnmation contains the next-hop router address
and the interface toward that router, the routing metrictiiednetric preference:

/1 Reverse-Path Forwarding information (MRl B payl oad entry)
class Mib {

| PvXNet _dest _prefix; /1 The destination prefix address

8

I PvX _next_hop_router_addr; // The address of the next-hop router

uintl16 t _next _hop_vif _index; /1 The vif index to the next-hop router
uint32_t _nmetric_preference; /1 The metric preference to the

/] destination
uint32_t _metric; /1 The nmetric to the destination

}s

The MRIB information is obtained from the RIB module; if théBRchanges, the PimMribTable is
updated as well. Examples when the MRIB information may gkaare: the unicast routing changes the
next-hop router address toward a destination, local cordigun changes some of the routing preference
metrics, or local interface configuration changes the alrtoterface and/or the next-hop router toward a
destination.

An update to the PimMribTable may affect a number of PimMrd BimMfc entries in the PimMrt
table. The update of the affected entries is handled by therdiency-tracking and time-slice processing
mechanism implemented by the PimMrt table. Note that we daaed to link all PimMre and PimMfc
entries into lists of entries that depend on a particularyantthe PimMribTable. The reason is because the
dependency is implied by the network prefix address coveyethlentry in the PimMribTable, that overlaps
the RP or source address of a given PimMre or PimMfc entry.

2.7.1 MRIB Changes Update

In general, there are two mechanisms to inform the PIM-SMutedbout MRIB changes:

e Filtering at the PIM-SM moduleWhenever there are any changes about the MRIB informatiph ke
inside the RIB module, the RIB module informs the PIM-SM miedabout the changes. Then the
PIM-SM module processes those changes to find whether thaldvadfect in any way the current
multicast routing.

e Filtering at the RIB moduleThe PIM-SM module “registers” in advance with the RIB modab®ut
the particular destination addresses/prefixes it is istedeat, and only if the MRIB information about
any of those registered destinations is changed, the RIBilmadforms the PIM-SM module about
the change.

The basic difference between the above two methods is wheraave the complexity about the MRIB
changes: at the RIB side, or the PIM-SM side. Some otherrdiffees are:

o If we perform filtering at the PIM-SM module, and if the unitasuting is changing quite rapidly,
and if most of those changes do not affect the PIM-SM modhie, will add unnecessary overhead
to the communication from the RIB to the PIM-SM module.

e If we perform filtering at the RIB module, and if there is a kangumber of destinations the PIM-SM
module needs to be informed about, registering all of thestimhtions at the RIB may introduce an
“explosion” of communication from the RIB to the PIM-SM mddun case when there is a change
in the routing information about a large number of destorai

e If we perform filtering at the PIM-SM module, the implemeidatmay require the PIM-SM to keep
a local (simplified) copy of all the RIB information, theregoit may increase notably the memory
usage. This copy however can be used to perform the propgrarison and modification whenever
MRIB update is received from the RIB module.

9

It may be possible to use some hybrid methods of propagdim$/RIB changes from the RIB module
to the PIM-SM module, but based on the above comparison ihsékatfiltering at the PIM-SM module
is the simpler and more appropriate solution. Therefore,RlB module needs to inform the PIM-SM
module whenever the MRIB information for any destinatioefpris changed. The simplest solution for
the RIB module would be whenever any entry is changed, ther®Bule would “dump” all RPF entries.
This however may increase the communication overhead, aydocomplicate additionally the PIM-SM
module. A better solution would be if the RIB modules sendy atomic updates of the RPF information
to the PIM-SM module. For example, a single message woulthooall affected entriese.g.,a list of
MRIB_.ADD andMRIB_.DELETEcommands, and the particular ordering of those entriesdvepgcify also
the order the PIM-SM module should apply them.

2.8 PimConfig Description

PimConfig handles the PIM-specific configuratibnThis configuration is used to configure the following
units:

e PimVif: protocol version, Hello-related options and tinvatues, etc.

PimScopeZone table: add and delete information about dcopees.

e PimBsr: configure the local routing unit as a Candidate-B&R Gandidate-RP.

RpTable: add static RPs to the RP-Set.

A Modification History

e December 11, 2002: Version 0.1 completed.

e March 10, 2003: Updated to match XORP version 0.2 release; abebnup.
e June 9, 2003: Bump-up the version to 0.3, and the date.

e August 28, 2003: Bump-up the version to 0.4, and the date.

e November 6, 2003: Bump-up the version to 0.5, and the datebaef info about retrieving protocol-
related statistics; minor edits.

e July 8, 2004: Updated to match release 1.0. Bump-up theoretsil.0, and the date.

e January 27, 2005: Remove MFEA+MRIB-related text, becahseMFEA does not deal with the
MRIB information anymore.

e April 13, 2005: Bump-up the version to 1.1, and the date.

4Currently (April 2005), PimConfig is not implemented:; rathel state is kept inside PimNode instead.

10

References
[1] XORP Multicast Routing Design Architecture. XORP teah document. http://www.xorp.org/.

[2] Bill Fenner, Mark Handley, Hugh Holbrook, and Isidor Katlas. Protocol Independent Multicast -
Sparse Mode (PIM-SM): Protocol Specification (Revisethiternet Draft, draft-ietf-pim-sm-v2-new-
09.txt February 2004. Work in progress.

[3] Bill Fenner, Mark Handley, Roger Kermode, and David ®ralBootstrap Router (BSR) Mechanism
for PIM Sparse Modelnternet Draft, draft-ietf-pim-sm-bsr-03.txEebruary 2003. Work in progress.

11

