XORP Forwarding Engine Abstraction
Version 1.1

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

April 13, 2005

1 Introduction

The role of the Forwarding Engine Abstraction (FEA) in XORPt@ provide a uniform interface to the
underlying forwarding engine. It shields XORP processemifconcerns over variations between platforms.
As a result, XORP processes need not be concerned whetheutkeis comprised of a single machine, or
cluster of machines; or whether the network interfaces ianpls, like a PCI Ethernet adapter, or are smart
and have processing resources, like an Intel IXP cards.

The FEA performs four distinct rolesnterface management, forwarding table management, raw packet
I/0, and TCP/UDP socket 1/0. Those are described briefly in Section 1.1, Section 1.2ti&e&.3, and
Section 1.4 respectively. Section 2 presents the desigingpieémentation of the FEA components. FEA
status summary is in Section 3.

In a standard XORP system, the Multicast Forwarding Engibstraction (MFEA) is part of the FEA.
The MFEA is conceptually distinct from FEA and is used for timalst-specific abstraction of the underlying
system. Combining the MFEA with the FEA reduces the load ensystem. For information about the
MFEA architecture, see [1].

1.1 Interface Management

In the normal course of interaction, the RouterManager gseds the principal source of interface con-
figuration requests to the FEA. The RouterManager constiihet interface configuration from the router
configuration files and the input it receives at the commamel liThe type of requests the RouterManager
sends to the FEA are to enable interfaces, create virtuadfades, set interface MTU's, and so forth. The
FEA interprets and executes these requests in a mannerpajgpedor the underlying forwarding plane.

Processes can register with the FEA to be notified of chamgiegarface configuration. The registered
processes are notified of changes, and may query the FEA gadbipt of an update notification to deter-
mine the change that occurred. These notifications are plynod interest to routing protocols since these
need to know what the state of each interface is at a given time

Both of the above interactions are depicted in Figure 1.

Configuration
Files

RouterManager Routing Process
Confi ti ' Confi ti ' ! Confi ti '
ontiguratio \ ontiguratio \ ontiguratio \
| _ _L_de_ate . |
Requests , Queries p Notification| Queries /
/ / /

FEA Interface Manager

Figure 1: FEA Interface Management interaction with oth@R® processes

1.2 Forwarding Table Management

The FEA primarily receives forwarding table configuratioriormation from the RIB process. The RIB
arbitrates between the routes proposed by the differetingpprocesses, and propagates the results into
the FEA's forwarding table interface. The FEA accepts retgiéo insert and remove routing entries and
propagates the necessary changes into the forwarding. pldneeFEA also supports queries on the current
contents of the forwarding table. Finally, processes cgister with the FEA to receive update notifications
about changes to the forwarding table.

1.3 Raw Packet |/O

Routing protocols, such as OSPF, need to be able to send egida@ackets on specific interfaces in the
forwarding plane in order to exchange routing informatiod & determine the liveness of connected paths.
Since the forwarding plane may be distributed across meltipachines, these routing protocols delegate
the 1/O operations on these packets to the FEA. The FEA stgppending and receiving raw packets on
specific interfaces.

The transmission of raw packets through the FEA is straogieird, the routing process simply hands
the FEA a raw packet and indicates which interface it shoelgdnt on. The reception of raw packets is
handled through a register-notify interface where theinguprocess registers which types of packets on
which interfaces it is interested.

1.4 TCP/UDP Socket I/0

Routing protocols, such as BGP or RIP, need to be able to sehdceaeive TCP or UDP packets to/from a
specific IP address in order to establish peering conngcawid to exchange routing information. Similar

to the raw packet 1/0O delegation, the FEA can be used to delélgja TCP/UDP socket I/O operations.
The handling of TCP or UDP operations is done by simply extendhe UNIX TCP/UDP socket
interface such that all relevant socket operations have ¥&it-end interface.

2 Design and Implementation

2.1 Overview

The FEA fulfills four discrete roles: Interface Managemdfdywarding Table Management, Raw Packet
I/0, and TCP/UDP Socket I/0. The Interface Management ama/&oling Table Management roles follow
a similar design pattern since both relate to the settinggatiihg of configuration state. The Raw Packet
I/O and TCP/UDP Socket I/O have little in common with the ottveo roles.

The Interface Management and Forwarding Table Managenoésd use transactions for setting con-
figuration state. The transactions are a collection of gedupperations that are queued until committed or
aborted. Transactions provide atomic updates to the faliwarplane, which has the virtue of ensuring a
consistent state at any particular instant of time. In aoigliforwarding plane updates may incur per update
costs, and grouping operations may help to reduce theseieQué the configuration state happen on the
immediate state, and are independent of any transactiahart in progress.

The FEA, as with other XORP processes, uses the XRL mechdnismter-process communication
and each role of the FEA is represented by a distinct XRLfater The Interface Management, Raw Packet
I/0 and TCP/UDP Socket I/O roles support the notion of ciethiat notified when event occur and client
processes are expected to implement known interfaces. EASXRL and FEA XRL client interfaces are
shown in Table 1.

| Role | XRL Interface file | Client XRL Interface
Interface Management fealfrmgr.xif feaifrmgrclient.xif
Forwarding Table Managementr edi st .t ransacti on{4, 6}.xif | feafib.xif
Raw Packet I/0 fea_rawpkt {4, 6}. xi f fearawdkt{4,6}client.xif
TCP/UDP Socket I/0 socket {4, 6}. xi f socket {4, 6}.user. xi f

Table 1: FEA XRL Interfaces (defined 8XORP/ xr| / t arget/fea. t gt)

The XRL handling code is found i8XORP/ f ea/ xr| t arget. {hh, cc}. Each XRL interface is
handled by an XRL-aware helper class. The helper class staahels the semantics of the implementation,
and maps errors and responses to the appropriate XRL forhesh@lper classes and their relations to the
interfaces are depicted in Figure 2.

S8sSse|d Y34 0] uone|al Ul sadeualul JYX 2 ainbi4

1

Interface Event =
Observer

=

1

FIB Event =
Observer

—

Raw Packet Event
Observer

TCP/UDP Socket
Observer

XrllnterfaceManager
fea/xrl_ifmanager.h

XrlFeaTarget
fea/xrl_target.hh

IfMngrI ReplicatorManager

Ibfeaclient/ifmgr_xrl_replicator.h

XrlFtiTransactionManager
fea/xrl_ffi.hh

XrIRawSocket4M anager

fea/xrl_rawsock{4,6}.hh

- L ___]
Interface
Managemen
- L]
Forwarding Tabl»%
- L]
Managemen
B p——— Raw Packet I/O|::D:|

XrlSocketServer

fea/xrl_socket_server.h

<----fr---1 TCP/UDP Socket I/0

+ H T

2.2 Interface Management

To succinctly explain the interface management classeawcthey interact we first describe the repre-
sentation of interface configuration state. Interface goméition state is held withihf Tr ee class. The

| f Tr ee structure is used and manipulated by all of the the interfnagagement classes. TheTr ee
class is a container of interface state information orgathin a hierarchy:

| f Tr ee contains:

| f Treel nt er f ace physical interface representation, contains:

I f TreeVif virtual (logical) interface representation, contains:
| f Tr eeAddr 4 Interface IPv4 address and related attributes.
| f Tr eeAddr 6 Interface IPv6 address and related attributes.

Each item in the IfTree hierarchy is derived frani Treeltem | f Treel t emis a base class to
track the state of a configurable item. Items may be in onewfdtatesCREATED, DELETED, CHANGED,
NO_CHANCGE. For example, if an item is added to the tree it will be in@REATEDstate. The IfTreeltem::finalizetate()
method places the item in tiO_CHANGE state and items marked BELETED are actually removed at this
time.

The state labeling associated with Tr eel t emadds a small degree of complexity to theTr ee
classes. However, it allows for one entity to manipulaterderface configuration tree and pass it to another
entity which can immediately determine the changes fronstate labels.

The interface management functionality of the FEA is repmésd by three interacting classé$.Conf i g,

I nt erf aceManager, | nterfaceTransacti onManager . The interaction of these classes is man-
aged by theXr | I nt er f aceManager , which takes external XRL requests and maps them onto the ap-
propriate operations. The interactions between theseadaand related classes are shown in Figure 3. The
Xrl I nterfaceManager is sufficiently aware of the semantics of the operations s gaack human
parseable error messages when operations fail.

Thel f Confi g class is an interface configurator, and contains plug-ingdéch supported forwarding
plane architecture to access, set, or monitor the interfele¢ed information. The functionality of the
I f Confi g is conceptually simple: it can push-down BhTr ee to the forwarding plane or pull-up the
live configuration state from the forwarding plane ad &fr ee.

Thel nt er f aceManager class contains thef Tr ee representing the live configuration, and a refer-
ence to the f Conf i g that should be used to perform the configuration. Theer f aceTr ansact i onManager
class holds and dispatches transactions. Each operatibim&i transaction operates on an item within a
| f Tr ee structure. Each transaction operates on a copy of the fiier ee and when the commit is made,
this structure is pushed down into théConf i g.

The process of configuration is asynchronous, and two pHasers can occur whilst a transaction is
being committed and operating onlaht r ee (e.g., because of a bad operation within a transaction), and er-
rors can occur when the configuration is pushed down to thegiaing plane €.g., the configuration has an
inconsistent number of interfaces). Errors in the first ptaas reported by tHent er f aceTr ansact i onManager .
Errors in the second phase are reported by th@onf i g through a helper class derived frarhConf i gEr r or Report er

The interface management role of the FEA is expected to repofiguration changes to other XORP
processes. Hence, thé Confi g class uses th¥r | | f Conf i gUpdat eReport er class to report con-
figuration changes.

KUeND JIvY] pue sasse|d Juswabeuey adelLIU| Y34 € 2inbiH

InterfaceTransactionManager

Confiiguration
IfTree

I nterfaceManager

Configuration Queryt|

Configuration
Commands

Configuration Info

IfConfig::pull_config()

Confiiguration
IfTree IfTree

IfConfig::push_config()

Confiiguration

IfConfig

XrllfManager

Xrl Requests

Xrl Requests

T Error Report

Simplel fConfigErrorReporter

Error Report

XrlResponses

XrIFeaTarget

=
Xrl Responses

Update Notification

| fConfigUpdateReporter

Xrl Update =
Notification

2.3 Forwarding Table Management

The Forwarding Table Management role propagates routeshatforwarding plane. The Forwarding Table
Management role does not shadow the forwarding informatidside of the forwarding plane itself; rather,
it relies on the RIB to do this. As a result, it is consideragitypler than the Interface Management role.

The classes interacting to provide the Forward Table Manageérole are: th&r | Ft i Tr ansact i onManager
class, a class that adapts requests and responses fronb$iet aiXr | FeaTar get methods that represent
the forwarding table management externally; Fité Tr ansact i onManager that builds and executes
transactions to configure the forwarding table; and drissthat understands how to program the forward-
ing plane.

TheFt i class provides the interface for accessing the forwardiagep It includes methods for adding
and removing routes, as well as resolving routes in the fating table. Modifications to theét i state
are only permitted during a configuration interval. The agunfation interval is started and stopped using
Fti::start_configurationandFti:endconfiguration. The particular access to the for-
warding plane is performed by plug-ins that are specific & fane. For example, to read the forwarding
table currently there are plug-ins that utilize the sy8gtifhechanismég., in case of FreeBSD) or the
netlink mechanismegg., in case of Linux). There are plug-ins to read, set or monherforwarding table
information at the granularity of one entry, or the wholeléab

TheFti Transact i onManager presents a transactional interface for configuringfhe instance.
Command classes exist for each possible modifier operatioth®Ft i instance. The~ti methods
start _configurati onandend_confi gurati onare called at the start and end of the transaction.

Note that the XRL interface for adding/deleting routes i st _t ransact i on{4, 6} which is a
generic XRL interface used by the RIB to redistribute routesiterested parties.

The Forwarding Table Management also provides interfacprficesses to register interest in receiving
updates whenever the Forwarding Information Base charigesFEA is observing all FIB changes within
the underlying system (including those triggered by the fihipulation by the FEA itself). Those changes
are propagated to all instances of iebCl i ent class (implemented withinthér | Ft i Tr ansact i onManager
class).

2.4 Raw Packet |/O

The Raw Packet I/O role of the FEA provides a means for XORBga®es to send and receive raw packets
on particular interfaces. This is an essential functiortesim a XORP router the forwarding plane may
reside on a different machine to the routing processes,\itbealistributed across several machines, or may
have custom network interfaces that require special progriag. Currently (April 2005), the FEA raw
packets 1/O is not well tested and is not used yet.

The FEA supports both IPv4 and IPv6 raw packets. The textbdiscribes the IPv4 implementation
and the IPv4-specific classes; the IPv6 implementatiommdasi except the class names contéimstead
of 4.

The raw packet interface is managed by ¥rd RawSocket 4Manager class. This manages a sin-
gle instance of &i | t er RawSocket 4. TheFi | t er RawSocket 4 encapsulates a raw socket and
allows raw IPv4 packets to be written and filters attachedaise raw packets as they are received. The
Xr | RawSocket 4Manager allows an arbitrary number of filters to be associated with dlctive raw
socket. The filters are each notified when a raw packet isvedaon the raw socket. The XrIRaw-
Socket4Manager allows other XORP processes to receiveefzagia XRL on the basis on filter conditions.

1The current implementation only works on single machine X¥d&warding planes

Currently (April 2005), the only implemented filter is the | Vi f | nput Fi | t er which allows processes
to receive raw packets on the basis of the receiving VIF. inciple, filters could be written to match on
any field within a packet and perform an action.

2.5 TCP/UDP Socket 1/0

Similar to the Raw Packet I/O (see Section 2.4), the FEA plexia means for XORP processes to perform
TCP or UDP socket operations and to send and receive TCP/@bkefs. This is an essential function

since in a XORP router the forwarding plane may reside onfardifit machine to the routing processes,
it may be distributed across several machines, or may hasterounetwork interfaces that require special
programming.

The TCP/UDP socket interface is managed byXhé Socket Ser ver class. This manages TCP and
UDP IPv4 and IPv6 sockets TheXr | Socket Ser ver performs the particular TCP/UDP socket opera-
tions on the underlying system (opening and closing a spbkad, send and receive, etc), and provides the
XRL front-end interface. Note that for simplicity some oéthocket XRL interface combines several system
socket operations in one atomic FEA operation. For exantipdssocket 4/ 0. 0/ t cp_open_bi nd XRL
interface creates a TCP socket that binds it to a specifi¢ émitress.

3 Status

There are two versions of the FERAea andf ea_dummry. Thef ea is a version of the FEA that contains
plug-ins to access the forwarding plane by using the folhgamechanisms:

e getifaddrs(3), sysctl(3), ioctl(3), Linux netlink(7) sockets andLinux /proc to obtain interface-specific
information.

e ioctl(3) andLinux netlink(7) sockets to set interface-specific information.

e BSD routing sockets andLinux netlink(7) sockets for observing changes in the interface-specific in-
formation.

e BSD routing sockets andLinux netlink(7) sockets to lookup a single forwarding entry in the forwarding
plane.

e sysctl(3) andLinux netlink(7) sockets to obtain the whole forwarding table from the forwardingrga

e BSD routing sockets andLinux netlink(7) sockets to set a single forwarding entry or the whole table
in the forwarding plane.

e BID routing sockets andLinux netlink(7) sockets to observe changes in the forwarding table.

In other words, currently (April 2005) tHeea supports FreeBSD, NetBSD, OpenBSD, MacOS X and
Linux (see file$XORP/ BUI LDNOTES about the specific OS versions the FEA has been tested on). In
addition, there is also support for the Click forwardingradboth kernel-space and user-space). The Click
support utilizes the above plug-in based architecture byiging the appropriate support to add or delete
routes for example to kernel or user-level Click.

2The current implementation only works on single machine Xd&warding planes

Thef ea_dumy is a substitute FEA and may be used for development testirnmppas. Thé ea_dumy
represents an idealized form of FEA, other FEA's may diffethieir responses due to architectural differ-
ences. Therefore processes that interact with the FEA gheghrd ea_dumny interactions as indicative,
but not definitive.

The FEA's are still a work in progress and no doubt have songe.bfiny contributions or bug fixes are
welcome.

References

[1] XORP Multicast Forwarding Engine Abstraction. XORPhaial document. http://www.xorp.org/.

