Source: ../../libxorp/ref_trie.hh
|
|
|
|
// -*- c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t -*-
// Copyright (c) 2001-2003 International Computer Science Institute
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software")
// to deal in the Software without restriction, subject to the conditions
// listed in the XORP LICENSE file. These conditions include: you must
// preserve this copyright notice, and you cannot mention the copyright
// holders in advertising related to the Software without their permission.
// The Software is provided WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED. This
// notice is a summary of the XORP LICENSE file; the license in that file is
// legally binding.
// $XORP: xorp/libxorp/ref_trie.hh,v 1.9 2003/03/15 02:37:59 pavlin Exp $
#ifndef __LIBXORP_REF_TRIE_HH__
#define __LIBXORP_REF_TRIE_HH__
#include "ipnet.hh"
// Macros
//#define VALIDATE_XORP_TRIE
//#define DEBUG_LOGGING
#include "debug.h"
#include "minitraits.hh"
#define NODE_DELETED 0x8000
#define NODE_REFS_MASK 0x7fff
/*
* This module implements a trie to support route lookups.
*
* The template should be invoked with two classes, the basetype "A"
* for the search Key (which is a subnet, IPNet<A>), and the Payload.
*/
template <class A, class Payload>
class RefTrie;
/**
* @short RefTrieNode definition
*
* RefTrieNode's are the elements of a RefTrie.
* Each node is associated to a Key and possibly a Payload.
* Nodes with a Payload ("full") can have 0, 1 or 2 children.
* Nodes without a Payload ("empty") can only be internal nodes,
* and MUST have 2 children (or they have no reason to exist).
*
* Children have a Key which is strictly contained in their
* parent's Key -- more precisely, they are in either the left
* or the right half of the parent's Key. The branch to which
* a child is attached (left or right) is defined accordingly.
*/
template <class A, class Payload>
class RefTrieNode {
public:
typedef IPNet<A> Key;
typedef typename MiniTraits<Payload>::NonConst PPayload;
/**
* Constructors
*/
RefTrieNode() : _up(0), _left(0), _right(0), _k(Key()), _p(0),
_references(0){}
RefTrieNode(const Key& key, const Payload& p, RefTrieNode* up = 0) :
_up(up), _left(0), _right(0), _k(key), _p(new PPayload(p)),
_references(0) {}
RefTrieNode(const Key& key, RefTrieNode* up = 0) :
_up(up), _left(0), _right(0), _k(key), _p(0), _references(0) {}
~RefTrieNode()
{
//assert that the node has been deleted and it's reference
//count is zero
assert((_references&(NODE_DELETED|NODE_REFS_MASK))==NODE_DELETED);
if (_p)
delete_payload(_p);
}
/**
* add a node to a subtree
* @return a pointer to the node.
*/
static RefTrieNode *insert(RefTrieNode **root,
const Key& key,
const Payload& p,
bool& replaced);
/**
* erase current node, replumb. Returns the new root.
*/
RefTrieNode *erase();
/**
* main search routine. Given a key, returns a node.
*/
RefTrieNode *find(const Key& key) ;
const RefTrieNode *const_find(const Key& key) const {
return const_cast<RefTrieNode*>(this)->find(key);
}
/**
* aux search routine.
* Given a key, returns a subtree contained in the key, irrespective
* of the presence of a payload in the node.
*/
RefTrieNode *find_subtree(const Key &key);
/**
* Given a key, find the node with that key and a payload.
* If the next doesn't exist or does not have a payload, find
* the next node in the iterator sequence. XXX check the description.
*/
RefTrieNode* lower_bound(const Key &key);
bool has_payload() const { return _p != NULL; }
bool has_active_payload() const
{
return ((_p != NULL) && ((_references & NODE_DELETED) == 0));
}
const Payload &const_p() const { return *_p; }
Payload &p() { return *_p; }
void set_payload(const Payload& p) {
if (_p)
delete_payload(_p);
_p = new PPayload(p);
//clear the DELETED flag
_references ^= _references & NODE_DELETED;
}
uint32_t references() const {
return _references & NODE_REFS_MASK;
}
void incr_refcount() {
assert((_references & NODE_REFS_MASK) != NODE_REFS_MASK);
_references++;
//printf("++ _references = %d\n", _references & NODE_REFS_MASK);
}
void decr_refcount() {
assert((_references & NODE_REFS_MASK) > 0);
_references--;
//printf("-- _references = %d\n", _references & NODE_REFS_MASK);
}
bool deleted() const {
return ((_references & NODE_DELETED) != 0);
}
const Key &k() const { return _k; }
void print(int indent, const char *msg) const;
string str() const;
/**
* helper function to delete an entire subtree (including the
* root).
*/
void delete_subtree() {
if (_left)
_left->delete_subtree();
if (_right)
_right->delete_subtree();
//keep the destructor happy
_references = NODE_DELETED;
delete this; /* and we are gone too */
}
/**
* debugging, validates a node by checking pointers and Key invariants.
*/
void validate(const RefTrieNode *parent) const {
UNUSED(parent);
#ifdef VALIDATE_XORP_TRIE
if (_up != parent) {
fprintf(stderr, "bad parent _up %x vs %x",
(int)_up, (int)parent);
abort();
}
if (_up && _k.contains(_up->_k)) {
fprintf(stderr, "bad subnet order");
abort();
}
if (_p == NULL && (!_left || !_right)) {
fprintf(stderr, "useless internal node");
abort();
}
if (_left)
_left->validate(this);
if (_right)
_right->validate(this);
#endif
}
/**
* helper methods for iterators.
* Visit order: start from the leaves and then go up.
* begin() moves to the first node we want to explore, which is
* the leftmost node in the subtree.
* next() finds the 'next' node in the visit order.
* Invariant for next(): being on _cur means that we have visited its
* subtrees (and the node itself, of course, which is the current one).
*/
bool is_left() const { return _up && this == _up->_left; }
RefTrieNode *leftmost() {
RefTrieNode *n = this;
while (n->_left || n->_right)
n = (n->_left ? n->_left : n->_right);
return n;
}
RefTrieNode *begin() {
return leftmost();
}
RefTrieNode *next(const Key &root) {
RefTrieNode *n = this;
n->dump("next");
do {
bool was_left_child = n->is_left();
n = n->_up;
if (n == NULL) // cannot backtrack,
return NULL; // we are done.
// backtrack one level, then explore the leftmost path
// on the right branch if not done already.
if (was_left_child && n->_right)
n = n->_right->leftmost();
if (!root.contains(n->_k)) // backtrack past root ?
return NULL;
} while (n->has_active_payload() == false);
// found a good node.
return n;
}
/**
* @return the boundaries ("lo" and "hi") of the largest range that
* contains 'a' and maps to the same route entry.
*
* Algorithm:
* <PRE>
* n = find(a);
* if we have no route (hence no default), provide a fake 0/0;
* set lo and hi to the boundaries of the current node.
*
* if n.is_a_leaf() we are done (results are the extremes of the entry)
* Otherwise: we are in an intermediate node, and a can be in positions
* 1..5 if the node has 2 children, or 1'..3' if it has 1 child.
*
* n: |---------------.----------------|
* a: 1 2 3 4 5
* |--X--| |--Y--|
*
* a: 1' 2' 3'
* |--X--|
*
* Behaviour is the following:
* case 1 and 1': lo already set, hi = (lowest address in X)-1
* case 2 and 2': set n = X and repeat
* case 3: lo = (highest addr in X)+1, hi = (lowest addr in Y)-1
* case 3': lo = (highest addr in X)+1, hi is already set
* case 4: set n = Y and repeat
* case 5: lo = (highest addr in Y)+1, hi is already set
* </PRE>
*/
void find_bounds(const A& a, A &lo, A &hi) const {
RefTrieNode def = RefTrieNode();
const RefTrieNode *n = const_find(Key(a, a.addr_bitlen()));
if (n == NULL) { // create a fake default entry
def._left = const_cast<RefTrieNode *>(this);
def._right = NULL;
n = &def;
}
lo = n->_k.masked_addr();
hi = n->_k.top_addr();
for (const RefTrieNode *prev = NULL; prev != n;) {
prev = n;
RefTrieNode *x = (n->_left ? n->_left : n->_right);
if (x == NULL)
break;
if (a < x->_k.masked_addr()) { // case 1 and 1'
hi = x->low();
--hi;
} else if (a <= x->_k.top_addr()) { // case 2 and 2'
n = x; // and continue
} else if (n->_left == NULL || n->_right == NULL) { // case 3'
lo = x->high();
++lo;
} else if (a < n->_right->_k.masked_addr()) { // case 3
lo = x->high();
++lo;
hi = n->_right->low();
--hi;
} else if (a <= n->_right->_k.top_addr()) { // case 4:
n = n->_right; // and continue
} else { // case 5:
lo = n->_right->high();
++lo;
}
}
//ensure destructor sanity check is happy
def._references |= NODE_DELETED;
}
/**
* @return the lowest address in a subtree which has a route.
* Search starting from left or right until a full node is found.
*/
A low() const {
const RefTrieNode *n = this;
while (!(n->has_active_payload())
&& (n->_left || n->_right))
n = (n->_left ? n->_left : n->_right);
return n->_k.masked_addr();
}
/**
* @return the highest address in a subtree which has a route.
* Search starting from right or left until a full node is found.
*/
A high() const {
const RefTrieNode *n = this;
while (!(n->has_active_payload())
&& (n->_right || n->_left))
n = (n->_right ? n->_right : n->_left);
return n->_k.top_addr();
}
private:
/* delete_payload is a separate method to allow specialization */
void delete_payload(Payload* p) {
delete p;
}
void dump(const char *msg) const {
#if 0
debug_msg(" %s %s %s\n",
msg,
_k.str().c_str(), _p ? "PL" : "[]");
debug_msg(" U %s\n",
_up ? _up->_k.str().c_str() : "NULL");
debug_msg(" L %s\n",
_left ? _left->_k.str().c_str() : "NULL");
debug_msg(" R %s\n",
_right ? _right->_k.str().c_str() : "NULL");
#endif
UNUSED(msg);
}
RefTrieNode *_up, *_left, *_right;
Key _k;
PPayload *_p;
uint32_t _references;
};
/**
* Iterator on a trie.
*
* _cur points to the current object, _root contains the search key for
* root of the subtree we want to scan. The iterator skips over empty
* nodes, and visits the subtree in depth-first, left-to-right order.
* This does not guarantees that keys returned are sorted by prefix length.
*/
template <class A, class Payload>
class RefTrieIterator {
public:
typedef IPNet<A> Key;
typedef RefTrieNode<A, Payload> Node;
/**
* Constructors
*/
RefTrieIterator()
{
_cur = NULL;
_trie = NULL;
}
/**
* constructor for exact searches: both the current node and the search
* key are taken from n, so the iterator will only loop once.
*/
RefTrieIterator(const RefTrie<A,Payload>* trie, Node *n)
{
_trie = trie;
_cur = n;
if (_cur)
_cur->incr_refcount();
if (n)
_root = n->k();
}
/**
* construct for subtree scanning: the root key is set explicitly,
* and the current node is set according to the search order.
*/
RefTrieIterator(const RefTrie<A,Payload>* trie, Node *n, const Key &k)
{
_trie = trie;
_root = k;
_cur = n ? n->begin() : NULL;
if (_cur)
_cur->incr_refcount();
}
RefTrieIterator(const RefTrieIterator& x)
{
//printf("copy constructor , new node: %p\n", x._cur);
_trie = x._trie;
_cur = x._cur;
_root = x._root;
if (_cur)
_cur->incr_refcount();
}
~RefTrieIterator()
{
if (_cur) {
_cur->decr_refcount();
if (_cur->deleted() && _cur->references()==0) {
//XXX uglyness alert.
//printf("erasing node %p from iterator destructor\n", _cur);
const_cast<RefTrie<A, Payload>*>(_trie)->
set_root(_cur->erase());
}
}
}
/**
* Postfix increment
*
* Updates position of iterator in tree.
* @return position of iterator before increment.
*/
RefTrieIterator operator ++(int) { // postfix
//printf("postfix iterator: node was %p\n", _cur);
RefTrieIterator x = *this;
next();
return x;
}
/**
* Prefix increment
*
* Updates position of iterator in tree.
* @return position of iterator after increment.
*/
RefTrieIterator& operator ++() { // prefix
next();
return *this;
}
void next() const
{
//printf("prefix iterator\n");
Node *oldnode = _cur;
_cur = _cur->next(_root);
if (_cur)
_cur->incr_refcount();
//cleanup if this reduces the reference count on a deleted
//node to zero
if (oldnode) {
oldnode->decr_refcount();
if (oldnode->deleted() && oldnode->references()==0) {
//XXX uglyness alert.
//printf("erasing node %p from prefix increment\n", oldnode);
const_cast<RefTrie<A, Payload>*>(_trie)->
set_root(oldnode->erase());
}
}
}
inline void force_valid() const
{
if (_cur && _cur->deleted())
next();
}
inline Node *cur() const { return _cur; }
bool operator==(const RefTrieIterator & x) const
{
force_valid();
x.force_valid();
return (_cur == x._cur);
}
bool operator!=(const RefTrieIterator & x) const
{
force_valid();
x.force_valid();
return (_cur != x._cur);
}
Payload & payload() {
/* Usage note: the node the iterator points at can be deleted.
If there is any possibility that the node might have been
deleted since the iterator was last examined, the user
should compare this iterator with end() to force the
iterator to move to the next undeleted node or move to
end() if there is no undeleted node after the node that was
deleted. */
/* Implementation node: We could have put a call to force_valid
here, but the force_valid can move the iterator to the end
of the trie, which would cause _cur to become NULL. Then
we'd have to assert here anyway. Doing it this way makes
it more likely that a failure to check will be noticed
early */
assert(!_cur->deleted());
return _cur->p();
};
const Key & key() const {
/* see payload() for usage note*/
assert(!_cur->deleted());
return _cur->k();
};
RefTrieIterator& operator=(const RefTrieIterator& x)
{
//printf("operator= , old node: %p new node: %p\n", _cur, x._cur);
Node *oldnode = _cur;
_trie = x._trie;
_cur = x._cur;
_root = x._root;
//need to increment before decrement, as the decrement might
//cause deleetion, which would be bad if the old Node was the
//same as the new Node.
if (_cur)
_cur->incr_refcount();
if (oldnode) {
oldnode->decr_refcount();
if (oldnode->deleted() && oldnode->references()==0) {
//XXX uglyness alert.
//printf("erasing node %p from iterator assignment\n", oldnode);
const_cast<RefTrie<A, Payload>*>(_trie)->
set_root(oldnode->erase());
}
}
return *this;
}
private:
mutable Node *_cur; /*this is mutable because const methods can
cause the iterator to move from a deleted
node to the first non-deleted node or
end. */
Key _root;
const RefTrie<A, Payload>* _trie;
};
/**
* The RefTrie itself
*
* The trie support insertion and deletion of Key,Payload pairs,
* and lookup by Key (which can be an address or a subnet).
*
* Additional methods are supported to provide access via iterators.
*/
template <class A, class Payload>
class RefTrie {
public:
typedef IPNet<A> Key;
typedef RefTrieIterator<A,Payload> iterator;
typedef RefTrieNode<A,Payload> Node;
/**
* stl map interface
*/
RefTrie() : _root(0), _payload_count(0) {}
~RefTrie() { delete_all_nodes(); }
void set_root(Node *root) {_root = root;}
/**
* insert a key,payload pair, returns an iterator
* to the newly inserted node.
* Prints a warning message if the new entry overwrites an
* existing full node.
*/
iterator insert(const Key & net, const Payload& p) {
bool replaced = false;
Node *out = Node::insert(&_root, net, p, replaced);
if (replaced) {
fprintf(stderr, "overwriting a full node"); //XXX
fprintf(stderr, "net %s\n", net.str().c_str());
} else {
_payload_count++;
}
#if 0
printf("out->references: %d\n", out->references());
if (out->deleted())
printf("node is deleted\n");
#endif
return iterator(this, out);
}
/**
* delete the node with the given key.
*/
void erase(const Key &k) { erase(find(k)); }
/**
* delete the node pointed by the iterator.
*/
void erase(iterator i) {
if (_root && i.cur() && i.cur()->has_active_payload()) {
_payload_count--;
//printf("explicit erase on node %p\n", i.cur());
_root = const_cast<Node *>(i.cur())->erase();
// XXX should invalidate i ?
}
}
/**
* given a key, returns an iterator to the entry with the
* longest matching prefix.
*/
iterator find(const Key &k) const {
return iterator(this, _root->find(k));
}
/**
* given an address, returns an iterator to the entry with the
* longest matching prefix.
*/
iterator find(const A& a) const {
return find(Key(a, a.addr_bitlen()));
}
iterator lower_bound(const Key &k) const {
#ifdef NOTDEF
iterator i = lookup_node(k);
if (i != end())
return i;
#endif
return iterator(this, _root->lower_bound(k));
}
iterator begin() const
{
return iterator(this,_root, IPNet<A>());
}
const iterator end() const
{
return iterator(const_cast<RefTrie<A,Payload>*>(this), 0);
}
void delete_all_nodes() {
if (_root)
_root->delete_subtree();
_root = NULL;
_payload_count = 0;
}
/**
* lookup a subnet, must return exact match if found, end() if not.
*
*/
iterator lookup_node(const Key & k) const {
Node *n = _root->find(k);
return (n && n->k() == k) ? iterator(this, n) : end();
}
/**
* returns an iterator to the subtree rooted at or below
* the key passed as parameter.
*/
iterator search_subtree(const Key &key) const {
return iterator(this, _root->find_subtree(key), key);
}
/**
* find_less_specific asks the question: if I were to add this
* net to the trie, what would be its parent node?
* net may or may not already be in the trie.
* Implemented as a find() with a less specific key.
*/
iterator find_less_specific(const Key &key) const {
Key x(key.masked_addr(), key.prefix_len() - 1);
return iterator(this, _root->find(x));
}
/**
* return the lower and higher address in the range that contains a
* and would map to the same route.
*/
void find_bounds(const A& a, A &lo, A &hi) const {
_root->find_bounds(a, lo, hi);
}
#if 0 // compatibility stuff, has to go
/*
* return the lower and higher address in the range that contains a
* and would map to the same route.
*/
A find_lower_bound(const A a) const {
A lo, hi;
_root->find_bounds(a, lo, hi);
return lo;
}
A find_higher_bound(const A a) const {
A lo, hi;
_root->find_bounds(a, lo, hi);
return hi;
}
#endif // compatibility
int route_count() const { return _payload_count; }
void print() const;
private:
void validate() {
if (_root)
_root->validate(NULL);
}
Node *_root;
int _payload_count;
};
/**
* add subnet/payload to the tree at *root.
*
* @return a pointer to the newly inserted node.
*/
template <class A, class Payload>
RefTrieNode<A, Payload> *
RefTrieNode<A, Payload>::insert(RefTrieNode **root,
const Key& x,
const Payload& p,
bool& replaced)
{
/*
* Loop until done in the following:
*
* If *root == NULL, create a new RefTrieNode containing x and we are DONE.
* Otherwise consider the possible cases of overlaps between the subnets
* in *root (call it y) and x (+ indicates the middle of the interval):
*
* y = (*root) .|===+===|
*
* x 0 .|---+---|
* x A |--| . .
* x B . . |--|
* x C . |-|.
* x D . .|-|
* x E |----------+----------|
* x F |----------+-----------|
*
* case 0: Same subnet. Store payload if *root if empty, replace otherwise.
* case A: allocate a new empty root, make old *root the right child,
* make a new node with x the left child. DONE.
* case B: allocate a new empty root, make old *root the left child,
* make a new node with x the right child. DONE.
* case C: repeat with root = &((*root)->left)
* case D: repeat with root = &((*root)->right)
* case E: *root = new node with x, old *root the right child, DONE.
* case F: *root = new node with x, old *root the left child, DONE.
*
* In all case, when we exit the loop, newroot contains the new value to
* be assigned to *root;
*/
RefTrieNode **oldroot = root; // do we need it ?
RefTrieNode *newroot = NULL, *parent = NULL, *me = NULL;
debug_msg("++ insert %s\n", x.str().c_str());
for (;;) {
newroot = *root;
if (newroot == NULL) {
me = newroot = new RefTrieNode(x, p, parent);
break;
}
parent = newroot->_up;
Key y = newroot->_k;
if (x == y) { /* case 0 */
debug_msg("case 0\n");
replaced = newroot->has_payload() & (!newroot->deleted());
newroot->set_payload(p);
me = newroot;
break;
}
// boundaries of x and y, and their midpoints.
A x_m = x.masked_addr() | ( ~(x.netmask()) >> 1 );
A y_m = y.masked_addr() | ( ~(y.netmask()) >> 1 );
A x_l = x.masked_addr();
A x_h = x.top_addr();
A y_l = y.masked_addr();
A y_h = y.top_addr();
if (x_h < y_l) { /* case A */
debug_msg("case A: |--x--| |--y--|\n");
Key k = Key::common_subnet(x, y);
newroot = new RefTrieNode(k, parent); // create new root
newroot->_right = *root; // old root goes right
newroot->_right->_up = newroot;
newroot->_left = me = new RefTrieNode(x, p, newroot);
break;
} else if (y_h < x_l) { /* case B */
debug_msg("case B: |--y--| |--x--|\n");
Key k = Key::common_subnet(x, y);
newroot = new RefTrieNode(k, parent); // create new root
newroot->_left = *root;
newroot->_left->_up = newroot;
newroot->_right = me = new RefTrieNode(x, p, newroot);
break;
} else if (x_l >= y_l && x_h <= y_m) { /* case C */
debug_msg("case C: |--x-.----|\n");
parent = *root;
root = &(newroot->_left);
} else if (x_l > y_m && x_h <= y_h) { /* case D */
debug_msg("case D: |----.-x--|\n");
parent = *root;
root = &(newroot->_right);
} else if (y_l > x_m && y_h <= x_h) { /* case E */
debug_msg("case E: |----.-Y--|\n");
newroot = me = new RefTrieNode(x, p, parent);
newroot->_right = *root;
newroot->_right->_up = newroot;
break;
} else if (y_l >= x_l && y_h <= x_m) { /* case F */
debug_msg("case F: |--Y-.----|\n");
newroot = me = new RefTrieNode(x, p, parent);
newroot->_left = *root;
newroot->_left->_up = newroot;
break;
} else
abort(); // impossible case in RefTrieNode::insert()
}
*root = newroot;
if (*oldroot)
(*oldroot)->validate(NULL);
// (*oldroot)->print(0, "");
return me;
}
/**
* Remove this node, cleanup useless internal nodes.
*
* @return a pointer to the root of the trie.
*/
template <class A, class Payload>
RefTrieNode<A, Payload> *
RefTrieNode<A, Payload>::erase()
{
RefTrieNode *me, *parent, *child;
if ((_references & NODE_REFS_MASK) > 0) {
_references |= NODE_DELETED;
me = this;
} else {
_references |= NODE_DELETED;
if (_p) {
delete_payload(_p);
_p = NULL;
}
debug_msg("++ erase %s\n", this->_k.str().c_str());
/*
* If the node ("me") exists, has no payload and at most one child,
* then it is a useless internal node which needs to be removed by
* linking the child to the parent. If the child is NULL, we need
* to repeat the process up.
*/
for (me = this; me && me->_p == NULL &&
(me->_left == NULL || me->_right == NULL); ) {
//me->dump("erase"); // debugging
// Find parent and the one possible child (both can be NULL).
parent = me->_up;
child = me->_left ? me->_left : me->_right;
if (child != NULL) // if the child exists, link it to
child->_up = parent; // its new parent
if (parent == NULL) // no parent, child becomes new root
parent = child;
else { // i have a parent, link my child to it (left or right)
if (parent->_left == me)
parent->_left = child;
else
parent->_right = child;
}
//if we're deleting an intermediate node, mark it as
//deleted to satisfy destructor sanity checks
if (me->has_payload()==false)
me->_references |= NODE_DELETED;
delete me; // nuke the node
me = parent;
}
}
// now navigate up to find and return the new root of the trie
for ( ; me && me->_up ; me = me->_up)
;
return me;
}
/**
* Finds the most specific entry in the subtree rooted at r
* that contains the desired key and has a Payload
*/
template <class A, class Payload>
RefTrieNode<A, Payload> *
RefTrieNode<A,Payload>::find(const Key &key)
{
RefTrieNode * cand = NULL;
RefTrieNode * r = this;
for ( ; r && r->_k.contains(key) ; ) {
if (r->_p && !r->deleted())
cand = r; // we have a candidate.
if (r->_left && r->_left->_k.contains(key))
r = r->_left;
else // should check that right contains(key), but
r = r->_right; // the loop condition will do it for us.
}
return cand;
}
/**
* See the comment in the class definition.
*/
template <class A, class Payload>
RefTrieNode<A, Payload> *
RefTrieNode<A,Payload>::lower_bound(const Key &key)
{
RefTrieNode * cand = NULL;
RefTrieNode * r = this;
//printf("lower bound: %s\n", key.str().c_str());
for ( ; r && r->_k.contains(key) ; ) {
cand = r; // any node is good, irrespective of payload.
if (r->_left && r->_left->_k.contains(key))
r = r->_left;
else // should check that right contains(key), but
r = r->_right; // the loop condition will do it for us.
}
if (cand == NULL)
cand = this;
if (cand->_k == key) { // we found an exact match
if (cand->_p) { // we also have a payload, so we are done.
// printf("exact match\n");
return cand;
} else { // no payload, skip to the next node in the
// entire tree (use a null Key as root)
// printf("exact match on empty node - calling next\n");
return cand->next(Key());
}
}
// printf("no exact match\n");
// No exact match exists.
// cand holds what would be the parent of the node, if it existed.
while (cand != NULL) {
// printf("cand = %s\n", cand->str().c_str());
if (cand->_left && (key < cand->_left->_k)) {
return cand->_left->leftmost();
}
if (cand->_right && (key < cand->_right->_k)) {
return cand->_right->leftmost();
}
cand = cand->_up;
}
return NULL;
}
/**
* Finds the subtree of key.
*/
template <class A, class Payload>
RefTrieNode<A, Payload> *
RefTrieNode<A,Payload>::find_subtree(const Key &key)
{
RefTrieNode *r = this;
RefTrieNode *cand = r && key.contains(r->_k) ? r : NULL;
for ( ; r && r->_k.contains(key) ; ) {
cand = r; // we have a candidate.
if (r->_left && r->_left->_k.contains(key))
r = r->_left;
else // should check that right contains(key), but
r = r->_right; // the loop condition will do it for us.
}
return cand;
}
template <class A, class Payload>
void
RefTrieNode<A,Payload>::print(int indent, const char *msg) const
{
#ifdef DEBUG_LOGGING
debug_msg_indent(indent);
if (this == NULL) {
debug_msg("%sNULL\n", msg);
return;
}
debug_msg("%skey: %s %s\n",
msg, _k.str().c_str(), _p ? "PL" : "[]");
debug_msg(" U: %s\n", _up ? _up->_k.str().c_str() : "NULL");
_left->print(indent+4, "L: ");
_right->print(indent+4, "R: ");
debug_msg_indent(0);
#endif /* DEBUG_LOGGING */
UNUSED(indent);
UNUSED(msg);
}
template <class A, class Payload>
string
RefTrieNode<A,Payload>::str() const
{
string s;
if (this == NULL) {
s = "NULL";
return s;
}
s = c_format("key: %s ", _k.str().c_str());
if (_p)
s += "PL";
else
s += "[]";
if ((_references & DELETE_NODE)!=0)
s += " *DEL*";
s += c_format("\n U: %s\n", _up ? _up->_k.str().c_str() : "NULL");
return s;
}
template <class A, class Payload>
void
RefTrie<A,Payload>::print() const
{
//this is called print - it should NOT use debug_msg!!!
printf("---- print trie ---\n");
_root->print(0, "");
iterator ti;
for (ti = begin() ; ti != end() ; ti++) {
printf("*** node: %-26s ",
ti.cur()->k().str().c_str());
if (ti.cur()->has_active_payload())
printf("PL\n");
else if (ti.cur()->has_payload())
printf("PL *DELETED* (%d refs)\n", ti.cur()->references());
else
printf("[]\n");
}
printf("---------------\n");
}
#endif // __LIBXORP_REF_TRIE_HH__
Generated by: pavlin on possum.icir.org on Mon Jun 9 13:23:43 2003, using kdoc 2.0a54+XORP. |