

Windows Sockets 2�Application Programming Interface



An Interface for Transparent Network Programming

Under Microsoft WindowsTM

Revision 2.0.56

Dec 23February 1, 19954

� EMBED Word.Picture.6  ���(

Winsock 2





Preliminary

Subject to Change Without Notice





� EMBED MSWordArt.2 \s ���







�







Disclaimer and Usage Restriction

�Microsoft, Intel, and JSB disclaim all warranties and liability for the use of this document and the information contained herein, and assume no responsibility for any errors which may appear in this document. Microsoft, Intel, and JSB make no warranty or license regarding the relationship of this document and the information contained herein to the intellectual property rights of any party. Microsoft, Intel, and JSB make no commitment to update the information contained herein.



This material is provided by Microsoft, Intel and JSB Corporations for use by persons and organizations who are participating in the Winsock Forum's efforts to define version 2 of the Winsock specification. Any other use is prohibited without specific permission.











�Table of Contents

� TOC \o "1-4" �1. Introduction	1� GOTOBUTTON _Toc312818167  � PAGEREF _Toc312818167 �Error! Bookmark not defined.1��

1.1 Intended Audience	� GOTOBUTTON _Toc312818168  � PAGEREF _Toc312818168 �1�6110269  � PAGEREF _Toc316110269 �1��

1.2 Status of This Specification	� GOTOBUTTON _Toc312818169  � PAGEREF _Toc312818169 �1�6110270  � PAGEREF _Toc316110270 �1��

1.3 Document Version Conventions	� GOTOBUTTON _Toc312818170  � PAGEREF _Toc312818170 �1�6110271  � PAGEREF _Toc316110271 �1��

1.4  New And/Or Different in Version 2.0.6	� GOTOBUTTON _Toc316110272  � PAGEREF _Toc316110272 �2��

2. Summary of New Concepts, Additions and Changes	� GOTOBUTTON _Toc312818171  � PAGEREF _Toc312818171 �3�6110273  � PAGEREF _Toc316110273 �3��

2.1 Simultaneous Access to Multiple Transport Protocols	� GOTOBUTTON _Toc312818172  � PAGEREF _Toc312818172 �3�6110274  � PAGEREF _Toc316110274 �3��

2.2 Backwards Compatibility For Winsock 1.1 Applications	� GOTOBUTTON _Toc31� GOTOBUTTON _Toc312818173  � PAGEREF _Toc312818173 �3��

2.3 Making Transport Protocols Available To Winsock	� GOTOBUTTON _Toc312818174  � PAGEREF _Toc312818174 �4��6110275  � PAGEREF _Toc316110275 �3��

2.3 Making Transport Protocols Available To Winsock	� GOTOBUTTON _Toc316110276  � PAGEREF _Toc316110276 �4��

2.3.1 Using Multiple Protocols	� GOTOBUTTON _Toc316110277  � PAGEREF _Toc316110277 �4��

2.3.2 Multiple Provider Restrictions on select()	� GOTOBUTTON _Toc316110278  � PAGEREF _Toc316110278 �5��

2.4 Protocol Independent Name Resolution	� GOTOBUTTON _Toc316110279  � PAGEREF _Toc316110279 �5��

2.5 Overlapped I/O and Event Objects	� GOTOBUTTON _Toc316110280  � PAGEREF _Toc316110280 �5��

2.5.1 Event Objects as an Underpinning for Completion Indication	� GOTOBUTTON _Toc316110281  � PAGEREF _Toc316110281 �6��

2.5.2 WSAOVERLAPPED Details	� GOTOBUTTON _Toc316110282  � PAGEREF _Toc316110282 �7��

2.6 Quality of Service	� GOTOBUTTON _Toc316110283  � PAGEREF _Toc316110283 �7��

2.6.1 The Flow Spec Structures	� GOTOBUTTON _Toc316110284  � PAGEREF _Toc316110284 �9��

2.6.2 Default Values	� GOTOBUTTON _Toc316110285  � PAGEREF _Toc316110285 �12��

2.7 Socket Groups	� GOTOBUTTON _Toc316110286  � PAGEREF _Toc316110286 �12��

2.8 Shared Sockets	� GOTOBUTTON _Toc316110287  � PAGEREF _Toc316110287 �13��

2.9 Enhanced Functionality During Connection Setup	� GOTOBUTTON _Toc316110288  � PAGEREF _Toc316110288 �13��

2.10 Extended Byte Order Conversion Routines	� GOTOBUTTON _Toc316110289  � PAGEREF _Toc316110289 �14��

2.11 Support for Scatter/Gather I/O	� GOTOBUTTON _Toc316110290  � PAGEREF _Toc316110290 �14��

2.12 Summary of New Socket Options	� GOTOBUTTON _Toc316110291  � PAGEREF _Toc316110291 �14��

2.13 Summary of New Socket Ioctl Opcodes	� GOTOBUTTON _Toc316110292  � PAGEREF _Toc316110292 �14��

2.14 Summary of New Functions	� GOTOBUTTON _Toc316110293  � PAGEREF _Toc316110293 �16��

3. SOCKET LIBRARY REFERENCE	� GOTOBUTTON _Toc316110294  � PAGEREF _Toc316110294 �17��

3.1 accept()	� GOTOBUTTON _Toc316110295  � PAGEREF _Toc316110295 �17��

3.2 bind()	� GOTOBUTTON _Toc316110296  � PAGEREF _Toc316110296 �19��

3.3 closesocket()	� GOTOBUTTON _Toc316110297  � PAGEREF _Toc316110297 �21��

3.4 connect()	� GOTOBUTTON _Toc316110298  � PAGEREF _Toc316110298 �23��

3.5 gethostbyaddr()	� GOTOBUTTON _Toc316110299  � PAGEREF _Toc316110299 �26��

3.6 gethostbyname()	� GOTOBUTTON _Toc316110300  � PAGEREF _Toc316110300 �28��

3.7 gethostname()	� GOTOBUTTON _Toc316110301  � PAGEREF _Toc316110301 �29��

3.8 getprotobyname()	� GOTOBUTTON _Toc316110302  � PAGEREF _Toc316110302 �30��

3.9 getprotobynumber()	� GOTOBUTTON _Toc316110303  � PAGEREF _Toc316110303 �32��

3.10 getservbyname()	� GOTOBUTTON _Toc316110304  � PAGEREF _Toc316110304 �33��

3.11 getservbyport()	� GOTOBUTTON _Toc316110305  � PAGEREF _Toc316110305 �35��

3.12 getpeername()	� GOTOBUTTON _Toc316110306  � PAGEREF _Toc316110306 �36��

3.13 getsockname()	� GOTOBUTTON _Toc316110307  � PAGEREF _Toc316110307 �37��

3.14 getsockopt()	� GOTOBUTTON _Toc316110308  � PAGEREF _Toc316110308 �39��

3.15 htonl()	� GOTOBUTTON _Toc316110309  � PAGEREF _Toc316110309 �44��

3.16 htons()	� GOTOBUTTON _Toc316110310  � PAGEREF _Toc316110310 �45��

3.17 inet_addr()	� GOTOBUTTON _Toc316110311  � PAGEREF _Toc316110311 �46��

3.18 inet_ntoa()	� GOTOBUTTON _Toc316110312  � PAGEREF _Toc316110312 �47��

3.19 ioctlsocket()	� GOTOBUTTON _Toc316110313  � PAGEREF _Toc316110313 �48��

3.20 listen()	� GOTOBUTTON _Toc316110314  � PAGEREF _Toc316110314 �50��

3.21 ntohl()	� GOTOBUTTON _Toc316110315  � PAGEREF _Toc316110315 �52��

3.22 ntohs()	� GOTOBUTTON _Toc316110316  � PAGEREF _Toc316110316 �53��

3.23 recv()	� GOTOBUTTON _Toc316110317  � PAGEREF _Toc316110317 �54��

3.24 recvfrom()	� GOTOBUTTON _Toc316110318  � PAGEREF _Toc316110318 �57��

3.25 select()	� GOTOBUTTON _Toc316110319  � PAGEREF _Toc316110319 �60��

3.26 send()	� GOTOBUTTON _Toc316110320  � PAGEREF _Toc316110320 �63��

3.27 sendto()	� GOTOBUTTON _Toc316110321  � PAGEREF _Toc316110321 �66��

3.28 setsockopt()	� GOTOBUTTON _Toc316110322  � PAGEREF _Toc316110322 �69��

3.29 shutdown()	� GOTOBUTTON _Toc316110323  � PAGEREF _Toc316110323 �73��

3.30 socket()	� GOTOBUTTON _Toc316110324  � PAGEREF _Toc316110324 �75��

3.31 WSAAccept()	� GOTOBUTTON _Toc316110325  � PAGEREF _Toc316110325 �77��

3.32 WSAAsyncGetHostByAddr()	� GOTOBUTTON _Toc316110326  � PAGEREF _Toc316110326 �82��

3.33 WSAAsyncGetHostByName()	� GOTOBUTTON _Toc316110327  � PAGEREF _Toc316110327 �85��

3.34 WSAAsyncGetProtoByName()	� GOTOBUTTON _Toc316110328  � PAGEREF _Toc316110328 �88��

3.35 WSAAsyncGetProtoByNumber()	� GOTOBUTTON _Toc316110329  � PAGEREF _Toc316110329 �91��

3.36 WSAAsyncGetServByName()	� GOTOBUTTON _Toc316110330  � PAGEREF _Toc316110330 �94��

3.37 WSAAsyncGetServByPort()	� GOTOBUTTON _Toc316110331  � PAGEREF _Toc316110331 �97��

3.38 WSAAsyncSelect()	� GOTOBUTTON _Toc316110332  � PAGEREF _Toc316110332 �100��

3.39 WSACancelAsyncRequest()	� GOTOBUTTON _Toc316110333  � PAGEREF _Toc316110333 �106��

3.40 WSACancelBlockingCall()	� GOTOBUTTON _Toc316110334  � PAGEREF _Toc316110334 �108��

3.41 WSACleanup()	� GOTOBUTTON _Toc316110335  � PAGEREF _Toc316110335 �110��

3.42 WSACloseEvent()	� GOTOBUTTON _Toc316110336  � PAGEREF _Toc316110336 �111��

3.43 WSAConnect()	� GOTOBUTTON _Toc316110337  � PAGEREF _Toc316110337 �112��

3.44 WSACreateEvent()	� GOTOBUTTON _Toc316110338  � PAGEREF _Toc316110338 �117��

3.45 WSADuplicateSocket()	� GOTOBUTTON _Toc316110339  � PAGEREF _Toc316110339 �118��

3.46 WSAEnumNetworkEvents()	� GOTOBUTTON _Toc316110340  � PAGEREF _Toc316110340 �120��

3.47 WSAEnumProtocols()	� GOTOBUTTON _Toc316110341  � PAGEREF _Toc316110341 �122��

3.48 WSAEventSelect()	� GOTOBUTTON _Toc316110342  � PAGEREF _Toc316110342 �126��

3.49 WSAGetLastError()	� GOTOBUTTON _Toc316110343  � PAGEREF _Toc316110343 �131��

3.50 WSAGetOverlappedResult()	� GOTOBUTTON _Toc316110344  � PAGEREF _Toc316110344 �132��

3.51 WSAGetQoSByName()	� GOTOBUTTON _Toc316110345  � PAGEREF _Toc316110345 �134��

3.52 WSAHtonl()	� GOTOBUTTON _Toc316110346  � PAGEREF _Toc316110346 �135��

3.53 WSAHtons()	� GOTOBUTTON _Toc316110347  � PAGEREF _Toc316110347 �136��

3.54 WSAIoctl()	� GOTOBUTTON _Toc316110348  � PAGEREF _Toc316110348 �137��

3.55 WASIsBlocking()	� GOTOBUTTON _Toc316110349  � PAGEREF _Toc316110349 �141��

3.55 WSANtohl()	� GOTOBUTTON _Toc316110350  � PAGEREF _Toc316110350 �142��

3.56 WSANtohs()	� GOTOBUTTON _Toc316110351  � PAGEREF _Toc316110351 �143��

3.57 WSARecv()	� GOTOBUTTON _Toc316110352  � PAGEREF _Toc316110352 �144��

3.58 WSARecvfrom()	� GOTOBUTTON _Toc316110353  � PAGEREF _Toc316110353 �149��

3.59 WSAResetEvent()	� GOTOBUTTON _Toc316110354  � PAGEREF _Toc316110354 �154��

3.60 WSASend()	� GOTOBUTTON _Toc316110355  � PAGEREF _Toc316110355 �155��

3.61 WSASendto()	� GOTOBUTTON _Toc316110356  � PAGEREF _Toc316110356 �160��

3.62 WSASetBlockingHook()	� GOTOBUTTON _Toc316110357  � PAGEREF _Toc316110357 �165��

3.63 WSASetEvent()	� GOTOBUTTON _Toc316110358  � PAGEREF _Toc316110358 �167��

3.64 WSASetLastError()	� GOTOBUTTON _Toc316110359  � PAGEREF _Toc316110359 �168��

3.65 WSASocket()	� GOTOBUTTON _Toc316110360  � PAGEREF _Toc316110360 �169��

3.66 WSAStartup()	� GOTOBUTTON _Toc316110361  � PAGEREF _Toc316110361 �172��

3.67 WSAUnhookBlockingHook()	� GOTOBUTTON _Toc316110362  � PAGEREF _Toc316110362 �176��

3.68 WSAWaitForMultipleEvents()	� GOTOBUTTON _Toc316110363  � PAGEREF _Toc316110363 �177��

Appendix A.  Error Codes and Header Files	� GOTOBUTTON _Toc316110364  � PAGEREF _Toc316110364 �179��

A.1 Error Codes	� GOTOBUTTON _Toc316110365  � PAGEREF _Toc316110365 �179��

A.2 Header Files	� GOTOBUTTON _Toc316110366  � PAGEREF _Toc316110366 �181��

A.2.1 Berkeley Header Files	� GOTOBUTTON _Toc316110367  � PAGEREF _Toc316110367 �181��

A.2.2 Winsock Header File - Winsock.h	� GOTOBUTTON _Toc316110368  � PAGEREF _Toc316110368 �182��

Appendix B.  Windows Sockets Introduction	� GOTOBUTTON _Toc316110369  � PAGEREF _Toc316110369 �187��

B.1 Berkeley Sockets	� GOTOBUTTON _Toc316110370  � PAGEREF _Toc316110370 �187��

B.2 Microsoft Windows and Windows-specific extensions	� GOTOBUTTON _Toc316110371  � PAGEREF _Toc316110371 �187��

B.3 PROGRAMMING WITH SOCKETS	� GOTOBUTTON _Toc316110372  � PAGEREF _Toc316110372 �187��

B.3.1 Winsock Installation Checking	� GOTOBUTTON _Toc316110373  � PAGEREF _Toc316110373 �187��

B.3.2 Sockets	� GOTOBUTTON _Toc316110374  � PAGEREF _Toc316110374 �187��

B.3.2.1 Socket Types	� GOTOBUTTON _Toc316110375  � PAGEREF _Toc316110375 �187��

B.3.2.2 Client-server model	� GOTOBUTTON _Toc316110376  � PAGEREF _Toc316110376 �188��

B.3.2.3 Out-of-band data	� GOTOBUTTON _Toc316110377  � PAGEREF _Toc316110377 �188��

B.3.2.4 Broadcasting	� GOTOBUTTON _Toc316110378  � PAGEREF _Toc316110378 �189��

B.3.3 Byte Ordering	� GOTOBUTTON _Toc316110379  � PAGEREF _Toc316110379 �189��

B.3.4 Socket Options	� GOTOBUTTON _Toc316110380  � PAGEREF _Toc316110380 �190��

B.3.5 Database Files	� GOTOBUTTON _Toc316110381  � PAGEREF _Toc316110381 �190��

B.3.6 Deviation from Berkeley Sockets	� GOTOBUTTON _Toc316110382  � PAGEREF _Toc316110382 �190��

B.3.6.1 socket data type and error values	� GOTOBUTTON _Toc316110383  � PAGEREF _Toc316110383 �190��

B.3.6.2 select() and FD_*	� GOTOBUTTON _Toc316110384  � PAGEREF _Toc316110384 �191��

B.3.6.3 Error codes - errno, h_errno & WSAGetLastError()	� GOTOBUTTON _Toc316110385  � PAGEREF _Toc316110385 �191��

B.3.6.4 Pointers	� GOTOBUTTON _Toc316110386  � PAGEREF _Toc316110386 �192��

B.3.6.5 Renamed functions	� GOTOBUTTON _Toc316110387  � PAGEREF _Toc316110387 �192��

B.3.6.6 Blocking routines & EINPROGRESS	� GOTOBUTTON _Toc316110388  � PAGEREF _Toc316110388 �192��

B.3.6.7 Maximum number of sockets supported	� GOTOBUTTON _Toc316110389  � PAGEREF _Toc316110389 �192��

B.3.6.8 Include files	� GOTOBUTTON _Toc316110390  � PAGEREF _Toc316110390 �193��

B.3.6.9 Return values on API failure	� GOTOBUTTON _Toc316110391  � PAGEREF _Toc316110391 �193��

B.3.6.10 Raw Sockets	� GOTOBUTTON _Toc316110392  � PAGEREF _Toc316110392 �193��

B.3.7 Winsock in Multithreaded Versions of Windows	� GOTOBUTTON _Toc316110393  � PAGEREF _Toc316110393 �193��

B.4  Socket Library Overview	� GOTOBUTTON _Toc316110394  � PAGEREF _Toc316110394 �194��

B.4.1 Socket Functions	� GOTOBUTTON _Toc316110395  � PAGEREF _Toc316110395 �194��

B.4.1.1 Blocking/Non blocking & Data Volatility	� GOTOBUTTON _Toc316110396  � PAGEREF _Toc316110396 �194��

B.4.2 Database Functions	� GOTOBUTTON _Toc316110397  � PAGEREF _Toc316110397 �195��

B.4.3 Microsoft Windows-specific Extension Functions	� GOTOBUTTON _Toc316110398  � PAGEREF _Toc316110398 �196��

B.4.3.1 Asynchronous select() Mechanism	� GOTOBUTTON _Toc316110399  � PAGEREF _Toc316110399 �198��

B.4.3.2 Asynchronous Database Routines	� GOTOBUTTON _Toc316110400  � PAGEREF _Toc316110400 �198��

B.4.3.3 Hooking Blocking Methods	� GOTOBUTTON _Toc316110401  � PAGEREF _Toc316110401 �198��

B.4.3.4 Error Handling	� GOTOBUTTON _Toc316110402  � PAGEREF _Toc316110402 �198��

B.4.3.5 Accessing Winsock DLL from an Intermediate DLL	� GOTOBUTTON _Toc316110403  � PAGEREF _Toc316110403 �199��

Appendix C.  Open Issues	� GOTOBUTTON _Toc316110404  � PAGEREF _Toc316110404 �200��

�

�1. Introduction

The Windows Sockets 2 specification is a superset of the widely deployed Windows Sockets 1.1 interface.  While maintaining full backwards compatibility it extends the Winsock interface in a number of areas including 

Access to protocols other than TCP/IP:  Winsock 2 allows an application to use the familiar socket interface to achieve simultaneous access to any number of installed transport protocols.

Protocol-independent name resolution facilities: Winsock 2 includes a standardized set of APIs for querying and working with the myriad of name resolution domains that exist today (e.g. DNS, SAP, X.500, etc.)

Overlapped I/O:  following the model established in Win32 environments, Winsock 2 incorporates the overlapped paradigm for socket I/O.

Quality of service: Winsock 2 establishes conventions for applications to negotiate required service levels for parameters such as bandwidth and latency.  Other QOS-related enhancements include socket grouping and prioritization, and mechanisms for network-specific QOS extensions.

Other frequently requested extensions: shared sockets, conditional acceptance, exchange of user data at connection setup/teardown time, protocol-specific extension mechanisms.

1.1 Intended Audience

This document is targeted at persons who are familiar with the sockets network programming paradigm in general and, to a lesser degree,  the Windows Sockets version 1.1 interface in particular.  Please see appendix B for an introduction to Winsock programming. 



Persons who are interested in developing applications that will take advantage of Winsock 2’s capabilities will be primarily interested in this API specification.  Persons who are interested in making a particular transport protocol available under the Winsock 2 interface will need to be familiar with the Winsock 2 Service Provider Interface Specification as well.  Thisat document exists under separate cover.

1.2 Status of This Specification

This document comprises only the API portion of the Winsock 2 specification.  The Winsock Forum’s Generic API Extensions group, chaired by David Andersen of the Intel Architecture Labs has responsibility for producing and updating this document.  The companion SPI specification is being produced by the Operating Framework group, chaired by Keith Moore of Microsoft Corporation.  Constructive comments and feedback on this material are being actively solicited and should be directed towards the principle authors as shown below:

	API Specification

David B. Andersen

Intel Architecture Labs

david_b_andersen@ccm.jf.intel.com



 	SPI Specification

Keith Moore

Microsoft Corporation

keithmo@microsoft.com



At the time of this writing, there are a number of open issues that have not been resolved.  These are summarized in Appendix C.

1.3 Document Version Conventions

Starting with this release, the API and SPI documents have adopted a 3-part revision identification system.  Each revision of the document will be clearly labelled with a release date and a revision identifier such as X.Y.Z where:

X is the major version of the Winsock specification (currently version 2)

Y is a major revision identifier that is incremented each time changes are made that impact binary compatibility with the previous spec revision (e.g. changes in a function’s parameter list or new functions being added)

Z is a minor revision indicator that is incremented when wording changes or clarifications have been made which do not impact binary compatability with a previous revision.

Note that the draft versions of the API and SPI specs distributed at the Dec 12, 1994 Winsock meeting did not follow these numbering conventions.  Also note that gaps in the minor revision indicator (Z) between successive releases of a document are not unusal, especially during the early stages of a document’s life when many changes are occuring.



Until such time as the API and SPI specifications have stabilized to the point where the Winsock community is ready to undertake implementations of compliant applications and transport providers, successive releases of the specifications will only increment the minor revision indicator, even though this will often involve changes which would impact binary compatability if the specification were fully implemented.



1.4  New And/Or Different in Version 2.0.6

As a result of feedback received on the previous specification release, and in keeping with what appears to be consensus positions emerging from discussions on the mailing lists, version  2.0.6 incorporates the following changes:

Scatter/Gather I/O is now available through WSASend(), WSASendTo(), WSARecv() and WSARecvFrom().

Clarified a number of points regarding overlapped I/O functionality.

Added an overlapped-capable ioctl function: WSAIoctl().

Clarified the definition of a constrained socket group: members must be connected to the same address on the same host.

Changed the semantics of the FD_QOS and FD_GROUP_QOS indications from level to edge triggered.

Moved the creation of socket groups from the WSAConnect() function to the WSASocket() function so that grouping can be applied to both connection-oriented and connectionless sockets.

Revised and updated the quality of service (QOS) description.

Introduced  four WSAIoctl()  opcodes for quality of service, retired socket options SO_QOS and SO_GROUP_QOS.

Indicated that the MSG_PARTIAL flag can be received when using WSARecv() and WSARecvFrom().

Corrected numerous typos and grammatical errors (and probably created at least as many new ones).

Updated the Open Issues list in appendix C.

�2. Summary of New Concepts, Additions and Changes

The paragraphs whichthat follow summarize the major changes and additions in going from Winsock 1.1 to Winsock 2.  For detailed information about how to use a specific function or feature, please refer to the appropriate API description(s) in section 3.

2.1 Simultaneous Access to Multiple Transport Protocols 

Winsock 2 provides simultaneous access to multiple transport protocols by changing the Winsock architecture.  With Winsock 1.1, the DLL which implements the Winsock interface is supplied by the vendor of the TCP/IP protocol stack.  The interface between the Winsock DLL and the underlying stack was both unique and proprietary.   Winsock 2 changes the model by defining a standard interface between the Winsock DLL and protocol stacks.  This makes it possible for multiple stacks from multiple vendors to be accessed simultaneously from a single Winsock DLL.  Furthermore, Winsock 2 support is not limited to TCP/IP protocol stacks as is the case for Winsock 1.1.  The Winsock 2 architecture (which is WOSA compliant) is illustrated as follows:



� EMBED Word.Picture.6  ���



Note: 16 bit applications utilize Winsock.DLL, 32 bit applications use WSOCK32., but hereafter, for simplicity’s sake both will be referred to simply as Winsock.DLL.  This is reasonable since there are no syntactic differences between the two.



With the above architecture, it is no longer necessary (or even desirable) for each stack vendor to supply their own implementation of Winsock.DLL, since a single Winsock.DLL must work across all stacks.  The Winsock DLL should thus be viewed in the same light as an operating system component.  Microsoft has committed to create a Winsock.DLL for Winsock 2 which will be freely available for both Windows 95 and Windows NT operating systems.  Intel Corporation has expressed a willingness to produce a Winsock 2 compliant Winsock.DLL for Windows 3.1 and Windows 3.11 environments, provided that sufficient demand is evidenced.  Please refer to Appendix YC for a discussion of open issues surrounding the development and source control of these DLLs.



2.2 Backwards Compatibility For Winsock 1.1 Applications

Even though the underlying Winsock architecture has changed, this will be invisible to existing applications  that use Winsock 1.1.  Version 2 of Winsock.DLL will be completely backwards compatible with version 1.1, assuming that at least one TCP/IP stack has been installed on the system and registered with Winsock 2.  In the WSAStartup() sequence, a Winsock 1.1 app will ask for version 1.1.  The Winsock 2 compliant DLL will cheerfully agree since all of the Winsock 1.1 semantics are retained in Winsock 2.  The new Winsock DLL does not need to modify its behavior (other than returning the desired version number in the WSAData structure) regardless of whether version 1.1 or version 2 is requested by an application, as only Winsock 2 applications will know how to make use of the added functionality that is present.



Winsock 1.1 applications  currently use certain elements from the WSAData structure (obtained via a call to WSAStartup()) to obtain information about the underlying TCP/IP stack..  These include: iMaxSockets, iMaxUdpDg, and lpVendorInfo.  While Winsock 2 applications will know to ignore these values (since they cannot uniformly apply to all available protocol stacks), meaningful values must of course still be supplied to avoid breaking Winsock 1.1 applications.  The information supplied will be obtained from (and hence only be applicable to) the “default” TCP/IP stack.  The method for designating the default TCP/IP stack is TBD.



2.3 Making Transport Protocols Available To Winsock

In order for a transport protocol to be accessible via Winsock it must be properly installed on the system and registered with Winsock.  The version 2 Winsock.DLL will export a set of APIs which perform the registration process.  These include creating a new registration and removing an existing one.  When new registrations are created the caller (presumed to be the stack vendor’s installation script) supplies one or more filled in PROTOCOL_INFO structs which contain a complete set of information about the protocol. .  Please refer to the SPI document for details on how this is accomplished.  Note that transport stacks whichthat are thus installed are considered to be Winsock service providers, and in this document are frequently referred to as such



2.3.1 Using Multiple Protocols

An application may use WSAEnumProtocols() to discover which transport protocols are present and obtain information about each as contained in the associated PROTOCOL_INFO struct. In most instances, there will be a single PROTOCOL_INFO struct for each protocol.  Some protocols however, are able to exhibit multiple behaviors.  For example the SPX protocol is message-oriented (i.e. the sender’s message boundaries are preserved by the network), but the receiving end may choose to ignore these message boundaries and treat the socket as a byte stream.  Thus there could reasonably be two different PROTOCOL_INFO struct entries for SPX, one for each of these behaviors.



Whereas in Winsock 1 there is a single address family (AF_INET) comprising a small number of well-known socket types and protocol identifiers, the focus will shift for Winsock 2.  The existing address family, socket type and protocol identifiers will be retained for compatibility reasons, but many new address family, socket type and protocol values are expected to appear which are unique but not necessarily well known.  Not being well known need not pose a problem since  applications that desire to be protocol-independent are encouraged to select protocols for use on the basis of their suitability rather than the particular values assigned to their socket_type or protocol fields.  Protocol suitability is indicated by the communications attributes (e.g. message vs. byte-stream oriented, reliable vs. unreliable, etc.) contained within the protocol’s PROTOCOL_INFO struct.. Selecting protocols on the basis of suitability as opposed to well-known protocol names and socket types  allows protocol-independent applications to take advantage of new transport protocols and their associated media types as they become available.



In terms of the well-known client/server paradigm,  the server half of a client/server application will benefit by establishing listening sockets on all suitable transport protocols.  The client, then, may establish its connection using any suitable protocol.  This would enable, for example, a client application to be unmodified whether it was running on a desktop system connected via LAN or on a laptop using a wireless network.



It is planned that a Winsock 2 clearinghouse be established for protocol stack vendors to obtain  unique identifiers for new address families, socket types and protocols.  FTP and world-wide web servers will supply current identifier/value mappings, and an email procedure will be used to request allocation of new ones.  JSB Corporation has indicated a willingness to initially establish and 

operate this clearinghouse service.



2.3.2 Multiple Provider Restrictions on select()

In Winsock 2 the FD_SET supplied to the select() function will be constrained to contain sockets associated with a single service provider. This does not in any way restrict an application from having multiple sockets open using multiple providers.  When non-blocking operations are preferred the WSAAsyncSelect() function is the solution.  Since it takes a socket descriptor as an input parameter, it doesn’t matter what provider is associated with the socket.  When an application needs to use blocking semantics on a set of sockets whichthat  spans multiple providers, the recommended solution is to use WSAWaitForMultipleEvents().  The application may also choose to take advantage of the WSAEventSelect() function which allows the FD_XXX network events to be associated with an event object and handled from within the event object paradigm (described below).

2.4 Protocol Independent Name Resolution

Winsock 2 will include APIs whichthat standardize the way applications access and use the various network naming services.  Thus an application will not need to be cognizant of the widely differing interfaces associated with name services such as DNS, NIS, X.500, SAP, etc.  Details on these APIs are not included in this specification at this time, and will be supplied at a later date by the Winsock Forum’s Name Resolution functionality group.

2.5 Overlapped I/O and Event Objects

Winsock 2 introduces overlapped (or asynchronous) I/O and requires that all transport providers support this capability. Overlapped  I/O can be performed only on sockets that were created via the WSASocket() function with the WSA_FLAG_OVERLAPPED flag set, and will follow the model established in Win32.

 For receiving, applications use WSARecv() or WSARecvFrom() to supply buffers into which data is to be received.  If one or more buffers are posted prior to the time when data has been received by the network, it is possible that data will be placed into the user’s buffers immediately as it arrives and thereby avoid the copy operation that would otherwise occur at the time the recv() or recvfrom() function is invoked.  If data is already present when receive buffers are posted, it is copied immediately into the user’s buffers. If data arrives when no receive buffers have been posted by the application, the network resorts to the familiar synchronous style of operation where the incoming data is buffered internally until such time as the application issues a receive call and thereby supplies a buffer into which the data may be copied. An exception to this would be if the application used setsockopt() to set the size of the receive buffer to zero.  In this instance, reliable protocols would only allow data to be received when application buffers had been posted, and data on unreliable protocols would be lost.

On the sending side, applications use WSASend() or WSASendTo() to supply pointers to filled buffers and then agree to not disturb the buffers in any way until such time as the network has consumed the buffer's contents.

Overlapped send and receive calls return immediately and the network provides.  A return value of zero indicates that the I/O operation completed immediately and that the corresponding completion indication has already occurred.  A return value of SOCKET_ERROR coupled with an error code of WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated  and that a subsequent indication will be provided when send buffers have been consumed or when receive buffers are full.  Any other error code indicates that the overlapped operation was not successfully initiated and that no completion indication will be forthcoming.

Also, bBoth send and receive operations can be overlapped.  The receive functions may be invoked multiple times to post receive buffers in preparation for incoming data, and the send functions may be invoked multiple times to queue up multiple buffers to be sent.  Note that while the application can rely upon a series of overlapped send buffers being sent in the order supplied, the corresponding completion indications may occur in a different order.  Likewise, on the receiving side, buffers will be filled in the order they are supplied but the completion indications may occur in a different order.

2.5.1 Event Objects as an Underpinning for Completion Indication 

�Introducing overlapped I/O requires a mechanism for applications to unambiguously associate send and receive requests with their subsequent completion indications.  In Winsock 2 this is accomplished via event objects which are modeled after Win32 events. Applications use WSACreateEvent () to obtain an event object handle which may then be supplied as a required parameter to the overlapped versions of send and receive calls (WSASend(), WSASendTo(), WSARecv(), WSARecvFrom()).  The event object, which is cleared when first created, is set by the network when the associated overlapped I/O operation has completed (either successfully or with errors).

In order to provide applications with appropriate levels of flexibility, several options are available for receiving completion indications. These include: waiting on (i.e. blocking on) event objects, polling event objects, and socket I/O completion routines.

Blocking and waiting for Completion Indication -

Applications may also choose to block while waiting for one or more event objects to become set using WSAWaitForMultipleEvents(). In Win16 implementations, this will utilize a blocking hook as is currently provided for standard blocking socket operations.  In Win32 implementations, the process or thread will be truly blocked.  Since Winsock 2 event objects are implemented as Win32 events, the native Win32 function WaitForMultipleObjects() may also be used for this purpose. This is especially useful if the thread needs to wait on both socket and non-socket events.



Polling for Completion Indication -

Applications whichthat prefer not to block may use WSAGetOverlappedResults() to poll for the completion status associated with any particular event object.  This function will indicateindicates whether or not the overlapped operation has completed, and, if completed, arranges for WSAGetLastError() to retrieve the error status of the overlapped operation.

Using socket I/O completion routines -

The functions used to initiate overlapped I/O (WSASend, WSASendTo, WSARecv, WSARecvFrom) all take lpCompletionRoutine as an input parameter.  This is a pointer to an application-specified function that is called when the overlapped I/O operation has completed (successfully or otherwise).  

In Win16 environments, callback functions may be invoked in a preemptive VMM context which is sometimes referred to as an interrupt context.  Applications transmitting time-sensitive data (e.g. video and audio) are benefitedbenefit by being able to receive such indications in this low latency, preemptive manner, but must be aware that in this special context a very limited set of runtime and Windows library functions can be safely made.  As a rule, an application should confine itself to the same set of runtime functions that the Windows documentation indicates may safely be called during a multimedia timer callback function.  

In Windows 95 and NT, the completion function follows the same rules as stipulated for Win32 file I/O completion routines.  The completion function will not be invoked until the thread is in an alertable wait state such as can occur when the function WSAWaitForMultipleEvents() is invoked.

In all environments,  transports do allow an application to invoke send and receive operations from within the context of the socket I/O completion function, and guarantee that, for a given socket, I/O completion functions will not be nested.  This permits time-sensitive data transmissions to occur entirely within a preemptive context.

2.5.2 WSAOVERLAPPED Details



The WSAOVERLAPPED structure provides a communication medium between the initation of an overlapped I/O operation and its subsequent completion. The WSAOVERLAPPED structure is designed to be compatible with the Win32 OVERLAPPED structure:



typedef struct _WSAOVERLAPPED {

	DWORD		Internal;		// reserved

	DWORD		InternalHigh;	// reserved

	DWORD		Offset;		// ignored

	DWORD		OffsetHigh;		// ignored

	WSAEVENT	hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;



Internal	This reserved field is used internally by the entity that implements overlapped I/O. For service providers that create sockets as “real” file handles, this field is used by the underlying operating system. Other service providers (those that create pseudo handles) are free to use this field as necessary.



InternalHigh	This reserved field is used internally by the entity that implements overlapped I/O. For service providers that create sockets as “real” file handles, this field is used by the underlying operating system. Other service providers (those that create pseudo handles) are free to use this field as necessary.



Offset	Since sockets do not have the concept of a file offset, applications are free to use this field as necessary.



OffsetHigh	Since sockets do not have the concept of a file offset, applications are free to use this field as necessary.



hEvent	If an overlapped I/O operation is issued without an I/O completion routine (lpCompletionRoutine is NULL), then this field must contain a valid handle to a WSAEVENT object. Otherwise (lpCompletionRoutine is non-NULL) then applications are free to use this field as necessary.



2.6 Quality of Service

Note: the QOS material is undergoing extensive review and modification.  The following paragraphs are almost guaranteed to be wrong.

The basic QOS mechanism in Winsock 2 descends from the flow specification (or "flow spec") as described by Craig Partridge in RFC 1363, dated September 1992.  A brief overview of this concept is as follows: 



Flow specs describe a set of characteristics about a proposed connection-oriented, unidirectional flow through the network.  An application may associate a pair of flow specs with a socket at any time using WSAIoctl() or at the time a connection request is made.  Flow  using WSAConnect().  Flowspecs indicate parametrically what level of service is required and also stipulate whether the application is willing to be flexible if the requested level of service is not available.  For connectionless protocols, WSAIoctl() is used to stipulate the initial QOS request, and any subsequent QOS renegotiations.  For connection-oriented protocols, when a connection request is made, the application can use the QOS currently associated with the socket (either the default QOS defined below, or the QOS set by the latest WSAIoctl()), or override it by specifying QOS in WSAConnect().  After the connection has been setup, WSAIoctl() can After a connection is established, the application may retrieve the flow specs associated with the socket and examine the contents to discover the level of service that the network is willing and/or able to provide.  If the service provided is not acceptalso be used for QOS renegotiations.  If the service requested is not available, the application may close the socket andor take whatever action is appropriate (e.g. scale back and ask for a lower quality of service, try again later, notify the user and exit, etc.)



Even after a flow is established, conditions in the network may change resultingor one of the communicating parties may invoke a QOS renegotiation which results in a reduction (or increase) in the available service level. A notification mechanism is included which utilizes the usual Winsock 2 notification techniques (FD_QOS and FD_GROUP_QOS events) to indicate to the application that QOS levels have changed. In conjunction with this, two new network events have been defined: FD_QOS and  FD_GROUP_QOS.  Upon being notified of either of these events, the app should againThe application should use WSAIoctl() with SIO_GET_QOS and/or SIO_GET_GROUP_QOS to retrieve the corresponding flow specs and examine them in order to discover what aspect of the service level has changed.   If the updated level of service is not acceptable, the application may adjust itself to accommodate it, attempt to renogotiate QOS, or close the socket.



The flow specs proposed for Winsock 2 divide QOoS characteristics into the following general areas:



1.	Network bandwidth utilizaSource Traffic Description - The manner in which the application's traffic will be injected into the network. This includes specifications for average bandwidth utilization, peak bandwidth, and maximum burst duration.the token rate, the token bucket size, and the peak bandwidth.  Note that the bandwidth requirement is expressed in terms of a token rate does not mean that hosts must implement token buckets.  Any traffic management scheme that yields equivalent behavior is permitted.



2.	Latency - Upper limits on the amount of delay and delay variation that are acceptable.



3.	Level of service guarantee -  Whether or not an absolute guarantee is required as opposed to best effort.  Note that providers which have no feasible way to provide the level of service requested are expected to fail the connection attempt.



4.	Cost -  This is a place holder for a future time when a meaningful cost metric can be determined.



5.	Provider-specific parameters - The flow     Provider-specific parameters - The flowspec itself can be extended in ways that are particular to specific providers, and the assumed provider can be identified. 

.





An application indicates its desire for a non-default flow spec at the time a connection request is made (see WSAConnect () and WSAAccept()).  Since establishing a flow spec'd connection is likely to involve cooperation and/or negotiation between intermediate routers and hosts, the results of a flow spec request cannot be determined until after the connection operation is fully completed.  After this time, the application may use getsockopt() to retrieve the resulting flow spec structure so that it can determine what the network was willing and/or able to supply.



2.6.1 The Flow Spec Structures

The Winsock 2 flow specQOS structure is defined in Winsock.h and is reproduced here.



typedef enum

{

	GuaranteedService,

	BestEffortBestEffortService,

	PredictiveService,

	GuaranteedService

} GUARANTEE;



typedef struct _flowparamsspec

{

	int64		AverageBandwith;// In Bytes/sec

	int64		PeakBandwidth;	// In Bytes/sec

	int64		BurstLength;	// In microseconds

	int64		Latency;	// In microseconds

	int64		DelayVariation;// In microseconds

	GUARANTEE	levelOfGuarantee;// Guaranteed or

					// Best Effort

	int32		CostOfCall;	// Reserved for future

					// use, must be set to 0

	int32		SizePSP;	// Length of provider

					// specific parameters

      	UCHAR	ProviderSpecificParams[1];// provider specific 									// parameters

} FLOWPARAMS32		TokenRate;		// In Bytes/sec

	int32		TokenSize;		// In Bytes

	int32		PeakBandwidth;		// In Bytes/sec

	int32		Latency;			// In microseconds

	int32		DelayVariation;		// In microseconds	

	GUARANTEE	LevelOfGuarantee;	// Guaranteed, Predictive or Best Effort

	int32		CostOfCall;		// Reserved for future use, must be set to 0 now

} FLOWSPEC, FAR *LPFLOWSPEC;



typedef struct _QualityOfService

{

 	FLOWPARAMS	ForwardFP;	// Caller(Initiator) to callee

	FLOWPARAMS	BackwardFP;	// Callee to caller

} QOS, FAR * LPQOS;WSABUF	SendingFlowspec;	// the flow spec for data sending

	WSABUF 	ReceivingFlowspec;	// the flow spec for data receiving

} QOS, FAR * LPQOS;



Note that the first part of the memory block pointed by SendingFlowspec.buf or ReceivingFlowspec.buf is the FLOWSPEC structure, optionally followed by any service provider specific portion.  Thus, SendingFlowspec.len and ReceivingFlowspec.len must be larger than or equal to sizeof(FLOWSPEC).  In the case of RSVP, the service specific portion is expected to include a structure containing the following information at minimum:



	struct {�	IpAddress source_address;�	IpAddress dest_address;�	uint16 next_level_protocol;�	udpPort source_port;�	udpPort dest_port;�} ip_params;



Definitions:



LevelOfGuarantee	This is the level of service being negotiated for.  Three levels of service are defined: Guaranteed, Predictive, and Best Effort.



	The reason for defining both predictive and guaranteed service is that predictive services may achieve substantially better performance given the same level of network resource usage, while guaranteed service provides the mathematical level of certainty needed by selected applications. Specific providers may implement none, one, or both of these services.



	Best effort service is just a hint to the service provider and should be always supported.



GuaranteedService	A service provider supporting guaranteed service implements a queuing algorithm which isolates the flow from the effects of other flows as much as possible, and guarantees the flow the ability to propagate data at least TokenRate for the duration of the connection. If the sender sends faster than that rate, the network may delay or discard the excess traffic. If the sender does not exceed TokenRate over time, then latency is also guaranteed. This service is designed for applications which require a precisely known quality of service but would not benefit from better service, such as real-time control systems.



PredictiveService	A service provider supporting predictive service guarantees the flow the ability to propagate data at least TokenRate for the duration of the connection. If the sender sends faster than that rate, the network may delay or discard the excess traffic. The delay limit is not guaranteed (occasional packets may take longer than specified), but is generally highly reliable. This service is designed for applications that can accommodate or adapt to some variation in service quality, such as video service.



BestEffortService	A service provider supporting best effort service, at minimum, takes the flow spec as a guideline and makes reasonable efforts to maintain the level of service requested, however without making any guarantees whatsoever.  



TokenRate/TokenSize	A Token bucket model is used to specify the rate at which permission to send traffic accrues. The value zero (0) in these variables indicates that no rate limiting is in force. Negative values are reserved for future use.  The TokenRate is expressed in bytes per second, and the TokenSize in bytes.



	The concept of the token bucket is a bucket which has a maximum volume (token size) and continuously fills at certain rate (token rate). If the “bucket” contains sufficient credit, the application may send data; if it does, it reduces the available credit by that amount. If sufficient credits are not available, the application must wait or discard the extra traffic.



	If an application has been sending at a low rate for a period of time, it clearly may send a large burst of data all at once until it runs out of credit.  Having done so, it must limit itself to sending at TokenRate until its data burst is exhausted.  Equally clearly, if it transmits at a rate below TokenRate for a period of time, it accrues the right to send a burst of data.



	In video applications, the token Rate is typically the average bit rate peak to peak, and the token size is the largest typical frame size. In constant rate applications, the token rate is the average data rate, and the token size is chosen to accommodate small variations.



PeakBandwidth	This field, expressed in bytes/second, limits how fast packets may be sent back to back from the application.  Some intermediate systems can take advantage of this information resulting in a more efficient resource allocation.



Latency	Latency is the maximum acceptable delay between transmission of a bit by the sender and its receipt by the intended receiver(s). The precise interpretation of this number depends on the level of guarantee specified in the QoS request.



DelayVariation	This field is the difference, in microseconds, between the maximum and minimum possible delay that a packet will experience.  This value is used by applications to determine the amount of buffer space needed at the receiving side in order to restore the original data transmission pattern. 



CostOfCall	This is just a place holder for now and should always be set to 0 until we can come up with a meaningful cost metric.



2.6.2 Default Values

A default flow spec is associated with each eligible socket at the time it is created.  Field values for this default flow spec are indicated below.  In all cases these values indicate that no particular flow characteristics are being requested from the network.  Applications only need to modify values for those fields which they are interested in, but must be aware that there exists some coupling between fields such as TokenRate and TokenSize.

fields.



AverageBandwidth =	0, not specified�PeakBandwidth = 	0, not specified�BurstLength = 		0, not specified�Latency =		0, not specified �DelayVariation =	0, not specified�LevelOfGuarantee = 	BEST_EFFORT

TokenRate =		-1, not specified�TokenSize = 		-1, not specified�PeakBandwidth= 		-1, not specified�Latency =		-1, not specified �DelayVariation =		-1, not specified�LevelOfGuarantee =	BestEffortService�CostOfCall =		0, reserved for future use�ProviderSpecificParams = 0, none supplied� 



2.7 Socket Groups

Winsock 2 introduces the notion of a socket group as a means for an application (or cooperating set of applications) to indicate to an underlying service provider that a particular set of sockets are related and that the group thus formed has certain attributes.  Group attributes include relative priorities of the individual sockets within the group and a group quality of service specification. 



Applications needing to exchange multimedia streams over the network are benefited by being able to establish a specific relationship among the set of sockets being utilized.  As a minimum this might include a hint to the service provider about the relative priorities of the media streams being carried.  For example, a conferencing application would want to have the socket used for carrying the audio stream be given higher priority than that of the socket used for the video stream.  Furthermore, there are transport providers (e.g. digital telephony and ATM) which can utilize a group quality of service specification to determine the appropriate characteristics for the underlying call or circuit connection.  The sockets within a group are then multiplexed in the usual manner over this call.  By allowing the application to identify the sockets that make up a group and to specify the required group attributes, such service providers can operate with maximum effectiveness.



WSAConnecSocket() and WSAAccept() are two new functions used to explicitly create and/or join a socket group coincident with establishing or accepting a socket connectioncreating a new socket.  Socket group IDs can be retrieved by using getsockopt() with option SO_GROUP_ID.  Relative priority can be accessed by using get/setsockopt() with option SO_GROUP_PRIORITY. 





2.8 Shared Sockets

WSADuplicateSocket() is introduced to enable socket sharing across processes by creating an additional socket descriptor to an underlying socket which thus becomes shared. The function takes as input both the local socket descriptor and a handle to the target process.  It returns a new descriptor for the socket which is only valid in the context of the target process (which is not precluded from being the same as the original process).  This mechanism is designed to be appropriate for both single-threaded version of Windows (such as Windows 3.1) and preemptive multithreaded versions of Windows (such as Windows 95 and NT).  Note however, that sockets may be shared amongst threads in a given process without using the WSADuplicateSocket() function, since a socket descriptor is valid in all of a process’ threads.



The two (or more) descriptors that reference a shared socket may be used independently as far as I/O is concerned.  However, the Winsock interface does not implement any type of access control, so it is up to the processes involved to coordinate their operations on a shared socket.  A typical use for shared sockets is to have one process reading and a different process writing.  



Since what is duplicated are the socket descriptors and not the underlying socket, all of the state associated with a socket is held in common across all the descriptors.  For example a setsockopt() operation performed using one descriptor is subsequently visible using a getsockopt() from any or all descriptors.  A process may call closesocket() on a duplicated socket and the descriptor will become deallocated.  The underlying socket, however, will remain open until closesocket() is called by the last remaining descriptor.



The manner in which event notification is handled on shared sockets is currently under discussion.  Two proposals have been made.  In the first, the notification properties are associated completely with each descriptor and are thus entirely independent from one another.  Assume processes A, B and C all have descriptors to a shared socket.  It would be allowed for process A to register interest in FD_READ and FD_CLOSE, process B to register for FD_CLOSE and FD_WRITE, and process C to register for FD_READ and FD_WRITE.  When data was available to be read on the socket, both process A and C would receive notification.  Likewise, if the socket were closed by the remote end, both process A and B would be notified.



In the second proposal, any particular FD_XXX network event may be delivered only to a single process.  Thus if process A registered for FD_READ and FD_CLOSE, process B would be precluded from registering for FD_CLOSE as well.



2.9 Enhanced Functionality During Connection Setup

WSAAccept () allows an application to obtain caller information before deciding whether or not to accept an incoming connection request.  This is done via a callback to an application-supplied condition function.

User-to-user data specified via parameters in WSAConnect() and/or the condition function of WSAAccept() may be transferred to the peer during connection establishment, provided this feature is supported by the service provider.





2.10 Extended Byte Order Conversion Routines

Winsock 2 does not assume that the network byte order for all protocols is the same.  Therefore a set of conversion routines are supplied for converting 16 and 32 bit quantities to and from network byte order.  These routines take as in input parameter a boolean which specifies whether the desired network byte order is “big-endian” or “little-endian”.  Also, the PROTOCOL_INFO struct for each protocol includes a flag to indicate the byte ordering to be used for the protocol.



2.11 Support for Scatter/Gather I/O

The WSASend(), WSASendTo(), WSARecv(), and WSARecvFrom() routines all take an array of application buffers as input parameters and thus may be used for scatter/gather (or vectored) I/O.  This can be very useful in instances where portions of each message being transmitted consist of one or more fixed length “header” components in addition to message body.  Such header components need not be concatenated by the application into a single contiguous buffer prior to sending.  Likewise on receiving, the header components can be automatically split off into separate buffers, leaving the message body “pure”.

When receiving into multiple buffers, completion occurs as data arrives from the network, regardless of whether all of the supplied buffers are utilized.  

2.12 Summary of New Socket Options

The new socket options proposed for Winsock2 are summarized in the following table. More detailed information is provided in section 3 under getsockopt() and/or setsockopt().



Value�Type�Meaning�Default�Note��SO_MAX_MSG_SIZE�int�Maximum size of a message for message-oriented socket types. Has no meaning for stream-oriented sockets.�Implementation dependent�get only��SO_GROUP_ID�GROUP�The identifier of the group to which this socket belongs.�NULL�get only��SO_GROUP_PRIORITY�int�The relative priority for sockets that are part of a socket group.�0���SO_PROTOCOL_INFO�struct PROTOCOL_INFO�Description of protocol info for protocol that is bound to this socket.�protocol dependent�get only��PVD_CONFIG�char FAR *�An opaque data structure object containing configuration information of the service provider.�Implementation dependent���

2.13 Summary of New Socket Ioctl Opcodes

The new socket ioctl opcodes proposed for Winsock2 are summarized in the following table. More detailed information is provided in section 3 under WSAIoctl()



Opcode�Input Type�Output Type�Meaning��SIO_GET_QOS�<not used>�QOS�Retrieve current flow spec(s) for the socket.��SIO_SET_QOS�QOS�<not used>�Establish new flow spec(s) for the socket.��SIO_GET_GROUP_QOS�<not used>�QOS�Retrieve current group flow spec(s) for the group this socket belongs to.��SIO_SET_GROUP_QOS�QOS�<not used>�Establish new group flow spec(s) for the group this socket belongs to.��





�2.124 Summary of New Functions

The new API functions proposed for Winsock2 are summarized in the following table. 



WSAAccept() *�An extended version of accept() which allows for conditional acceptance and socket grouping.��WSACloseEvent()�Destroys an event object.��WSAConnect()�An extended version of connect() which allows for 

socket 

groupingexchange of connect data and QOS specification.��WSACreateEvent()�Creates an event object.��WSADuplicateSocket()�Allow an underlying socket to be shared by creating a virtual socket.��WSAEnumNetworkEvents()�Discover occurrences of network events.��WSAEnumProtocols()�Retrieve information about each available protocol.

��WSAEventSelect()�Associate network events with an event object.��WSAGetOverlappedResult()�Get completion status of overlapped operation.��WSAGetQOSByName()�Supply QOS parameters based on a well-known service name.��WSAHtonl()�Extended version of htonl()��WSAHtons()�Extended version of htons()��WSAIoctl()�Overlapped-capable version of ioctl()��WSANtohl()�Extended version of ntohl()��WSANtohs()�Extended version of ntohs()��WSARecv()�An extended version of recv() which accommodates scatter/gather I/O, overlapped sockets and provides the flags parameter as IN OUT��WSARecvfrom()�An extended version of recvfrom() which accommodates scatter/gather I/O, overlapped sockets and provides the flags parameter as IN OUT��WSAResetEvent()�Resets an event object.��WSASend()�An extended version of send() which accommodates scatter/gather I/O and overlapped sockets��WSASendto()�An extended version of sendto() which accommodates scatter/gather I/O and overlapped sockets��WSASetEvent()�Sets an event object.��WSASocket()�An extended version of socket() which takes a PROTOCOL_INFO struct as input and allows overlapped sockets to be created.  Also allows socket groups to be formed.��WSASocket()�An extended version of socket() which takes a PROTOCOL_INFO struct as input and allows overlapped sockets to be created.��WSAWaitForMultipleEvents()�Blocks on multiple event objects.��

�3. SOCKET LIBRARY REFERENCE

This chapter presents the socket library routines in alphabetical order, and describes each routine in detail.  



In each routine it is indicated that the header file winsock.h must be included.  Appendix A.2 lists the Berkeley-compatible header files which are supported.  These are provided for compatibility purposes only, and each of them will simply include winsock.h.  The Windows header file windows.h is also needed, but winsock.h will include it if necessary.



3.1 accept()

Description	Accept a connection on a socket.



 	#include <winsock.h>



 	SOCKET WSAAPI accept ( SOCKET s, struct sockaddr FAR * addr, 

	int FAR * addrlen );





s	A descriptor identifying a socket which is listening for connections after a listen().



addr	An optional pointer to a buffer which receives the address of the connecting entity, as known to the communications layer.  The exact format of the addr argument is determined by the address family established when the socket was created.



addrlen	An optional pointer to an integer which contains the length of the address addr.



Remarks	This routine extracts the first connection on the queue of pending connections on s, creates a new socket with the same properties as s and returns a handle to the new socket.  If no pending connections are present on the queue, and the socket is not marked as non-blocking, accept() blocks the caller until a connection is present.  If the socket is marked non-blocking and no pending connections are present on the queue, accept() returns an error as described below.  The accepted socket may not be used to accept more connections.  The original socket remains open.



The argument addr is a result parameter that is filled in with the address of the connecting entity, as known to the communications layer.  The exact format of the addr parameter is determined by the address family in which the communication is occurring.  The addrlen is a value-result parameter; it should initially contain the amount of space pointed to by addr; on return it will contain the actual length (in bytes) of the address returned.  This call is used with connection-oriented socket types such as SOCK_STREAM.  If addr and/or addrlen are equal to NULL, then no information about the remote address of the accepted socket is returned.





Return Value	If no error occurs, accept() returns a value of type SOCKET which is a descriptor for the accepted socket.  Otherwise, a value of INVALID_SOCKET is returned, and a specific error code may be retrieved by calling WSAGetLastError().



The integer referred to by addrlen initially contains the amount of space pointed to by addr.  On return it will contain the actual length in bytes of the address returned.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	The addrlen argument is too small (less than the sizeof a struct sockaddr).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINVAL	listen() was not invoked prior to accept().



WSAEMFILE	The queue is non-empty upon entry to accept() and there are no descriptors available.



WSAENOBUFS	No buffer space is available.



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	The referenced socket is not a type that supports connection-oriented service.



WSAEWOULDBLOCK	The socket is marked as non-blocking and no connections are present to be accepted.



See Also	bind(), connect(), listen(), select(), socket(), WSAAsyncSelect(), WSAAccept()

�3.2 bind()

Description	Associate a local address with a socket.



 	#include <winsock.h>



 	int WSAAPI bind ( SOCKET s, const struct sockaddr FAR * name, int namelen );





s	A descriptor identifying an unbound socket.



name	The address to assign to the socket.  The sockaddr structure is defined as follows:



	struct sockaddr {

		u_short	sa_family;

		char		sa_data[14];

	};



namelen	The length of the name.



Remarks	This routine is used on an unconnected connectionless or connection-oriented socket, before subsequent connect()s or listen()s.  When a socket is created with socket(), it exists in a name space (address family), but it has no name assigned.  bind() establishes the local association of the socket by assigning a local name to an unnamed socket.



As an example, in the Internet address family, a name consists of  three parts:  the address family, a host address, and a port number which identifies the application.  In Winsock 2, the name parameter is not strictly interpreted as a pointer to a "sockaddr" struct.  It is cast this way for Windows Sockets compatibility.  Service Providers are free to regard it as a pointer to a block of memory of size namelen.  The first two bytes in this block (corresponding to "sa_family" in the "sockaddr" declaration) must contain the address family that was used to create the socket.  Otherwise an error WSAEFAULT will occur. 



If an application does not care what local address is assigned to it, it may specify the manifest constant value ADDR_ANY for the sa_data field of the name parameter, a port equal to 0, or both.  This allows the underlying service provider to use any appropriate network address, potentially simplifying application programming in the presence of multi-homed hosts (i.e., hosts that have more than one network interface and address).  For TCP/IP, if the port is specified as 0, the service provider will assign a unique port to the application with a value between 1024 and 5000.  The application may use getsockname() after bind() to learn the address that has been assigned to it, but note that getsockname() will not necessarily be able to supply the address until the socket is connected, since several addresses may be valid if the host is multi-homed.

If an application desires to bind to an arbitrary port outside of the range 1024 to 5000, such as the case of rsh which must bind to any reserved port, code similar to the following may be used for the Internet address family:



    SOCKADDR_IN sin;

    SOCKET s;

    u_short alport = IPPORT_RESERVED;



    sin.sin_family = AF_INET;

    sin.sin_addr.s_addr = 0;

    for (;;) {

        sin.sin_port = htons(alport);

        if (bind(s, (LPSOCKADDR)&sin, sizeof (sin)) == 0) {

            /* it worked */

        }

        if ( GetLastError() != WSAEADDRINUSE) {

            /* fail */

        }

        alport--;

        if (alport == IPPORT_RESERVED/2 ) {

            /* fail--all unassigned reserved ports are */

            /* in use. */

        }

    }





Return Value	If no error occurs, bind() returns 0.  Otherwise, it returns SOCKET_ERROR, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEADDRINUSE 	The specified address is already in use.  (See the SO_REUSEADDR socket option under setsockopt().)



WSAEFAULT	The namelen argument is too small (less than the size of a struct sockaddr), the name argument contains incorrect address format for the associated address family, or the first two bytes of the memory block specified by name does not match the address family associate with the socket descriptor s.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEAFNOSUPPORT	The specified address family is not supported by this protocol.



WSAEINVAL	The socket is already bound to an address.



WSAENOBUFS	Not enough buffers available, too many connections.



WSAENOTSOCK	The descriptor is not a socket.



See Also	connect(), listen(), getsockname(), setsockopt(), socket(), WSACancelBlockingCall().

�3.3 closesocket()

Description	Close a socket.



 	#include <winsock.h>



 	int WSAAPI closesocket ( SOCKET s );





s	A descriptor identifying a socket.



Remarks	This function closes a socket.  More precisely, it releases the socket descriptor s, so that further references to s will fail with the error WSAENOTSOCK.  If this is the last reference to an underlying socket, the associated naming information and queued data are discarded.



The semantics of closesocket() are affected by the socket options SO_LINGER and SO_DONTLINGER as follows:



Option		Interval		Type of close	Wait for close?

SO_DONTLINGER	Don't care	Graceful		No

SO_LINGER		Zero		Hard		No

SO_LINGER		Non-zero	Graceful		Yes



If SO_LINGER is set (i.e. the l_onoff field of the linger structure is non-zero; see sections �ref Socket_Options�B.3.4 B.3.4 �,  �ref getsockopt�3.14 3.14 � and �ref setsockopt�3.28 3.28 �) with a zero timeout interval (l_linger is zero), closesocket() is not blocked even if queued data has not yet been sent or acknowledged.  This is called a "hard" or "abortive" close, because the socket's virtual circuit is reset immediately, and any unsent data is lost.  Any recv() call on the remote side of the circuit will fail with WSAECONNRESET.



If SO_LINGER is set with a non-zero timeout interval, the closesocket() call blocks until the remaining data has been sent or until the timeout expires.  This is called a graceful disconnect.  Note that if the socket is set to non-blocking and SO_LINGER is set to a non-zero timeout, the call to closesocket() will fail with an error of WSAEWOULDBLOCK.



If SO_DONTLINGER is set on a stream socket (i.e. the l_onoff field of the linger structure is zero; see sections �ref Socket_Options�B.3.4 B.3.4 �, �ref getsockopt�3.14 3.14 � and �ref setsockopt�3.28 3.28 �), the closesocket() call will return immediately.  However, any data queued for transmission will be sent if possible before the underlying socket is closed.  This is also called a graceful disconnect.  Note that in this case the Winsock provider may not release the socket and other resources for an arbitrary period, which may affect applications which expect to use all available sockets.





Return Value	If no error occurs, closesocket() returns 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAENOTSOCK	The descriptor is not a socket.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEWOULDBLOCK	The socket is marked as nonblocking and SO_LINGER is set to a nonzero timeout value.





See Also	accept(), socket(), ioctlsocket(), setsockopt(), WSAAsyncSelect(), WSADuplicateSocket().

�3.4 connect()

Description	Establish a connection to a peer.



 	#include <winsock.h>



 	int WSAAPI connect ( SOCKET s, const struct sockaddr FAR * name, 

	int namelen );





s	A descriptor identifying an unconnected socket.



name	The name of the peer to which the socket is to be connected.



namelen	The length of the name.



Remarks	This function is used to create a connection to the specified destination.  For connection-oriented sockets (e.g., type SOCK_STREAM), an active connection is initiated to the foreign host using name (an address in the name space of the socket; for a detailed description, please see bind()).  When the socket call completes successfully, the socket is ready to send/receive data.  



For a connectionless socket (e.g., type SOCK_DGRAM), the operation performed by connect() is merely to establish a default destination address which will be used on subsequent send() and recv() calls.



If the socket, s, is unbound, unique values are assigned to the local association by the system, and the socket is marked as bound.  Note that if the address field of the name structure is all zeroes, connect() will return the error WSAEADDRNOTAVAIL.



Comments	When connected sockets break (i.e. become closed for whatever reason), they should be discarded and recreated.   It is safest to assume that when things go awry for any reason on a connected socket, the application must discard and recreate the needed sockets in order to return  to a stable point.





Return Value	If no error occurs, connect() returns 0.  Otherwise, it returns SOCKET_ERROR, and a specific error code may be retrieved by calling WSAGetLastError().



On a blocking socket, the return value indicates success or failure of the connection attempt.



On a non-blocking socket, if the return value is SOCKET_ERROR an application should call WSAGetLastError().  If this indicates an error code of WSAEWOULDBLOCK, then your application can either:



1. Use select() to determine the completion of the connection request by checking if the socket is writeable,  or



2. If your application is using WSAAsyncSelect() to indicate interest in connection events, then your application will receive an FD_CONNECT notification when the connect operation is complete.



3. If your applicationis using WSAEventSelect() to indicate interest in connection events, then the associated event object will be signaled when the connect operation is complete.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEADDRINUSE	The specified address is already in use.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEADDRNOTAVAIL	The specified address is not available from the local machine.



WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.



WSAECONNREFUSED	The attempt to connect was forcefully rejected.



WSAEDESTADDREQ	A destination address is required.



WSAEFAULT	The namelen argument is incorrect, or the name argument contains incorrect address format for the associated address family.



WSAEINVAL	The parameter s is a listening socket.



WSAEINVAL	The socket is not already bound to an address.



WSAEISCONN	The socket is already connected.



WSAEMFILE	No more socket descriptors are available.



WSAENETUNREACH	The network can't be reached from this host at this time.



WSAENOBUFS	No buffer space is available.  The socket cannot be connected.



WSAENOTSOCK	The descriptor is not a socket.



WSAETIMEDOUT	Attempt to connect timed out without establishing a connection



WSAEWOULDBLOCK 	The socket is marked as non-blocking and the connection cannot be completed immediately.  It is possible to select() the socket while it is connecting by select()ing it for writing.



See Also	accept(), bind(), getsockname(), socket(), select(), WSAAsyncSelect(), WSAConnect().�3.5 gethostbyaddr()

Description	Get host information corresponding to an address.



 	#include <winsock.h>



 	struct hostent FAR * WSAAPI gethostbyaddr ( const char FAR * addr, int len,  int type );





addr	A pointer to an address in network byte order.



len	The length of the address, which must be 4 for PF_INET addresses.



type	The type of the address, which must be PF_INET.



Remarks	gethostbyaddr() returns a pointer to the following structure which contains the name(s) and address which correspond to the given address.  



struct hostent {

	char FAR *	h_name;

	char FAR * FAR *	h_aliases;

	short	h_addrtype;

	short	h_length;

	char FAR * FAR *	h_addr_list;

};



The members of this structure are:

Element	Usage

h_name	Official name of the host (PC).

h_aliases	A NULL-terminated array of alternate names.

h_addrtype	The type of address being returned; for Windows Sockets this is always PF_INET.

h_length	The length, in bytes, of each address; for PF_INET, this is always 4.

h_addr_list	A NULL-terminated list of addresses for the host.  Addresses are returned in network byte order.



The macro h_addr is defined to be h_addr_list[0] for compatibility with older software.



The pointer which is returned points to a structure which is allocated by Winsock .  The application must never attempt to modify this structure or to free any of its components.  Furthermore, only one copy of this structure is allocated per thread, and so the application should copy any information which it needs before issuing any other Winsock API calls.





Return Value	If no error occurs, gethostbyaddr() returns a pointer to the hostent structure described above.  Otherwise it returns a NULL pointer and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAHOST_NOT_FOUND	Authoritative Answer Host not found.



WSATRY_AGAIN	Non-Authoritative Host not found, or SERVERFAIL.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



See Also	WSAAsyncGetHostByAddr(), gethostbyname(),

�3.6 gethostbyname()

Description	Get host information corresponding to a hostname.



 	#include <winsock.h>



 	struct hostent FAR * WSAAPI gethostbyname ( const char FAR * name );





name	A pointer to the name of the host.



Remarks	gethostbyname() returns a pointer to a hostent structure as described under gethostbyaddr().  The contents of this structure correspond to the hostname name.



The pointer which is returned points to a structure which is allocated by Winsock.  The application must never attempt to modify this structure or to free any of its components.  Furthermore, only one copy of this structure is allocated per thread, and so the application should copy any information which it needs before issuing any other Winsock API calls.



A gethostbyname() implementation must not resolve IP address strings passed to it.  Such a request should be treated exactly as if an unknown host name were passed.  An application with an IP address string to resolve should use inet_addr() to convert the string to an IP address, then gethostbyaddr() to obtain the hostent structure.





Return Value	If no error occurs, gethostbyname() returns a pointer to the hostent structure described above.  Otherwise it returns a NULL pointer and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAHOST_NOT_FOUND	Authoritative Answer Host not found.



WSATRY_AGAIN	Non-Authoritative Host not found, or SERVERFAIL.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().





See Also	WSAAsyncGetHostByName(), gethostbyaddr()

�3.7 gethostname()

Description	Return the standard host name for the local machine.



	#include <winsock.h>



	int WSAAPI gethostname ( char FAR * name, int namelen );



name	A pointer to a buffer that will receive the host name.



namelen	The length of the buffer.



Remarks	This routine returns the name of the local host into the buffer specified by the name parameter.  The host name is returned as a null-terminated string.  The form of the host name is dependent on the Winsock provider--it may be a simple host name, or it may be a fully qualified domain name.  However, it is guaranteed that the name returned will be successfully parsed by gethostbyname() and WSAAsyncGetHostByName().



Return Value	If no error occurs, gethostname() returns 0, otherwise it returns SOCKET_ERROR and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSAEFAULT	The namelen parameter is too small



	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



	WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



See Also	gethostbyname(), WSAAsyncGetHostByName().

�3.8 getprotobyname()

Description	Get protocol information corresponding to a protocol name.



 	#include <winsock.h>



 	struct protoent FAR * WSAAPI getprotobyname ( const char FAR * name );





name	A pointer to a protocol name.



Remarks	getprotobyname() returns a pointer to the following structure which contains the name(s) and protocol number which correspond to the given protocol name.  



struct protoent {

	char FAR *	p_name;

	char FAR * FAR *	p_aliases;

	short	p_proto;

};



The members of this structure are:

Element	Usage

p_name	Official name of the protocol.

p_aliases	A NULL-terminated array of alternate names.

p_proto	The protocol number, in host byte order.



The pointer which is returned points to a structure which is allocated by the Winsock library.  The application must never attempt to modify this structure or to free any of its components.  Furthermore only one copy of this structure is allocated per thread, and so the application should copy any information which it needs before issuing any other Winsock API calls.





Return Value	If no error occurs, getprotobyname() returns a pointer to the protoent structure described above.  Otherwise it returns a NULL pointer and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().





See Also	WSAAsyncGetProtoByName(), getprotobynumber()

�3.9 getprotobynumber()

Description	Get protocol information corresponding to a protocol number.



 	#include <winsock.h>



 	struct protoent FAR * WSAAPI getprotobynumber ( int number );





number	A protocol number, in host byte order.



Remarks	This function returns a pointer to a protoent structure as described above in getprotobyname().  The contents of the structure correspond to the given protocol number.



The pointer which is returned points to a structure which is allocated by Winsock.  The application must never attempt to modify this structure or to free any of its components.  Furthermore, only one copy of this structure is allocated per thread, and so the application should copy any information which it needs before issuing any other Winsock API calls.





Return Value	If no error occurs, getprotobynumber() returns a pointer to the protoent structure described above.  Otherwise it returns a NULL pointer and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



See Also	WSAAsyncGetProtoByNumber(), getprotobyname()

�3.10 getservbyname()

Description	Get service information corresponding to a service name and protocol.



 	#include <winsock.h>



 	struct servent FAR * WSAAPI getservbyname ( const char FAR * name, 

	const char FAR * proto );





name	A pointer to a service name.



proto	An optional pointer to a protocol name.  If this is NULL, getservbyname() returns the first service entry for which the name matches the s_name or one of the s_aliases.  Otherwise getservbyname() matches both the name and the proto.



Remarks	getservbyname() returns a pointer to the following structure which contains the name(s) and service number which correspond to the given service name.  



struct servent {

	char FAR *	s_name;

	char FAR * FAR *	s_aliases;

	short	s_port;

	char FAR *	s_proto;

};



The members of this structure are:

Element	Usage

s_name	Official name of the service.

s_aliases	A NULL-terminated array of alternate names.

s_port	The port number at which the service may be contacted.  Port numbers are returned in network byte order.

s_proto	The name of the protocol to use when contacting the service.



The pointer which is returned points to a structure which is allocated by the Winsock library.  The application must never attempt to modify this structure or to free any of its components.  Furthermore only one copy of this structure is allocated per thread, and so the application should copy any information which it needs before issuing any other Winsock API calls.





Return Value	If no error occurs, getservbyname() returns a pointer to the servent structure described above.  Otherwise it returns a NULL pointer and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().





See Also	WSAAsyncGetServByName(), getservbyport()

�3.11 getservbyport()

Description	Get service information corresponding to a port and protocol.



 	#include <winsock.h>



 	struct servent FAR * WSAAPI getservbyport ( int port, const char FAR * proto );





port	The port for a service, in network byte order.



proto	An optional pointer to a protocol name.  If this is NULL, getservbyport() returns the first service entry for which the port matches the s_port.  Otherwise getservbyport() matches both the port and the proto.



Remarks	getservbyport() returns a pointer a servent structure as described above for getservbyname().



The pointer which is returned points to a structure which is allocated by Winsock.  The application must never attempt to modify this structure or to free any of its components.  Furthermore, only one copy of this structure is allocated per thread, and so the application should copy any information which it needs before issuing any other Winsock API calls.





Return Value	If no error occurs, getservbyport() returns a pointer to the servent structure described above.  Otherwise it returns a NULL pointer and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().





See Also	WSAAsyncGetServByPort(), getservbyname()

�3.12 getpeername()

Description	Get the address of the peer to which a socket is connected.



 	#include <winsock.h>



 	int WSAAPI getpeername ( SOCKET s, struct sockaddr FAR * name, int FAR * namelen );





s	A descriptor identifying a connected socket.



name	The structure which is to receive the name of the peer.



namelen	A pointer to the size of the name structure.



Remarks	getpeername() retrieves the name of the peer connected to the socket s and stores it in the struct sockaddr identified by name.  It is used on a connected datagram or stream socket.



On return, the namelen argument contains the actual size of the name returned in bytes.





Return Value	If no error occurs, getpeername() returns 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	The namelen argument is not large enough.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENOTCONN	The socket is not connected.



WSAENOTSOCK	The descriptor is not a socket.



See Also	bind(), socket(), getsockname().

�3.13 getsockname()

Description	Get the local name for a socket.



 	#include <winsock.h>



 	int WSAAPI getsockname ( SOCKET s, struct sockaddr FAR * name, 

	int FAR * namelen );





s	A descriptor identifying a bound socket.



name	Receives the address (name) of the socket.



namelen	The size of the name buffer.



Remarks	getsockname() retrieves the current name for the specified socket descriptor in name.  It is used on a bound and/or connected socket specified by the s parameter.  The local association is returned.  This call is especially useful when a connect() call has been made without doing a bind() first; this call provides the only means by which you can determine the local association which has been set by the system.



	On return, the namelen argument contains the actual size of the name returned in bytes.



If a socket was bound to an unspecified address (e.g., ADDR_ANY), indicating that any of the host's addresses within the specified address family should be used for the socket, getsockname() will not necessarily return information about the host address, unless the socket has been connected with connect() or accept().  A Winsock application must not assume that the address will be specified unless the socket is connected.  This is because for a multi-homed host the address that will be used for the socket is unknown unless the socket is connected.



Return Value	If no error occurs, getsockname() returns 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	The namelen argument is not large enough, or the name or namelen argument is not part of the user address space.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENOTSOCK	The descriptor is not a socket.



WSAEINVAL	The socket has not been bound to an address with bind().



See Also	bind(), socket(), getpeername().

�3.14 getsockopt()

Description	Retrieve a socket option.



 	#include <winsock.h>



 	int WSAAPI getsockopt ( SOCKET s, int level, int optname, 

	char FAR * optval, int FAR * optlen );





s	A descriptor identifying a socket.



level	The level at which the option is defined; the only supported levels are SOL_SOCKET and SOL_PROVIDER.  (SOL_PROVIDER is defined to be an alias for IPPROTO_TCP for the sake of compatibility with Windows Sockets specification 1.1.)



optname	The socket option for which the value is to be retrieved.



optval	A pointer to the buffer in which the value for the requested option is to be returned.



optlen	A pointer to the size of the optval buffer.



Remarks	getsockopt() retrieves the current value for a socket option associated with a socket of any type, in any state, and stores the result in optval.  Options may exist at multiple protocol levels, but they are always present at the uppermost "socket'' level.  Options affect socket operations, such as whether an operation blocks or not, the routing of packets, out-of-band data transfer, etc.



The value associated with the selected option is returned in the buffer optval.  The integer pointed to by optlen should originally contain the size of this buffer; on return, it will be set to the size of the value returned.  For SO_LINGER, this will be the size of a struct linger; for most other options it will be the size of an integer.



The application is responsible for allocating any memory space pointed to directly or indirectly by any of the parameters it specified.  



If the option was never set with setsockopt(), then getsockopt() returns the default value for the option.



The following options are supported for getsockopt().  The Type identifies the type of data addressed by optval. 



level = SOL_SOCKET����Value�Type�Meaning��SO_ACCEPTCONN�BOOL�Socket is listen()ing.��SO_BROADCAST�BOOL�Socket is configured for the transmission of broadcast messages.��SO_DEBUG�BOOL�Debugging is enabled.  ��SO_DONTLINGER�BOOL�If true, the SO_LINGER option is disabled.��SO_DONTROUTE�BOOL�Routing is disabled.��SO_ERROR�int�Retrieve error status and clear.��SO_GROUP_ID�GROUP�The identifier of the group to which this socket belongs.  ��SO_GROUP_PRIORITY�int�The relative priority for sockets that are part of a socket group.��SO_KEEPALIVE�BOOL�Keepalives are being sent.��SO_LINGER�struct linger �Returns the current linger options.��SO_MAX_MSG_SIZE�unsigned int�Maximum size of a message for message-oriented socket types (e.g., SO_DGRAM).  Has no meaning for stream-oriented sockets.��SO_OOBINLINE�BOOL�Out-of-band data is being received in the normal data stream.  ��SO_PROTOCOL_INFO�PROTOCOL_INFO�Description of protocol info for protocol that is bound to this socket.��SO_RCVBUF�int�Buffer size for receives��SO_REUSEADDR�BOOL�The socket may be bound to an address which is already in use.��SO_SNDBUF�int�Buffer size for sends��SO_TYPE�int�The type of the socket (e.g. SOCK_STREAM).������level = SOL_PROVIDER� (also aliased to IPPROTO_TCP)����PVD_CONFIG�Service Provider Dependent�An "opaque" data structure object from the service provider associated with socket s.  This object stores the current configuration information of the service provider.  The exact format of this data structure is service provider specific.��TCP_NODELAY�BOOL�Disables the Nagle algorithm for send coalescing.��

BSD options not supported for getsockopt() are:



Value�Type�Meaning��SO_RCVLOWAT�int�Receive low water mark��SO_RCVTIMEO�int�Receive timeout��SO_SNDLOWAT�int�Send low water mark��SO_SNDTIMEO�int�Send timeout��IP_OPTIONS��Get options in IP header.��TCP_MAXSEG�int�Get TCP maximum segment size.��



Calling getsockopt() with an unsupported option will result in an error code of WSAENOPROTOOPT being returned from WSAGetLastError().





SO_DEBUG

Winsock service providers are encouraged (but not required) to supply output debug information if the SO_DEBUG option is set by an application.  The mechanism for generating the debug information and the form it takes are beyond the scope of this specification.



SO_QOS

This is a get-only socket option which indicates the QOS of the socket.  The default QOS defined in Sec. 2.8.3 will be returned before the application QOS for this socket.  The WSAENOPROTOOPT error code is indicated for service providers which do not support the QOS option.  See WSAConnect() about how to set the flow spec.



SO_GROUP_QOS

This is a get-only socket option which indicates the QOS of the group this socket belongs to.  The default QOS defined in Sec. 2.8.3 will be returned before the application sets the QOS for this socket group.  The WSAENOPROTOOPT error code is indicated for service providers which do not support the group QOS option.  If this socket does not belong to an appropriate socket group, the ForwardFP and BackwardFP fields of the returned QOS struct are set to NULL.  See WSAConnect() about how to set the flow spec.



SO_GROUP_ID

This is a get-only socket option which indicates the identifier of the group this socket belongs to.  If this socket is not a group socket, the value is NULL.



The group option is provided as a way to facilitate the formation of multiplex relationships between two or more sockets (each with the group option set) that will share an underlying physical connection.  While such multiplexing is an assumed attribute of packet switched networks, the assumption does not necessarily hold true for circuit switched networks.  By setting this option, the application indicates a preference for eligible sockets to be multiplexed together.  



SO_GROUP_PRIORITY

Group priority indicates the relative priority of the specified socket relative to other sockets within the socket group.  Values are non-negative integers, with zero corresponding to the highest priority.  Priority values represent a hint to the underlying service provider about how potentially scarce resources should be allocated.  For example, whenever two or more sockets are both ready to transmit data, the highest priority socket (lowest value for SO_GROUP_PRIORITY) should be serviced first, with the remainder serviced in turn according to their relative priorities.



The WSAENOPROTOOPT error code is indicated for non group sockets or for service providers which do not support group sockets.



SO_KEEPALIVE

An application may request that a TCP/IP service provider enable the use of "keep-alive" packets on TCP connections by turning on the SO_KEEPALIVE socket option.  A Winsock provider need not support the use of keep-alives: if it does, the precise semantics are implementation-specific but should conform to section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts -- Communication Layers.  If a connection is dropped as the result of "keep-alives" the error code WSAENETRESET is returned to any calls in progress on the socket, and any subsequent calls will fail with WSAENOTCONN.  



SO_LINGER

SO_LINGER controls the action taken when unsent data is queued on a socket and a closesocket() is performed.  See closesocket() for a description of the way in which the SO_LINGER settings affect the semantics of closesocket().  The application sets the desired behavior by creating a struct linger (pointed to by the optval argument) with the following elements:



struct linger {

	int	l_onoff;

	int	l_linger;

}





To enable SO_LINGER, the application should set l_onoff to a non-zero value, set l_linger to 0 or the desired timeout (in seconds), and call setsockopt().  To enable SO_DONTLINGER (i.e. disable SO_LINGER) l_onoff should be set to zero and setsockopt() should be called.



SO_MAX_MSG_SIZE

This is a get-only socket option which indicates the maximum size of a message for message-oriented socket types (e.g., SO_DGRAM) as implemented by a particular service provider.  It has no meaning for byte stream oriented sockets



SO_RESERVED_BW and SO_AVAILABLE_BW

These options are used primarily with isochronous sockets, although both options have meaningful interpretations for non-isochronous sockets as well.  When dealing with isochronous sockets, the application may retrieve the value of SO_AVAILABLE_BW to determine the maximum amount of bandwidth that is available to be reserved.  It uses SO_RESERVED_BW to actually request bandwidth allocation or to determine the current bandwidth already allocated to the socket.  In both instances, bandwidth values are expressed in "bits per second (bps)".



For non-isochronous sockets, the value of SO_AVAILABLE_BW is used to provide a hint as to the relative capacity of the underlying network.  Applications may wish to know, for example, whether they are running over a 1200 baud serial line or a 155 Mbps ATM link. Since in many instances it is impossible for a non-isochronous service provider to supply a precise value for this option, applications must realize that the supplied value may represent nothing more than a reasonable approximation of the capacity of the underlying network.  Applications may likewise use the value of SO_RESERVED_BW to provide a hint to the service provider about the desired amount of bandwidth.



SO_REUSEADDR

By default, a socket may not be bound (see bind()) to a local address which is already in use.  On occasions, however, it may be desirable to "re-use" an address in this way.  Since every connection is uniquely identified by the combination of local and remote addresses, there is no problem with having two sockets bound to the same local address as long as the remote addresses are different.  To inform the Winsock provider that a bind() on a socket should not be disallowed because the desired address is already in use by another socket, the application should set the SO_REUSEADDR socket option for the socket before issuing the bind().  Note that the option is interpreted only at the time of the bind(): it is therefore unnecessary (but harmless) to set the option on a socket which is not to be bound to an existing address, and setting or resetting the option after the bind() has no effect on this or any other socket.



PVD_CONFIG

This option retrieves an "opaque" data structure object from the service provider associated with socket s.  This object stores the current configuration information of the service provider.  The exact format of this data structure is service provider specific.



TCP_NODELAY

The TCP_NODELAY option disables the Nagle algorithm.  The Nagle algorithm is used to reduce the number of small packets sent by a host by buffering unacknowledged send data until a full-size packet can be sent.  However, for some applications this algorithm can impede performance, and TCP_NODELAY may be used to turn it off.  Application writers should not set TCP_NODELAY unless the impact of doing so is well-understood and desired, since setting TCP_NODELAY can have a significant negative impact of network performance.  





Return Value	If no error occurs, getsockopt() returns 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	The optlen argument was invalid.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINVAL	No value available for optname at the moment.



WSAENOPROTOOPT	The option is unknown or unsupported by the indicated protocol family.  



WSAENOTSOCK	The descriptor is not a socket.



See Also	setsockopt(), socket(), WSAAsyncSelect(), WSAConnect().

�3.15 htonl()

Description	Convert a u_long from host to network byte order.



 	#include <winsock.h>



 	u_long WSAAPI htonl ( u_long hostlong );





hostlong	A 32-bit number in host byte order.



Remarks	This routine takes a 32-bit number in host byte order and returns a 32-bit number in network byte order.





Return Value	htonl() returns the value in network byte order.



See Also	htons(), ntohl(), ntohs().

�3.16 htons()

Description	Convert a u_short from host to network byte order.



 	#include <winsock.h>



 	u_short WSAAPI htons ( u_short hostshort );





hostshort	A 16-bit number in host byte order.



Remarks	This routine takes a 16-bit number in host byte order and returns a 16-bit number in network byte order.





Return Value	htons() returns the value in network byte order.



See Also	htonl(), ntohl(), ntohs().

�3.17 inet_addr()

Description	Convert a string containing a dotted address into an in_addr.



 	#include <winsock.h>



	unsigned long WSAAPI inet_addr ( const char FAR * cp );





cp	A character string representing a number expressed in the Internet standard ".'' notation.



Remarks	This function interprets the character string specified by the cp parameter.  This string represents a numeric Internet address expressed in the Internet standard ".'' notation.  The value returned is a number suitable for use as an Internet address.  All Internet addresses are returned in network order (bytes ordered from left to right).



Internet Addresses



Values specified using the ".'' notation take one of the following forms:



a.b.c.d	a.b.c	a.b	a



When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the four bytes of an Internet address.  Note that when an Internet address is viewed as a 32-bit integer quantity on the Intel architecture, the bytes referred to above appear as "d.c.b.a''.  That is, the bytes on an Intel processor are ordered from right to left.



Note: The following notations are only used by Berkeley, and nowhere else on the Internet.  In the interests of compatibility with their software, they are supported as specified.



When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in the right most two bytes of the network address.  This makes the three part address format convenient for specifying Class B network addresses as "128.net.host''.



When a two part address is specified, the last part is interpreted as a 24-bit quantity and placed in the right most three bytes of the network address.  This makes the two part address format convenient for specifying Class A network addresses as "net.host''.



When only one part is given, the value is stored directly in the network address without any byte rearrangement.





Return Value	If no error occurs, inet_addr() returns an unsigned long containing a suitable binary representation of the Internet address given.  If the passed-in string does not contain a legitimate Internet address, for example if a portion of an "a.b.c.d" address exceeds 255, inet_addr() returns the value INADDR_NONE.



See Also	inet_ntoa()

�3.18 inet_ntoa()

Description	Convert a network address into a string in dotted format.



 	#include <winsock.h>



 	char FAR * WSAAPI inet_ntoa ( struct in_addr in );





in	A structure which represents an Internet host address.



Remarks	This function takes an Internet address structure specified by the in parameter.  It returns an ASCII string representing the address in ".''  notation as "a.b.c.d''.  Note that the string returned by inet_ntoa() resides in memory which is allocated by Winsock .  The application should not make any assumptions about the way in which the memory is allocated.  The data is guaranteed to be valid until the next Winsock API call within the same thread, but no longer.





Return Value	If no error occurs, inet_ntoa() returns a char pointer to a static buffer containing the text address in standard ".'' notation.  Otherwise, it returns NULL.  The data should be copied before another Winsock call is made.



See Also	inet_addr().

�3.19 ioctlsocket()

Description	Control the mode of a socket.



 	#include <winsock.h>



 	int WSAAPI ioctlsocket ( SOCKET s, long cmd, u_long FAR * argp );





s	A descriptor identifying a socket.



cmd	The command to perform on the socket s.



argp	A pointer to a parameter for cmd.



Remarks	This routine may be used on any socket in any state.  It is used to get or retrieve operating parameters associated with the socket, independent of the protocol and communications subsystem.  The following commands are supported:



Command	Semantics



FIONBIO	Enable or disable non-blocking mode on socket s.  argp points at an unsigned long, which is non-zero if non-blocking mode is to be enabled and zero if it is to be disabled.  When a socket is created, it operates in blocking mode (i.e. non-blocking mode is disabled).  This is consistent with BSD sockets.



	The WSAAsyncSelect() or WSAEventSelect() routine automatically sets a socket to nonblocking mode.  If WSAAsyncSelect() or WSAEventSelect() has been issued on a socket, then any attempt to use ioctlsocket() to set the socket back to blocking mode will fail with WSAEINVAL.  To set the socket back to blocking mode, an application must first disable WSAAsyncSelect() by calling WSAAsyncSelect() with the lEvent parameter equal to 0, or disable WSAEventSelect() by calling WSAEventSelect() with the lNetworkEvents parameter equal to 0.



FIONREAD	Determine the amount of data which can be read atomically from socket s.  argp points at an unsigned long in which ioctlsocket() stores the result.  If s is stream-oriented (e.g., type SOCK_STREAM), FIONREAD returns the total amount of data which may be read in a single recv(); this is normally the same as the total amount of data queued on the socket.  If s is message-oriented (e.g., type SOCK_DGRAM), FIONREAD returns the size of the first datagram (message) queued on the socket.



SIOCATMARK	Determine whether or not all out-of-band data has been read.  This applies only to a socket of stream style (e.g., type SOCK_STREAM) which has been configured for in-line reception of any out-of-band data (SO_OOBINLINE).  If no out-of-band data is waiting to be read,  the operation returns TRUE.  Otherwise it returns FALSE, and the next recv() or recvfrom() performed on the socket will retrieve some or all of the data preceding the "mark"; the application should use the SIOCATMARK operation to determine whether any remains.  If there is any normal data preceding the "urgent" (out of band) data, it will be received in order.  (Note that a recv() or recvfrom() will never mix out-of-band and normal data in the same call.)  argp points at a BOOL in which ioctlsocket() stores the result.



Compatibility	This function is a subset of ioctl() as used in Berkeley sockets.  In particular, there is no command which is equivalent to FIOASYNC, while SIOCATMARK is the only socket-level command which is supported.





Return Value	Upon successful completion, the ioctlsocket() returns 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	cmd is not a valid command, or argp is not an acceptable parameter for cmd, or the command is not applicable to the type of socket supplied



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENOTSOCK	The descriptor s is not a socket.





See Also	socket(), setsockopt(), getsockopt(), WSAAsyncSelect(), WSAEventSelect().

�3.20 listen()

Description	Establish a socket to listen for incoming connection.



 	#include <winsock.h>



 	int WSAAPI listen ( SOCKET s, int backlog );



s	A descriptor identifying a bound, unconnected socket.



backlog	The maximum length to which the queue of pending connections may grow. If this value is SOMAXCONN, then the underlying service provider responsible for socket s will set the backlog to a maximum “reasonable” value.



Remarks	To accept connections, a socket is first created with socket(), a backlog for incoming connections is specified with listen(), and then the connections are accepted with accept().  listen() applies only to sockets that are connection-oriented , e.g., those of type SOCK_STREAM.  The socket s is put into "passive'' mode where incoming connections are acknowledged and queued pending acceptance by the process.



This function is typically used by servers that could have more than one connection request at a time: if a connection request arrives with the queue full, the client will receive an error with an indication of WSAECONNREFUSED.



listen() attempts to continue to function rationally when there are no available descriptors.  It will accept connections until the queue is emptied.  If descriptors become available, a later call to listen() or accept() will re-fill the queue to the current or most recent "backlog'', if possible, and resume listening for incoming connections.



Compatibility	backlog is limited (silently) to a reasonable value as determined by the underlying service provider. Illegal values are replaced by the nearest legal value..



Return Value	If no error occurs, listen() returns 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEADDRINUSE	An attempt has been made to listen() on an address in use.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINVAL	The socket has not been bound with bind() or is already connected.



WSAEISCONN	The socket is already connected.



WSAEMFILE	No more socket descriptors are available.



WSAENOBUFS	No buffer space is available.



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	The referenced socket is not of a type that supports the listen() operation.



See Also	accept(),  connect(), socket().

�3.21 ntohl()

Description	Convert a u_long from network to host byte order.



 	#include <winsock.h>



 	u_long WSAAPI ntohl ( u_long netlong );





netlong	A 32-bit number in network byte order.



Remarks	This routine takes a 32-bit number in network byte order and returns a 32-bit number in host byte order.





Return Value	ntohl() returns the value in host byte order.



See Also	htonl(), htons(), ntohs().

�3.22 ntohs()

Description	Convert a u_short from network to host byte order.



 	#include <winsock.h>



 	u_short WSAAPI ntohs ( u_short netshort );





netshort	A 16-bit number in network byte order.



Remarks	This routine takes a 16-bit number in network byte order and returns a 16-bit number in host byte order.





Return Value	ntohs() returns the value in host byte order.



See Also	htonl(), htons(), ntohl().

�3.23 recv()

Description	Receive data from a socket.



 	#include <winsock.h>



 	int WSAAPI recv ( SOCKET s, char FAR * buf, int len, int flags );





s	A descriptor identifying a connected socket.



buf	A buffer for the incoming data.



len	The length of buf.



flags	Specifies the way in which the call is made.



Remarks	This function is used on connected connectionless or connection-oriented sockets specified by the s parameter and is used to read incoming data.



For sockets of stream style (e.g., type SOCK_STREAM), as much information as is currently available up to the size of the buffer supplied is returned.  If the socket has been configured for in-line reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be returned.  The application may use the ioctlsocket() SIOCATMARK to determine whether any more out-of-band data remains to be read.



For message-oriented sockets (e.g., type SOCK_DGRAM), data is extracted from the first enqueued datagram (message), up to the size of the buffer supplied.  If the datagram is larger than the buffer supplied, the buffer is filled with the first part of the datagram, the excess data is lost, and recv() returns the error WSAEMSGSIZE.



If no incoming data is available at the socket, the recv() call waits for data to arrive unless the socket is non-blocking.  In this case a value of SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK.  The select(), WSAAsyncSelect(), or WSAEventSelect() calls may be used to determine when more data arrives.



If the socket is connection-oriented and the remote side has shut down the connection gracefully, a recv() will complete immediately with 0 bytes received.  If the connection has been reset, a recv() will fail with the error WSAECONNRESET.



Flags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the flags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_PEEK	Peek at the incoming data.  The data is copied into the buffer but is not removed from the input queue.



MSG_OOB	Process out-of-band data (See section �ref oob�B.3.2.3 B.3.2.3 � for a discussion of this topic.)





Return Value	If no error occurs, recv() returns the number of bytes received.  If the connection has been gracefully closed, the return value is 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	The buf argument is not in a valid part of the user address space.



WSAENOTCONN	The socket is not connected.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENETRESET	The connection must be reset because the Winsock implementation dropped it.



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only send operations.



WSAESHUTDOWN	The socket has been shutdown; it is not possible to recv() on a socket after shutdown() has been invoked with how set to SD_RECEIVE or SD_BOTH.



WSAEWOULDBLOCK	The socket is marked as non-blocking and the receive operation would block.



WSAEMSGSIZE	The message was too large to fit into the specified buffer and was truncated.



WSAEINVAL	The socket has not been bound with bind().



WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure. .  The application should close the socket as it is no longer useable.



WSAECONNRESET	The virtual circuit was reset by the remote side executing a “hard” or “abortive” close.  The application should close the socket as it is no longer useable.



See Also	recvfrom(), send(), select(), socket(), WSAAsyncSelect().

�3.24 recvfrom()

Description	Receive a datagram and store the source address.



 	#include <winsock.h>



 	int WSAAPI recvfrom ( SOCKET s, char FAR * buf, int len, int flags, 

	struct sockaddr FAR * from, int FAR * fromlen );





s	A descriptor identifying a bound socket.



buf	A buffer for the incoming data.



len	The length of buf.



flags	Specifies the way in which the call is made.



from	An optional pointer to a buffer which will hold the source address upon return.



fromlen	An optional pointer to the size of the from buffer.



Remarks	This function is used to read incoming data on a (possibly connected) socket and capture the address from which the data was sent.



For stream-oriented sockets such as those of type SOCK_STREAM, as much information as is currently available up to the size of the buffer supplied is returned.  If the socket has been configured for in-line reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be returned.  The application may use the ioctlsocket() SIOCATMARK to determine whether any more out-of-band data remains to be read.  The from and fromlen parameters are ignored for connection-oriented sockets.



For message-oriented sockets, data is extracted from the first enqueued message, up to the size of the buffer supplied.  If the message is larger than the buffer supplied, the buffer is filled with the first part of the message, the excess data is lost, and recvfrom() returns the error code WSAEMSGSIZE.



If from is non-zero, and the socket is not connection-oriented (e.g., type SOCK_DGRAM), the network address of the peer which sent the data is copied to the corresponding struct sockaddr.  The value pointed to by fromlen is initialized to the size of this structure, and is modified on return to indicate the actual size of the address stored there.



If no incoming data is available at the socket, the recvfrom() call waits for data to arrive unless the socket is non-blocking.  In this case a value of SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK.  The select(), WSAAsyncSelect(), or WSAEventSelect() may be used to determine when more data arrives.



If the socket is connection-oriented and the remote side has shut down the connection gracefully, a recvfrom() will complete immediately with 0 bytes received.  If the connection has been reset recvfrom() will fail with the error WSAECONNRESET.



Flags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the flags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_PEEK	Peek at the incoming data.  The data is copied into the buffer but is not removed from the input queue.



MSG_OOB	Process out-of-band data (See section �ref oob�B.3.2.3 B.3.2.3 � for a discussion of this topic.)





Return Value	If no error occurs, recvfrom() returns the number of bytes received.  If the connection has been gracefully closed, the return value is 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	The buf or from parameters are not part of the user address space, or the fromlen argument is too small to accommodate the peer address (less than the sizeof a struct sockaddr).



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINVAL	The socket has not been bound with bind().



WSAENETRESET	The connection must be reset because the Winsock provider dropped it.



WSAENOTCONN	The socket is not connected (connection-oriented sockets only).



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only send operations.



WSAESHUTDOWN	The socket has been shutdown; it is not possible to recvfrom() on a socket after shutdown() has been invoked with how set to SD_RECEIVE or SD_BOTH.



WSAEWOULDBLOCK	The socket is marked as non-blocking and the recvfrom() operation would block.



WSAEMSGSIZE	The message was too large to fit into the specified buffer and was truncated.



WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure.  The application should close the socket as it is no longer useable.



WSAECONNRESET	The virtual circuit was reset by the remote side executing a “hard” or “abortive” close.  The application should close the socket as it is no longer useable.





See Also	recv(), send(), socket(), WSAAsyncSelect(), WSAEventSelect().

�3.25 select()

Description	Determine the status of one or more sockets, waiting if necessary.



 	#include <winsock.h>



 	int WSAAPI select ( int nfds, fd_set FAR * readfds, fd_set FAR * writefds, �fd_set FAR * exceptfds, const struct timeval FAR * timeout );





nfds	This argument is ignored and included only for the sake of compatibility.



readfds	An optional pointer to a set of sockets to be checked for readability.



writefds	An optional pointer to a set of sockets to be checked for writability



exceptfds	An optional pointer to a set of sockets to be checked for errors.



timeout	The maximum time for select() to wait, or NULL for blocking operation.



Remarks	This function is used to determine the status of one or more sockets.  For each socket, the caller may request information on read, write or error status.  The set of sockets for which a given status is requested is indicated by an fd_set structure.  The sockets contained within the fd_set structures must be associated with a single service provider.  Upon return, the structure is updated to reflect the subset of these sockets which meet the specified condition, and select() returns the number of sockets meeting the conditions.  A set of macros is provided for manipulating an fd_set.  These macros are compatible with those used in the Berkeley software, but the underlying representation is completely different.  



The parameter readfds identifies those sockets which are to be checked for readability.  If the socket is currently listen()ing, it will be marked as readable if an incoming connection request has been received, so that an accept() is guaranteed to complete without blocking.  For other sockets, readability means that queued data is available for reading or, for connection-oriented sockets, that the virtual circuit corresponding to the socket has been closed, so that a recv() or recvfrom() is guaranteed to complete without blocking.  If the virtual circuit was closed gracefully, then a recv() will return immediately with 0 bytes read; if the virtual circuit was reset, then a recv() will complete immediately with the error code WSAECONNRESET. The presence of out-of-band data will be checked if the socket option SO_OOBINLINE has been enabled (see setsockopt()).



The parameter writefds identifies those sockets which are to be checked for writability.   If a socket is connect()ing (non-blocking), writability means that the connection establishment successfully completed.  If the socket is not in the process of connect()ing, writability means that a send() or sendto() or WSAGetBuffer() will complete without blocking.  [It is not specified how long this guarantee can be assumed to be valid, particularly in a multithreaded environment.]



The parameter exceptfds identifies those sockets which are to be checked for the presence of out-of-band data or any exceptional error conditions.  Note that out-of-band data will only be reported in this way if the option SO_OOBINLINE is FALSE.  For a connection-oriented socket, the breaking of the connection by the peer or due to KEEPALIVE failure will be indicated as an exception.  This specification does not define which other errors will be included.  If a socket is connect()ing (non-blocking), failure of the connect attempt is indicated in exceptfds.



Any of readfds, writefds, or exceptfds may be given as NULL if no descriptors are of interest.



Four macros are defined in the header file winsock.h for manipulating the descriptor sets.  The variable FD_SETSIZE determines the maximum number of descriptors in a set.  (The default value of FD_SETSIZE is 64, which may be modified by #defining FD_SETSIZE to another value before #including winsock.h.)  Internally, an fd_set is represented as an array of SOCKETs; the last valid entry is followed by an element set to INVALID_SOCKET.  The macros are:



FD_CLR(s, *set)		Removes the descriptor s from set.



FD_ISSET(s, *set)	Nonzero if s is a member of the set, zero otherwise.



FD_SET(s, *set)		Adds descriptor s to set.



FD_ZERO(*set)		Initializes the set to the NULL set.



The parameter timeout controls how long the select() may take to complete.  If timeout is a null pointer, select() will block indefinitely until at least one descriptor meets the specified criteria.  Otherwise, timeout points to a struct timeval which specifies the maximum time that select() should wait before returning.  If the timeval is initialized to {0, 0}, select() will return immediately; this is used to "poll" the state of the selected sockets.  If this is the case, then the select() call is considered nonblocking and the standard assumptions for nonblocking calls apply.  For example, the blocking hook will not be called, and Winsock will not yield.



Return Value	select() returns the total number of descriptors which are ready and contained in the fd_set structures, 0 if the time limit expired, or SOCKET_ERROR if an error occurred.  If the return value is SOCKET_ERROR, WSAGetLastError() may be used to retrieve a specific error code.



Comments	select() has no effect on the persistance of socket events registered with WSAAsyncSelect() or WSAEventSelect().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAEFAULT	The Winsock implementation was unable to allocated needed resources for its internal operations, or the readfds, writefds, or exceptfds parameters are not part of the user address space.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	The timeout value is not valid.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENOTSOCK	One of the descriptor sets contains an entry which is not a socket.



See Also	accept(), connect(), recv(), recvfrom(), send(), WSAAsyncSelect(), WSAEventSelect()

�3.26 send()

Description	Send data on a connected socket.



 	#include <winsock.h>



 	int WSAAPI send ( SOCKET s, const char FAR * buf, int len, int flags );





s	A descriptor identifying a connected socket.



buf	A buffer containing the data to be transmitted.



len	The length of the data in buf.



flags	Specifies the way in which the call is made.



Remarks	send() is used  to write outgoing data on a connected socket.  For message-oriented sockets, care must be taken not to exceed the maximum packet size of the underlying provider, which can be obtained by getting the value of socket option SO_MAX_MSG_SIZE.  If the data is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.



Note that the successful completion of a send() does not indicate that the data was successfully delivered.



If no buffer space is available within the transport system to hold the data to be transmitted, send() will block unless the socket has been placed in a non-blocking I/O mode.  On non-blocking stream-oriented sockets, the number of bytes written may be between 1 and the requested length, depending on buffer availability on both the local and foreign hosts.  The select(), WSAAsyncSelect() or WSAEventSelect() call may be used to determine when it is possible to send more data.



Flags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the flags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_DONTROUTE�Specifies that the data should not be subject to routing.  A Winsock service provider may choose to ignore this flag; see also the discussion of the SO_DONTROUTE option in section �ref Socket_Options�B.3.4 B.3.4 �.



MSG_OOB	Send out-of-band data (stream style socket such as SOCK_STREAM only; see also section �ref oob�B.3.2.3 B.3.2.3 �)





Return Value	If no error occurs, send() returns the total number of characters sent.  (Note that this may be less than the number indicated by len.) Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEACCES	The requested address is a broadcast address, but the appropriate flag was not set.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEFAULT	The buf argument is not in a valid part of the user address space.



WSAENETRESET	The connection must be reset because the Winsock provider dropped it.



WSAENOBUFS	The Winsock provider reports a buffer deadlock.



WSAENOTCONN	The socket is not connected.



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only receive operations.



WSAESHUTDOWN	The socket has been shutdown; it is not possible to send() on a socket after shutdown() has been invoked with how set to SD_SEND or SD_BOTH.



WSAEWOULDBLOCK	The socket is marked as non-blocking and the requested operation would block.



WSAEMSGSIZE	The socket is message-oriented, and the message is larger than the maximum supported by the underlying transport.



WSAEINVAL	The socket has not been bound with bind().



WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure. .  The application should close the socket as it is no longer useable.



WSAECONNRESET	The virtual circuit was reset by the remote side executing a “hard” or “abortive” close.  The application should close the socket as it is no longer useable.





See Also	recv(), recvfrom(), select(), socket(), sendto(), WSAAsyncSelect(), WSAEventSelect(), WSAGetBuffer().

�3.27 sendto()

Description	Send data to a specific destination.



 	#include <winsock.h>



 	int WSAAPI sendto ( SOCKET s, const char FAR * buf, int len, int flags, 

	const struct sockaddr FAR * to, int tolen );





s	A descriptor identifying a socket.



buf	A buffer containing the data to be transmitted.



len	The length of the data in buf.



flags	Specifies the way in which the call is made.



to	An optional pointer to the address of the target socket.



tolen	The size of the address in to.



Remarks	sendto() is used to write outgoing data on a socket.  For message-oriented sockets, care must be taken not to exceed the maximum packet size of the underlying subnets, which can be obtained by getting the value of socket option SO_MAX_MSG_SIZE.  If the data is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.



Note that the successful completion of a sendto() does not indicate that the data was successfully delivered.



sendto() is normally used on a connectionless socket to send a datagram to a specific peer socket identified by the to parameter.  On a connection-oriented socket, the to and tolen parameters are ignored; in this case the sendto() is equivalent to send().



For sockets using IP: 

To send a broadcast (on a SOCK_DGRAM only), the address in the to parameter should be constructed using the special IP address INADDR_BROADCAST (defined in winsock.h) together with the intended port number.  It is generally inadvisable for a broadcast datagram to exceed the size at which fragmentation may occur, which implies that the data portion of the datagram (excluding headers) should not exceed 512 bytes.



If no buffer space is available within the transport system to hold the data to be transmitted, sendto() will block unless the socket has been placed in a non-blocking I/O mode.  On non-blocking stream-oriented sockets, the number of bytes written may be between 1 and the requested length, depending on buffer availability on both the local and foreign hosts.  The select(), WSAAsyncSelect() or WSAEventSelect() call may be used to determine when it is possible to send more data.



Flags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the flags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_DONTROUTE�Specifies that the data should not be subject to routing.  A Winsock service provider may choose to ignore this flag; see also the discussion of the SO_DONTROUTE option in section �ref Socket_Options�B.3.4 B.3.4 �.



MSG_OOB	Send out-of-band data (stream style socket such as SOCK_STREAM only; see also section �ref oob�B.3.2.3 B.3.2.3 �)





Return Value	If no error occurs, sendto() returns the total number of characters sent.  (Note that this may be less than the number indicated by len.) Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEACCES	The requested address is a broadcast address, but the appropriate flag was not set.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEFAULT	The buf or to parameters are not part of the user address space, or the tolen argument is too small (less than the sizeof a struct sockaddr).



WSAENETRESET	The connection must be reset because the Winsock provider dropped it.



WSAENOBUFS	The Winsock provider reports a buffer deadlock.



WSAENOTCONN	The socket is not connected (connection-oriented sockets only)



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only receive operations.



WSAESHUTDOWN	The socket has been shutdown; it is not possible to sendto() on a socket after shutdown() has been invoked with how set to SD_SEND or SD_BOTH.



WSAEWOULDBLOCK	The socket is marked as non-blocking and the requested operation would block.



WSAEMSGSIZE	The socket is message-oriented, and the message is larger than the maximum supported by the underlying transport.



WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure. .  The application should close the socket as it is no longer useable.



WSAECONNRESET	The virtual circuit was reset by the remote side executing a “hard” or “abortive” close.  The application should close the socket as it is no longer useable.



WSAEADDRNOTAVAIL	The specified address is not available from the local machine.



WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.



WSAEDESTADDRREQ	A destination address is required.



WSAENETUNREACH	The network can't be reached from this host at this time.



See Also	recv(), recvfrom(), select(), socket(), send(), WSAAsyncSelect(), WSAEventSelect(), WSAGetBuffer().

�3.28 setsockopt()

Description	Set a socket option.



 	#include <winsock.h>



 	int WSAAPI setsockopt ( SOCKET s, int level, int optname, 

	const char FAR * optval, int optlen );





s	A descriptor identifying a socket.



level	The level at which the option is defined; the only supported levels are SOL_SOCKET and SOL_PROVIDER.  (SOL_PROVIDER is defined to be an alias for IPPROTO_TCP for the sake of compatibility with Windows Sockets specification 1.1.)



optname	The socket option for which the value is to be set.



optval	A pointer to the buffer in which the value for the requested option is supplied.



optlen	The size of the optval buffer.



Remarks	setsockopt() sets the current value for a socket option associated with a socket of any type, in any state.  Although options may exist at multiple protocol levels, they are always present at the uppermost "socket'' level.  Options affect socket operations, such as whether expedited data is received in the normal data stream, whether broadcast messages may be sent on the socket, etc.  



There are two types of socket options: Boolean options that enable or disable a feature or behavior, and options which require an integer value or structure.  To enable a Boolean option, optval points to a nonzero integer.  To disable the option optval points to an integer equal to zero.  optlen should be equal to sizeof(int) for Boolean options.  For other options, optval points to the an integer or structure that contains the desired value for the option, and optlen is the length of the integer or structure.



The following options are supported for setsockopt().  The Type identifies the type of data addressed by optval.



level = SOL_SOCKET����Value�Type�Meaning��SO_BROADCAST�BOOL�Allow transmission of broadcast messages on the socket.��SO_DEBUG�BOOL�Record debugging information.  ��SO_DONTLINGER�BOOL�Don't block close waiting for unsent data to be sent.  Setting this option is equivalent to setting SO_LINGER with l_onoff set to zero.��SO_DONTROUTE�BOOL�Don't route: send directly to interface.��SO_GROUP_PRIORITY�int�Specify the relative priority to be established for sockets that are part of a socket group.��SO_KEEPALIVE�BOOL�Send keepalives��SO_LINGER�struct linger �Linger on close if unsent data is present��SO_OOBINLINE�BOOL�Receive out-of-band data in the normal data stream.  ��SO_RCVBUF�int�Specify buffer size for receives��SO_REUSEADDR�BOOL�Allow the socket to be bound to an address which is already in use.  (See bind().) ��SO_SNDBUF�int�Specify buffer size for sends.������level = SOL_PROVIDER�(aliased to IPPROTO_TCP)����PVD_CONFIG�Service Provider Dependent�This object stores the configuration information for the service provider associated with socket s.  The exact format of this data structure is service provider specific.��TCP_NODELAY�BOOL�Disables the Nagle algorithm for send coalescing.��

BSD options not supported for setsockopt() are:



Value�Type�Meaning��SO_ACCEPTCONN�BOOL�Socket is listening��SO_RCVLOWAT�int�Receive low water mark��SO_RCVTIMEO�int�Receive timeout��SO_SNDLOWAT�int�Send low water mark��SO_SNDTIMEO�int�Send timeout��SO_TYPE�int�Type of the socket��IP_OPTIONS��Set options field in IP header.��

SO_DEBUG

Winsock service providers are encouraged (but not required) to supply output debug information if the SO_DEBUG option is set by an application.  The mechanism for generating the debug information and the form it takes are beyond the scope of this specification.



SO_GROUP_PRIORITY

Group priority indicates the relative priority of the specified socket relative to other sockets within the socket group.  Values are non-negative integers, with zero corresponding to the highest priority.  Priority values represent a hint to the underlying service provider about how potentially scarce resources should be allocated.  For example, whenever two or more sockets are both ready to transmit data, the highest priority socket (lowest value for SO_GROUP_PRIORITY) should be serviced first, with the remainder serviced in turn according to their relative priorities.







Eligibility for grouping sockets together is based on the destination address of sockets marked with the group option.  Sockets which share destination addresses that are identical except for the last component of the address (e.g. the port number in the IP address family) are eligible for group multiplexing.  The manner in which multiplexing is implemented is left up to the service provider.The WSAENOPROTOOPT error is indicated for non group sockets or for service providers which do not support group sockets.



SO_KEEPALIVE

An application may request that a TCP/IP provider enable the use of "keep-alive" packets on TCP connections by turning on the SO_KEEPALIVE socket option.  A Winsock provider need not support the use of keep-alives: if it does, the precise semantics are implementation-specific but should conform to section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts -- Communication Layers.  If a connection is dropped as the result of "keep-alives" the error code WSAENETRESET is returned to any calls in progress on the socket, and any subsequent calls will fail with WSAENOTCONN.  



SO_LINGER

SO_LINGER controls the action taken when unsent data is queued on a socket and a closesocket() is performed.  See closesocket() for a description of the way in which the SO_LINGER settings affect the semantics of closesocket().  The application sets the desired behavior by creating a struct linger (pointed to by the optval argument) with the following elements:



struct linger {

	int	l_onoff;

	int	l_linger;

}





To enable SO_LINGER, the application should set l_onoff to a non-zero value, set l_linger to 0 or the desired timeout (in seconds), and call setsockopt().  To enable SO_DONTLINGER (i.e. disable SO_LINGER) l_onoff should be set to zero and setsockopt() should be called.



SO_RESERVED_BW and SO_AVAILABLE_BW

These options are used primarily with isochronous sockets, although both options have meaningful interpretations for non-isochronous sockets as well.  When dealing with isochronous sockets, the application may retrieve the value of SO_AVAILABLE_BW to determine the maximum amount of bandwidth that is available to be reserved.  It uses SO_RESERVED_BW to actually request bandwidth allocation or to determine the current bandwidth already allocated to the socket.  In both instances, bandwidth values are expressed in "bits per second (bps)".



For non-isochronous sockets, the value of SO_AVAILABLE_BW is used to provide a hint as to the relative capacity of the underlying network.  Applications may wish to know, for example, whether they are running over a 1200 baud serial line or a 155 Mbps ATM link. Since in many instances it is impossible for a non-isochronous service provider to supply a precise value for this option, applications must realize that the supplied value may represent nothing more than a reasonable approximation of the capacity of the underlying network.  Applications may likewise use the value of SO_RESERVED_BW to provide a hint to the service provider about the desired amount of bandwidth.



SO_REUSEADDR

By default, a socket may not be bound (see bind()) to a local address which is already in use.  On occasions, however, it may be desirable to "re-use" an address in this way.  Since every connection is uniquely identified by the combination of local and remote addresses, there is no problem with having two sockets bound to the same local address as long as the remote addresses are different.  To inform the Winsock provider that a bind() on a socket should not be disallowed because the desired address is already in use by another socket, the application should set the SO_REUSEADDR socket option for the socket before issuing the bind().  Note that the option is interpreted only at the time of the bind(): it is therefore unnecessary (but harmless) to set the option on a socket which is not to be bound to an existing address, and setting or resetting the option after the bind() has no effect on this or any other socket.



PVD_CONFIG

This option specifies an object previously obtained using getsockopt().  This object stores the configuration information for the service provider associated with socket s.  The exact format of this data structure is service provider specific.



TCP_NODELAY

The TCP_NODELAY option is specific to TCP/IP service providers.  It is used to disable the Nagle algorithm.  The Nagle algorithm is used to reduce the number of small packets sent by a host by buffering unacknowledged send data until a full-size packet can be sent.  However, for some applications this algorithm can impede performance, and TCP_NODELAY may be used to turn it off.  Application writers should not set TCP_NODELAY unless the impact of doing so is well-understood and desired, since setting TCP_NODELAY can have a significant negative impact of network performance.  





Return Value	If no error occurs, setsockopt() returns 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	optval is not in a valid part of the process address  space.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEINVAL	level is not valid, or the information in optval is not valid.



WSAENETRESET	Connection has timed out when SO_KEEPALIVE is set.



WSAENOPROTOOPT	The option is unknown or unsupported for the specified provider.  



WSAENOTCONN	Connection has been reset when SO_KEEPALIVE is set.



WSAENOTSOCK	The descriptor is not a socket.



See Also	bind(), getsockopt(), ioctlsocket(), socket(), WSAAsyncSelect(), WSAEventSelect().

�3.29 shutdown()

Description	Disable sends and/or receives on a socket.



 	#include <winsock.h>



 	int WSAAPI shutdown ( SOCKET s, int how );





s	A descriptor identifying a socket.



how	A flag that describes what types of operation will no longer be allowed.



Remarks	shutdown() is used on all types of sockets to disable reception, transmission, or both.



If how is SD_RECEIVE, subsequent receives on the socket will be disallowed.  This has no effect on the lower protocol layers.  For TCP, the TCP window is not changed and incoming data will be accepted (but not acknowledged) until the window is exhausted.  For UDP, incoming datagrams are accepted and queued.  In no case will an ICMP error packet be generated.



If how is SD_SEND, subsequent sends are disallowed.  For TCP sockets, a FIN will be sent.



Setting how to SD_BOTH disables both sends and receives as described above.



Note that shutdown() does not close the socket, and resources attached to the socket will not be freed until closesocket() is invoked.





Comments	shutdown() does not block regardless of the SO_LINGER setting on the socket.



An application should not rely on being able to re-use a socket after it has been shut down.  In particular, a Winsock provider is not required to support the use of connect() on such a socket.



Return Value	If no error occurs, shutdown() returns 0.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	how is not valid, or is not consistent with the socket type, e.g., SD_SEND is used with a UNI_RECV socket type.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENOTCONN	The socket is not connected (connection-oriented sockets only).



WSAENOTSOCK	The descriptor is not a socket.



See Also	connect(), socket().

�3.30 socket()

Description	Create a socket which is bound to a specific service provider.



 	#include <winsock.h>



 	SOCKET WSAAPI socket ( int af, int type, int protocol );





af	An address family specification.  The only format currently supported is PF_INET, which is the ARPA Internet address format.



type	A type specification for the new socket.



protocol	A particular protocol to be used with the socket, or 0 if the caller does not wish to specify a protocol.



Remarks	socket() causes a socket descriptor and any related resources to be allocated and bound to a specific transport service provider.  Winsock will utilize the first available service provider that supports the requested combination of address family, socket type and protocol parameters.



If a protocol is not specified (i.e., equal to 0), the default for the specified socket type is used.  However, the address family may be given as AF_UNSPEC (unspecified), in which case the protocol parameter must be specified.  The protocol number to use is particular to the "communication domain'' in which communication is to take place. 



The following are the only two type specifications supported for Winsock 1.1:



Type	Explanation

SOCK_STREAM	Provides sequenced, reliable, two-way, connection-based byte streams with an out-of-band data transmission mechanism.  Uses TCP for the Internet address family.



SOCK_DGRAM	Supports datagrams, which are connectionless, unreliable buffers of a fixed (typically small) maximum length.  Uses UDP for the Internet address family.



In Winsock 2 many new socket types will be introduced.  However, since an application can dynamically discover the attributes of each available transport protocol via the WSAEnumProtocols() function, the various socket types need not be called out in the API specification.  Socket type definitions will appear in Winsock.h which will be periodically updated as new socket types, address families and protocols are defined.



Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections, and must be in a connected state before any data may be sent or received on it.  A connection to another socket is created with a connect() call.  Once connected, data may be transferred using send() and recv() calls.  When a session has been completed, a closesocket() must be performed.  Out-of-band data may also be transmitted as described in send() and received as described in recv().



The communications protocols used to implement a reliable, connection-oriented socket ensure that data is not lost or duplicated.  If data for which the peer protocol has buffer space cannot be successfully transmitted within a reasonable length of time,  the connection is considered broken and subsequent calls will fail with the error code set to WSAETIMEDOUT.



Connectionless, message-oriented sockets allow sending and receiving of datagrams to and from arbitrary peers using sendto() and recvfrom().  If such a socket is connect()ed to a specific peer, datagrams may be send to that peer using send() and may be received from (only) this peer using recv().





Return Value	If no error occurs, socket() returns a descriptor referencing the new socket.  Otherwise, a value of INVALID_SOCKET is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem or the associated service provider has failed.



WSAEAFNOSUPPORT	The specified address family is not supported.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEMFILE	No more socket descriptors are available.



WSAENOBUFS	No buffer space is available.  The socket cannot be created.



WSAEPROTONOSUPPORT	The specified protocol is not supported.



WSAEPROTOTYPE	The specified protocol is the wrong type for this socket.



WSAESOCKTNOSUPPORT	The specified socket type is not supported in this address family.



See Also	accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(), listen(), recv(), recvfrom(), select(), send(), sendto(), shutdown(), ioctlsocket().



�3.31 WSAAccept()

Description	Conditionally accept a connection based on the return value of a condition function, and optionally create and/or join a socket group.



 	#include <winsock.h>



 	SOCKET WSAAPI WSAAccept ( SOCKET s, struct sockaddr FAR * addr, int FAR * addrlen, LPCONDITIONPROC lpfnCondition, DWORD dwCallbackData );





s	A descriptor identifying a socket which is listening for connections after a listen().



addr	An optional pointer to a buffer which receives the address of the connecting entity, as known to the communications layer.  The exact format of the addr argument is determined by the address family established when the socket was created.



addrlen	An optional pointer to an integer which contains the length of the address addr.



lpfnCondition	The procedure instance address of the optional, application-supplied condition function which will make an accept/reject decision based on the caller information passed in as parameters, and optionally create and/or join a socket group by assigning an appropriate value to the result parameter g of this function.



dwCallbackData	The callback data passed back to the application as a condition function parameter.  This parameter is not interpreted by Winsock.



Remarks	This routine extracts the first connection on the queue of pending connections on s, and checks it against the condition function, provided the condition function is specified (i.e., not NULL).  If the condition function returns CF_ACCEPT, this routine creates a new socket with the same properties as s and returns a handle to the new socket, and then optionally creates and/or joins a socket group based on the value of the result parameter g in the condition function.  If the condition function returns CF_REJECT, this routine rejects the connection request.  The condition function runs in the same thread as this routine does, and should return as soon as possible.  If the decision cannot be made immediately, the condition function should return CF_DEFER to indicate that no decision has been made, and no action about this connection request should be taken by the service provider.  When the application is ready to take action on the connection request, it may invoke WSAAccept() again and return either CF_ACCEPT or CF_REJECT as a return value from the condition function.



	For synchronous sockets which remain in the (default) blocking mode, if no pending connections are present on the queue, WSAAccept() blocks the caller until a connection is present.  For synchronous sockets in a non-blocking mode or for overlapped sockets, if this function is called when no pending connections are present on the queue, WSAAccept() returns an error as described below.  The accepted socket may not be used to accept more connections.  The original socket remains open.



The argument addr is a result parameter that is filled in with the address of the connecting entity, as known to the communications layer.  The exact format of the addr parameter is determined by the address family in which the communication is occurring.  The addrlen is a value-result parameter; it should initially contain the amount of space pointed to by addr.  On return, it will contain the actual length (in bytes) of the address returned.  This call is used with connection-oriented socket types such as SOCK_STREAM.  If addr and/or addrlen are equal to NULL, then no information about the remote address of the accepted socket is returned.  Otherwise, these two parameters will be filled in regardless of whether the condition function is specified or what it returns.



The prototype of the condition function is as follows:



	int CALLBACK ConditionFunc( �		WSABUF CallerId, �		LPWSABUF lpCallerData, �		LPQOS lpCallerSQOS, �		LPQOS lpCallerGQOS,�		WSABUF CalleeId, �		LPWSABUF lpCalleeData, �		GROUP FAR * g, 	�		DWORD dwCallbackData );



LPWSABUF and LPQOS are defined in winsock.h as follows:



	typedef struct _WSABUF {

		int		len; 	// the length of the buffer

		char FAR *	buf;	// the pointer to the buffer

	} WSABUF, FAR * LPWSABUF;



			typedef enum

			{

				GuaranteedService,

				BestEffortService

			} GUARANTEE;



			typedef struct _flowparams

			{

				int64		AverageBandwith;// In Bytes/sec

			     	int64		PeakBandwidth;	// In Bytes/sec

			     	int64		BurstLength;	// In microseconds

				int64		Latency;		// In microseconds

				int64		DelayVariation;	// In microseconds

				GUARANTEE	levelOfGuarantee;// Guaranteed or

								// Best Effort

				int32		CostOfCall;	// Reserved for future

								// use, must be set to 0

				int32		SizePSP;	// Length of provider

								// specific parameters

			      	UCHAR	ProviderSpecificParams[1];// provider specific 										// parameters

			} FLOWPARAMS;



			typedef struct _QualityOfService

			{

			 	FLOWPARAMS	ForwardFP;	// Caller(Initiator) to callee

			 	FLOWPARAMS	BackwardFP;	// Callee to caller

			} QOS, FAR * LPQOS;	



ConditionFunc is a placeholder for the application-supplied function name.  In 16-bit Windowns environments, it is invoked in the same thread as WSAAccept(), thus no other Winsock functions can be called except WSAIsBlocking() and WSACancelBlockingCall().  The actual condition function must reside in a DLL or application module and be exported in the module definition file.  You must use MakeProcInstance() to get a procedure-instance address for the callback function.



The lpCallerId and lpCallerData are value parameters which contain the address of the connecting entity and any user data that was sent along with the connection request, respectively.  



lpCallerSQOS, and iSFlowspecLen contains two blocks of memory containing the flow specs for socket s, one for each direction, specified by the caller. The forward or backward flow spec values will be set to NULL as appropriate for any unidirectional sockets. The first part of each memory block contains the flow parameters common to all providers, optionally followed by any provider specific portion started at ProviderSpecificParams.  These is no provider specific portion if SizePSP is 0.  A NULL value for lpCallerSQOS indicates no caller supplied QOS.



lpCallerGQOS specifies two blocks of memory containing the flow specs for the socket group the caller is to create, one for each direction.  The first part of each memory block contains the flow parameters common to all providers, optionally followed by any provider specific portion started at ProviderSpecificParams.  These is no provider specific portion if SizePSP is 0.  A NULL value for lpCallerGQOS indicates no caller-supplied group QOS.



The lpCalleeId is a value parameter which contains the local address of the connected entity. The lpCalleeData is a result parameter used by the condition function to supply user data back to the connecting entity.  lpCalleeData->len initially contains the length of the buffer allocated by the service provider and pointed to by lpCalleeData->buf.  A value of zero means passing user data back to the caller is not supported.  The condition function should copy up to lpCalleeData->len  bytes of data into lpCalleeData->buf , and then update lpCalleeData->len to indicate the actual number of bytes transferred.  If no user data is to be passed back to the caller, the condition function should set lpCalleeData->len to zero.  The  format of all address and user data is specific to the address family to which the socket belongs.



The result parameter g is assigned within the condition function to indicate the following actions:

	if g is an existing socket group id, add s to this group, provided all the 			requirements set by this group are met; or

	if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket 			group and have s as the first member; or

	if g = SG_CONSTRAINED_GROUP, create a constrained socket group and 			have s as the first member; or

	if g = NULL, no group operation is performed.

For unconstrained groups, any set of sockets may be grouped together as long as they are supported by a single service provider and are connection-oriented. A constrained socket group furthermay consist only of connection-oriented sockets, and requires that connections on all grouped sockets be to the same address on the same host.  For newly created socket groups, the new group id can be retrieved by using getsockopt() with option SO_GROUP_ID, if this operation completes successfully.





Return Value	If no error occurs, WSAAccept() returns a value of type SOCKET which is a descriptor for the accepted socket.  Otherwise, a value of INVALID_SOCKET is returned, and a specific error code may be retrieved by calling WSAGetLastError().



The integer referred to by addrlen initially contains the amount of space pointed to by addr.  On return it will contain the actual length in bytes of the address returned.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAECONNREFUSED	The connection request was forcefully rejected as indicated in the return value of the condition function (CF_REJECT).



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	The addrlen argument is too small (less than the sizeof a struct sockaddr) or the lpfnCondition is not part of the user address space.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress.



WSAEINVAL	listen() was not invoked prior to WSAAccept(), parameter g specified in the condition function is not a valid value, the return value of the condition function is not a valid one, or any case where the specified socket is in an invalid state.



WSAEMFILE	The queue is non-empty upon entry to WSAAccept() and there are no socket descriptors available.



WSAENOBUFS	No buffer space is available.



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	The referenced socket is not a type that supports connection-oriented service.



WSATRY_AGAIN	The acceptance of the connection request was deferred as indicated in the return value of the condition function (CF_DEFER).



WSAEWOULDBLOCK	The socket is marked as non-blocking and no connections are present to be accepted, or the connection request that was deferred has timed out or been withdrawn.



See Also	accept(), bind(), connect(), getsockopt(), listen(), select(), socket(), WSAAsyncSelect(), WSAConnect().

�3.32 WSAAsyncGetHostByAddr()

Description	Get host information corresponding to an address - asynchronous version.



 	#include <winsock.h>



 	HANDLE WSAAPI WSAAsyncGetHostByAddr ( HWND hWnd, 

	unsigned int wMsg,  const char FAR * addr, int len, int type, char FAR * buf, int buflen );





hWnd	The handle of the window which should receive a message when the asynchronous request completes.



wMsg	The message to be received when the asynchronous request completes.



addr	A pointer to the network address for the host.  Host addresses are stored in network byte order.



len	The length of the address, which must be 4 for PF_INET.



type	The type of the address, which must be PF_INET.



buf	A pointer to the data area to receive the hostent data.  Note that this must be larger than the size of a hostent structure.  This is because the data area supplied is used by Winsock to contain not only a hostent structure but any and all of the data which is referenced by members of the hostent structure.  It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.



buflen	The size of data area buf above.



Remarks	This function is an asynchronous version of gethostbyaddr(), and is used to retrieve host name and address information corresponding to a network address.  Winsock initiates the operation and returns to the caller immediately, passing back an asynchronous task handle which the application may use to identify the operation.  When the operation is completed, the results (if any) are copied into the buffer provided by the caller and a message is sent to the application's window.



When the asynchronous operation is complete the application's window hWnd receives message wMsg.  The wParam argument contains the asynchronous task handle as returned by the original function call.  The high 16 bits of lParam contain any error code.  The error code may be any error as defined in winsock.h.  An error code of zero indicates successful completion of the asynchronous operation.  On successful completion, the buffer supplied to the original function call contains a hostent structure.  To access the elements of this structure, the original buffer address should be cast to a hostent structure pointer and accessed as appropriate.



Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in the original call was too small to contain all the resultant information.  In this case, the low 16 bits of lParam contain the size of buffer required to supply ALL the requisite information.  If the application decides that the partial data is inadequate, it may reissue the WSAAsyncGetHostByAddr() function call with a buffer large enough to receive all the desired  information (i.e.  no smaller than the low 16 bits of lParam).



The error code and buffer length should be extracted from the lParam using the macros  WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock.h as:



#define WSAGETASYNCERROR(lParam)            HIWORD(lParam)

#define WSAGETASYNCBUFLEN(lParam)           LOWORD(lParam)



The use of these macros will maximize the portability of the source code for the application.  



Return Value	The return value specifies whether or not the asynchronous operation was successfully initiated.  Note that it does not imply success or failure of the operation itself.



If the operation was successfully initiated, WSAAsyncGetHostByAddr() returns a nonzero value of type HANDLE which is the asynchronous task handle for the request.  This value can be used in two ways.  It can be used to cancel the operation using WSACancelAsyncRequest().  It can also be used to match up asynchronous operations and completion messages, by examining the wParam message argument.



If the asynchronous operation could not be initiated, WSAAsyncGetHostByAddr() returns a zero value, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	The buffer supplied to this function is used by Winsock to construct a hostent structure together with the contents of data areas referenced by members of the same hostent structure.  To avoid the WSAENOBUFS error noted above, the application should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).





Error Codes	The following error codes may be set when an application window receives a message.  As described above, they may be extracted from the lParam in the reply message using the WSAGETASYNCERROR macro.



WSAENETDOWN	The network subsystem has failed.



WSAENOBUFS	No/insufficient buffer space is available



WSAHOST_NOT_FOUND	Authoritative Answer Host not found.



WSATRY_AGAIN	Non-Authoritative Host not found, or SERVERFAIL.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



The following errors may occur at the time of the function call, and indicate that the asynchronous operation could not be initiated.



WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEWOULDBLOCK	The asynchronous operation cannot be scheduled at this time due to resource or other constraints within the Winsock implementation.



See Also	gethostbyaddr(), WSACancelAsyncRequest()

�3.33 WSAAsyncGetHostByName()

Description	Get host information corresponding to a hostname - asynchronous version.



 	#include <winsock.h>



 	HANDLE WSAAPI WSAAsyncGetHostByName ( HWND hWnd, 

	unsigned int wMsg,  const char FAR * name, char FAR * buf, int buflen );





hWnd	The handle of the window which should receive a message when the asynchronous request completes.



wMsg	The message to be received when the asynchronous request completes.



name	A pointer to the name of the host.



buf	A pointer to the data area to receive the hostent data.  Note that this must be larger than the size of a hostent structure.  This is because the data area supplied is used by Winsock to contain not only a hostent structure but any and all of the data which is referenced by members of the hostent structure.  It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.



buflen	The size of data area buf above.



Remarks	This function is an asynchronous version of gethostbyname(), and is used to retrieve host name and address information corresponding to a hostname.  Winsock initiates the operation and returns to the caller immediately, passing back an asynchronous task handle which the application may use to identify the operation.  When the operation is completed, the results (if any) are copied into the buffer provided by the caller and a message is sent to the application's window.



When the asynchronous operation is complete the application's window hWnd receives message wMsg.  The wParam argument contains the asynchronous task handle as returned by the original function call.  The high 16 bits of lParam contain any error code.  The error code may be any error as defined in winsock.h.  An error code of zero indicates successful completion of the asynchronous operation.  On successful completion, the buffer supplied to the original function call contains a hostent structure.  To access the elements of this structure, the original buffer address should be cast to a hostent structure pointer and accessed as appropriate.



Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in the original call was too small to contain all the resultant information.  In this case, the low 16 bits of lParam contain the size of buffer required to supply ALL the requisite information.  If the application decides that the partial data is inadequate, it may reissue the WSAAsyncGetHostByName() function call with a buffer large enough to receive all the desired  information (i.e. no smaller than the low 16 bits of lParam).



The error code and buffer length should be extracted from the lParam using the macros  WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock.h as:



#define WSAGETASYNCERROR(lParam)            HIWORD(lParam)

#define WSAGETASYNCBUFLEN(lParam)           LOWORD(lParam)



The use of these macros will maximize the portability of the source code for the application.  





Return Value	The return value specifies whether or not the asynchronous operation was successfully initiated.  Note that it does not imply success or failure of the operation itself.



If the operation was successfully initiated, WSAAsyncGetHostByName() returns a nonzero value of type HANDLE which is the asynchronous task handle for the request.  This value can be used in two ways.  It can be used to cancel the operation using WSACancelAsyncRequest().  It can also be used to match up asynchronous operations and completion messages, by examining the wParam message argument.



If the asynchronous operation could not be initiated, WSAAsyncGetHostByName() returns a zero value, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	The buffer supplied to this function is used by Winsock to construct a hostent structure together with the contents of data areas referenced by members of the same hostent structure.  To avoid the WSAENOBUFS error noted above, the application should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).





Error Codes	The following error codes may be set when an application window receives a message.  As described above, they may be extracted from the lParam in the reply message using the WSAGETASYNCERROR macro.



WSAENETDOWN	The network subsystem has failed.



WSAENOBUFS	No/insufficient buffer space is available



WSAHOST_NOT_FOUND	Authoritative Answer Host not found.



WSATRY_AGAIN	Non-Authoritative Host not found, or SERVERFAIL.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



The following errors may occur at the time of the function call, and indicate that the asynchronous operation could not be initiated.



WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEWOULDBLOCK	The asynchronous operation cannot be scheduled at this time due to resource or other constraints within the Winsock implementation.



See Also	gethostbyname(), WSACancelAsyncRequest()

�3.34 WSAAsyncGetProtoByName()

Description	Get protocol information corresponding to a protocol name - asynchronous version.



 	#include <winsock.h>



 	HANDLE WSAAPI WSAAsyncGetProtoByName ( HWND hWnd, 

	unsigned int wMsg,  const char FAR * name, char FAR * buf, int buflen );





hWnd	The handle of the window which should receive a message when the asynchronous request completes.



wMsg	The message to be received when the asynchronous request completes.



name	A pointer to the protocol name to be resolved.



buf	A pointer to the data area to receive the protoent data.  Note that this must be larger than the size of a protoent structure.  This is because the data area supplied is used by Winsock to contain not only a protoent structure but any and all of the data which is referenced by members of the protoent structure.  It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.



buflen	The size of data area buf above.



Remarks	This function is an asynchronous version of getprotobyname(), and is used to retrieve the protocol name and number corresponding to a protocol name.  Winsock initiates the operation and returns to the caller immediately, passing back an asynchronous task handle which the application may use to identify the operation.  When the operation is completed, the results (if any) are copied into the buffer provided by the caller and a message is sent to the application's window.



When the asynchronous operation is complete the application's window hWnd receives message wMsg.  The wParam argument contains the asynchronous task handle as returned by the original function call.  The high 16 bits of lParam contain any error code.  The error code may be any error as defined in winsock.h.  An error code of zero indicates successful completion of the asynchronous operation.  On successful completion, the buffer supplied to the original function call contains a protoent structure.  To access the elements of this structure, the original buffer address should be cast to a protoent structure pointer and accessed as appropriate.



Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in the original call was too small to contain all the resultant information.  In this case, the low 16 bits of lParam contain the size of buffer required to supply ALL the requisite information.  If the application decides that the partial data is inadequate, it may reissue the WSAAsyncGetProtoByName() function call with a buffer large enough to receive all the desired  information (i.e.  no smaller than the low 16 bits of lParam).



The error code and buffer length should be extracted from the lParam using the macros  WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock.h as:



#define WSAGETASYNCERROR(lParam)            HIWORD(lParam)

#define WSAGETASYNCBUFLEN(lParam)           LOWORD(lParam)



The use of these macros will maximize the portability of the source code for the application.  





Return Value	The return value specifies whether or not the asynchronous operation was successfully initiated.  Note that it does not imply success or failure of the operation itself.



If the operation was successfully initiated, WSAAsyncGetProtoByName() returns a nonzero value of type HANDLE which is the asynchronous task handle for the request.  This value can be used in two ways.  It can be used to cancel the operation using WSACancelAsyncRequest().  It can also be used to match up asynchronous operations and completion messages, by examining the wParam message argument.



If the asynchronous operation could not be initiated, WSAAsyncGetProtoByName() returns a zero value, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	The buffer supplied to this function is used by Winsock to construct a protoent structure together with the contents of data areas referenced by members of the same protoent structure.  To avoid the WSAENOBUFS error noted above, the application should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).



Error Codes	The following error codes may be set when an application window receives a message.  As described above, they may be extracted from the lParam in the reply message using the WSAGETASYNCERROR macro.



WSAENETDOWN	The network subsystem has failed.



WSAENOBUFS	No/insufficient buffer space is available



WSAHOST_NOT_FOUND	Authoritative Answer Host not found.



WSATRY_AGAIN	Non-Authoritative Host not found, or SERVERFAIL.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



The following errors may occur at the time of the function call, and indicate that the asynchronous operation could not be initiated.



WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEWOULDBLOCK	The asynchronous operation cannot be scheduled at this time due to resource or other constraints within the Winsock implementation.



See Also	getprotobyname(), WSACancelAsyncRequest()

�3.35 WSAAsyncGetProtoByNumber()

Description	Get protocol information corresponding to a protocol number - asynchronous version.



 	#include <winsock.h>



 	HANDLE WSAAPI WSAAsyncGetProtoByNumber ( HWND hWnd, 

	unsigned int wMsg,  int number, char FAR * buf, int buflen );





hWnd	The handle of the window which should receive a message when the asynchronous request completes.



wMsg	The message to be received when the asynchronous request completes.



number	The protocol number to be resolved, in host byte order.



buf	A pointer to the data area to receive the protoent data.  Note that this must be larger than the size of a protoent structure.  This is because the data area supplied is used by Winsock to contain not only a protoent structure but any and all of the data which is referenced by members of the protoent structure.  It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.



buflen	The size of data area buf above.



Remarks	This function is an asynchronous version of getprotobynumber(), and is used to retrieve the protocol name and number corresponding to a protocol number.  Winsock initiates the operation and returns to the caller immediately, passing back an asynchronous task handle which the application may use to identify the operation.  When the operation is completed, the results (if any) are copied into the buffer provided by the caller and a message is sent to the application's window.



When the asynchronous operation is complete the application's window hWnd receives message wMsg.  The wParam argument contains the asynchronous task handle as returned by the original function call.  The high 16 bits of lParam contain any error code.  The error code may be any error as defined in winsock.h.  An error code of zero indicates successful completion of the asynchronous operation.  On successful completion, the buffer supplied to the original function call contains a protoent structure.  To access the elements of this structure, the original buffer address should be cast to a protoent structure pointer and accessed as appropriate.



Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in the original call was too small to contain all the resultant information.  In this case, the low 16 bits of lParam contain the size of buffer required to supply ALL the requisite information.  If the application decides that the partial data is inadequate, it may reissue the WSAAsyncGetProtoByNumber() function call with a buffer large enough to receive all the desired  information (i.e. no smaller than the low 16 bits of lParam).



The error code and buffer length should be extracted from the lParam using the macros  WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock.h as:



#define WSAGETASYNCERROR(lParam)            HIWORD(lParam)

#define WSAGETASYNCBUFLEN(lParam)           LOWORD(lParam)



The use of these macros will maximize the portability of the source code for the application.  





Return Value	The return value specifies whether or not the asynchronous operation was successfully initiated.  Note that it does not imply success or failure of the operation itself.



If the operation was successfully initiated, WSAAsyncGetProtoByNumber() returns a nonzero value of type HANDLE which is the asynchronous task handle for the request.  This value can be used in two ways.  It can be used to cancel the operation using WSACancelAsyncRequest().  It can also be used to match up asynchronous operations and completion messages, by examining the wParam message argument.



If the asynchronous operation could not be initiated, WSAAsyncGetProtoByNumber() returns a zero value, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	The buffer supplied to this function is used by Winsock to construct a protoent structure together with the contents of data areas referenced by members of the same protoent structure.  To avoid the WSAENOBUFS error noted above, the application should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).



Error Codes	The following error codes may be set when an application window receives a message.  As described above, they may be extracted from the lParam in the reply message using the WSAGETASYNCERROR macro.



WSAENETDOWN	The network subsystem has failed.



WSAENOBUFS	No/insufficient buffer space is available



WSAHOST_NOT_FOUND	Authoritative Answer Host not found.



WSATRY_AGAIN	Non-Authoritative Host not found, or SERVERFAIL.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



The following errors may occur at the time of the function call, and indicate that the asynchronous operation could not be initiated.



WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEWOULDBLOCK	The asynchronous operation cannot be scheduled at this time due to resource or other constraints within the Winsock implementation.

See Also	getprotobynumber(), WSACancelAsyncRequest()

�3.36 WSAAsyncGetServByName()

Description	Get service information corresponding to a service name and port - asynchronous version.



 	#include <winsock.h>



 	HANDLE WSAAPI WSAAsyncGetServByName ( HWND hWnd, 

	unsigned int wMsg,  const char FAR * name, const char FAR * proto, char FAR * buf,  int buflen );





hWnd	The handle of the window which should receive a message when the asynchronous request completes.



wMsg	The message to be received when the asynchronous request completes.



name	A pointer to a service name.



proto	A pointer to a protocol name.  This may be NULL, in which case WSAAsyncGetServByName() will search for the first service entry for which s_name or one of the s_aliases matches the given name.  Otherwise WSAAsyncGetServByName() matches both name and proto.



buf	A pointer to the data area to receive the servent data.  Note that this must be larger than the size of a servent structure.  This is because the data area supplied is used by Winsock to contain not only a servent structure but any and all of the data which is referenced by members of the servent structure.  It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.



buflen	The size of data area buf above.



Remarks	This function is an asynchronous version of getservbyname(), and is used to retrieve service information corresponding to a service name.  Winsock initiates the operation and returns to the caller immediately, passing back an asynchronous task handle which the application may use to identify the operation.  When the operation is completed, the results (if any) are copied into the buffer provided by the caller and a message is sent to the application's window.



When the asynchronous operation is complete the application's window hWnd receives message wMsg.  The wParam argument contains the asynchronous task handle as returned by the original function call.  The high 16 bits of lParam contain any error code.  The error code may be any error as defined in winsock.h.  An error code of zero indicates successful completion of the asynchronous operation.  On successful completion, the buffer supplied to the original function call contains a servent structure.  To access the elements of this structure, the original buffer address should be cast to a servent structure pointer and accessed as appropriate.



Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in the original call was too small to contain all the resultant information.  In this case, the low 16 bits of lParam contain the size of buffer required to supply ALL the requisite information.  If the application decides that the partial data is inadequate, it may reissue the WSAAsyncGetServByName() function call with a buffer large enough to receive all the desired  information (i.e. no smaller than the low 16 bits of lParam).



The error code and buffer length should be extracted from the lParam using the macros  WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock.h as:



#define WSAGETASYNCERROR(lParam)            HIWORD(lParam)

#define WSAGETASYNCBUFLEN(lParam)           LOWORD(lParam)



The use of these macros will maximize the portability of the source code for the application.  





Return Value	The return value specifies whether or not the asynchronous operation was successfully initiated.  Note that it does not imply success or failure of the operation itself.



If the operation was successfully initiated, WSAAsyncGetServByName() returns a nonzero value of type HANDLE which is the asynchronous task handle for the request.  This value can be used in two ways.  It can be used to cancel the operation using WSACancelAsyncRequest().  It can also be used to match up asynchronous operations and completion messages, by examining the wParam message argument.



If the asynchronous operation could not be initiated, WSAAsyncServByName() returns a zero value, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	The buffer supplied to this function is used by Winsock to construct a servent structure together with the contents of data areas referenced by members of the same servent structure.  To avoid the WSAENOBUFS error noted above, the application should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).





Error Codes	The following error codes may be set when an application window receives a message.  As described above, they may be extracted from the lParam in the reply message using the WSAGETASYNCERROR macro.



WSAENETDOWN	The network subsystem has failed.



WSAENOBUFS	No/insufficient buffer space is available



WSAHOST_NOT_FOUND	Authoritative Answer Host not found.



WSATRY_AGAIN	Non-Authoritative Host not found, or SERVERFAIL.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



The following errors may occur at the time of the function call, and indicate that the asynchronous operation could not be initiated.



WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEWOULDBLOCK	The asynchronous operation cannot be scheduled at this time due to resource or other constraints within the Winsock implementation.



See Also	getservbyname(), WSACancelAsyncRequest()

�3.37 WSAAsyncGetServByPort()

Description	Get service information corresponding to a port and protocol - asynchronous version.



 	#include <winsock.h>



 	HANDLE WSAAPI WSAAsyncGetServByPort ( HWND hWnd, 

	unsigned int wMsg,  int port, const char FAR * proto, char FAR * buf, int buflen );





hWnd	The handle of the window which should receive a message when the asynchronous request completes.



wMsg	The message to be received when the asynchronous request completes.



port	The port for the service, in network byte order.



proto	A pointer to a protocol name.  This may be NULL, in which case WSAAsyncGetServByPort() will search for the first service entry for which s_port match the given port.  Otherwise WSAAsyncGetServByPort() matches both port and proto.



buf	A pointer to the data area to receive the servent data.  Note that this must be larger than the size of a servent structure.  This is because the data area supplied is used by Winsock to contain not only a servent structure but any and all of the data which is referenced by members of the servent structure.  It is recommended that you supply a buffer of MAXGETHOSTSTRUCT bytes.



buflen	The size of data area buf above.



Remarks	This function is an asynchronous version of getservbyport(), and is used to retrieve service information corresponding to a port number.  Winsock initiates the operation and returns to the caller immediately, passing back an asynchronous task handle which the application may use to identify the operation.  When the operation is completed, the results (if any) are copied into the buffer provided by the caller and a message is sent to the application's window.



When the asynchronous operation is complete the application's window hWnd receives message wMsg.  The wParam argument contains the asynchronous task handle as returned by the original function call.  The high 16 bits of lParam contain any error code.  The error code may be any error as defined in winsock.h.  An error code of zero indicates successful completion of the asynchronous operation.  On successful completion, the buffer supplied to the original function call contains a servent structure.  To access the elements of this structure, the original buffer address should be cast to a servent structure pointer and accessed as appropriate.



Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer specified by buflen in the original call was too small to contain all the resultant information.  In this case, the low 16 bits of lParam contain the size of buffer required to supply ALL the requisite information.  If the application decides that the partial data is inadequate, it may reissue the WSAAsyncGetServByPort() function call with a buffer large enough to receive all the desired  information (i.e. no smaller than the low 16 bits of lParam).



The error code and buffer length should be extracted from the lParam using the macros  WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock.h as:



#define WSAGETASYNCERROR(lParam)            HIWORD(lParam)

#define WSAGETASYNCBUFLEN(lParam)           LOWORD(lParam)



The use of these macros will maximize the portability of the source code for the application.  





Return Value	The return value specifies whether or not the asynchronous operation was successfully initiated.  Note that it does not imply success or failure of the operation itself.



If the operation was successfully initiated, WSAAsyncGetServByPort() returns a nonzero value of type HANDLE which is the asynchronous task handle for the request.  This value can be used in two ways.  It can be used to cancel the operation using WSACancelAsyncRequest().  It can also be used to match up asynchronous operations and completion messages, by examining the wParam message argument.



If the asynchronous operation could not be initiated, WSAAsyncGetServByPort() returns a zero value, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	The buffer supplied to this function is used by Winsock to construct a servent structure together with the contents of data areas referenced by members of the same servent structure.  To avoid the WSAENOBUFS error noted above, the application should provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock.h).



Error Codes	The following error codes may be set when an application window receives a message.  As described above, they may be extracted from the lParam in the reply message using the WSAGETASYNCERROR macro.



WSAENETDOWN	The network subsystem has failed.



WSAENOBUFS	No/insufficient buffer space is available



WSAHOST_NOT_FOUND	Authoritative Answer Host not found.



WSATRY_AGAIN	Non-Authoritative Host not found, or SERVERFAIL.



WSANO_RECOVERY	Non recoverable errors, FORMERR, REFUSED, NOTIMP.



WSANO_DATA	Valid name, no data record of requested type.



The following errors may occur at the time of the function call, and indicate that the asynchronous operation could not be initiated.



WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEWOULDBLOCK	The asynchronous operation cannot be scheduled at this time due to resource or other constraints within the Winsock implementation.



See Also	getservbyport(), WSACancelAsyncRequest()

�3.38 WSAAsyncSelect()

Description	Request event notification for a socket.



 	#include < winsock.h >



 	int WSAAPI WSAAsyncSelect ( SOCKET s, HWND hWnd, unsigned int wMsg,  �long lEvent );





s	A descriptor identifying the socket for which event notification is required.



hWnd	A handle identifying the window which should receive a message when a network event occurs.



wMsg	The message to be received when a network event occurs.



lEvent	A bitmask which specifies a combination of network events in which the application is interested.



Remarks	This function is used to request that the Winsock DLL should send a message to the window hWnd whenever it detects any of the network events specified by the lEvent parameter.  The message which should be sent is specified by the wMsg parameter.  The socket for which notification is required is identified by s.



This function automatically sets socket s to non-blocking mode, regardless of the value of lEvent.  See ioctlsocket() about how to set the non-overlapped socket back to blocking mode.



The lEvent parameter is constructed by or'ing any of the values specified in the following list.



Value	Meaning

FD_READ	Want to receive notification of readiness for reading

FD_WRITE	Want to receive notification of readiness for writing

FD_OOB	Want to receive notification of the arrival of out-of-band data

FD_ACCEPT	Want to receive notification of incoming connections

FD_CONNECT	Want to receive notification of completed connection

FD_CLOSE	Want to receive notification of socket closure

FD_QOS	Want to receive notification of socket Quality of Service (QOS) changes

FD_GROUP_QOS	Want to receive notification of socket group Quality of Service (QOS) changes





Issuing a WSAAsyncSelect() for a socket cancels any previous WSAAsyncSelect() or WSAEventSelect() for the same socket.  For example, to receive notification for both reading and writing, the application must call WSAAsyncSelect() with both FD_READ and FD_WRITE, as follows:



rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ|FD_WRITE);



It is not possible to specify different messages for different events.  The following code will not work; the second call will cancel the effects of the first, and only FD_WRITE events will be reported with message wMsg2:



rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);

rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);



To cancel all notification - i.e., to indicate that Winsock should send no further messages related to network events on the socket - lEvent should be set to zero.  



rc = WSAAsyncSelect(s, hWnd, 0, 0);



Although in this instance WSAAsyncSelect() immediately disables event message posting for the socket, it is possible that messages may be waiting in the application's message queue.  The application must therefore be prepared to receive network event messages even after cancellation.  Closing a socket with closesocket() also cancels  WSAAsyncSelect() message sending, but the same caveat about messages in the queue prior to the closesocket() still applies.



Since an accept()'ed socket has the same properties as the listening socket used to accept it, any WSAAsyncSelect() events set for the listening socket apply to the accepted socket.  For example, if a listening socket has WSAAsyncSelect() events FD_ACCEPT, FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also have FD_ACCEPT, FD_READ, and FD_WRITE events with the same wMsg value used for messages.  If a different wMsg or events are desired, the application should call WSAAsyncSelect(), passing the accepted socket and the desired new information.�



When one of the nominated network events occurs on the specified socket s, the application's window hWnd receives message wMsg.  The wParam argument identifies the socket on which a network event has occurred.  The low word of lParam specifies the network event that has occurred.  The high word of lParam contains any error code.  The error code be any error as defined in winsock.h.



The error and event codes may be extracted from the lParam using the macros WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in winsock.h as:



#define WSAGETSELECTERROR(lParam)            HIWORD(lParam)

#define WSAGETSELECTEVENT(lParam)            LOWORD(lParam)



The use of these macros will maximize the portability of the source code for the application.  



The possible network event codes which may be returned are as follows:



Value	Meaning

FD_READ	Socket s ready for reading

FD_WRITE	Socket s ready for writing

FD_OOB	Out-of-band data ready for reading on socket s.

FD_ACCEPT	Socket s ready for accepting a new incoming connection

FD_CONNECT	Connection initiated on socket s completed

FD_CLOSE	Connection identified by socket s has been closed

FD_QOS	Quality of Service associated with socket s has changed.

FD_GROUP_QOS	Quality of Service associated with the socket group to which s belongs has changed.





Return Value	The return value is 0 if the application's declaration of interest in the network event set was successful.  Otherwise the value SOCKET_ERROR is returned, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	Although WSAAsyncSelect() can be called with interest in multiple events, the application window will receive a single message for each network event.



As in the case of the select() function, WSAAsyncSelect() will frequently be used to determine when a data transfer operation (send() or recv()) can be issued with the expectation of immediate success.  Nevertheless, a robust application must be prepared for the possibility that it may receive a message and issue a Winsock2 call which returns WSAEWOULDBLOCK immediately.  For example, the following sequence of events is possible:



(i)	data arrives on socket s; Winsock2 posts WSAAsyncSelect message

(ii)	application processes some other message

(iii)	while processing, application issues an ioctlsocket(s, FIONREAD...) and notices that there is data ready to be read

(iv)	application issues a recv(s,...) to read the data

(v)	application  loops to process next message, eventually reaching the WSAAsyncSelect message indicating that data is ready to read

(vi)	application issues recv(s,...), which fails with the error WSAEWOULDBLOCK.



Other sequences are possible.  



TheWinsock DLL will not continually flood an application with messages for a particular network event.  Having successfully posted notification of a particular event to an application window, no further message(s) for that network event will be posted to the application window until the application makes the function call which implicitly reenables notification of that network event.



Event	Re-enabling function

FD_READ	recv() or recvfrom()

FD_WRITE	send() or sendto() or WSAGetBuffer()

FD_OOB	recv()

FD_ACCEPT	accept() or WSAAcceptEx() unless the error code returned is WSATRY_AGAIN indicating that the condition function returned CF_DEFER

FD_CONNECT	NONE

FD_CLOSE	NONE

FD_QOS	WSAIoctlgetsockopt() with command SIO_GET_QOSoption SO_QOS

FD_GROUP_QOS	WSAIoctlgetsockopt() with command SIO_GET_GROUP_QOSoption SO_GROUP_QOS



Any call to the reenabling routine, even one which fails, results in reenabling of message posting for the relevant event.



For FD_READ, FD_OOB, FD_ACCEPT, FD_QOS and FD_GROUP_QOSand FD_ACCEPT events, message posting is "level-triggered."  This means that if the reenabling routine is called and the relevant event is still valid after the call, a WSAAsyncSelect() message is posted to the application.  This allows an application to be event-driven and not be concerned with the amount of data that arrives at any one time.  Consider the following sequence:



(i)	network transport stack receives 100 bytes of data on socket s and causes Winsock2 to post an FD_READ message.

(ii)	The application issues recv( s, buffptr, 50, 0) to read 50 bytes.

(iii)	another FD_READ message is posted since there is still data to be read.



With these semantics, an application need not read all available data in response to an FD_READ message--a single recv() in response to each FD_READ message is appropriate.  If an application issues multiple recv() calls in response to a single FD_READ, it may receive multiple FD_READ messages.  Such an application may wish to disable FD_READ messages before starting the recv() calls by calling WSAAsyncSelect() with the FD_READ event not set.



The FD_QOS and FD_GROUP_QOS events are considered edge triggered.  A message will be posted exactly once when a QOS change occurs.  Further messages will not be forthcoming until either the provider detects a further change in QOS or the application renegotiates the QOS for the socket.



If an event has already happened when the application calls WSAAsyncSelect() or when the reenabling function is called, then a message is posted as appropriate.  All the events have persistence beyond the occurrence of their respective events.  For example, consider the following sequence: 1) an application calls listen(), 2) a connect request is received but not yet accepted, 3) the application calls WSAAsyncSelect() specifying that it wants to receive FD_ACCEPT messages for the socket.  Due to the persistence of events, Winsock2 posts an FD_ACCEPT message immediately.



The FD_WRITE event is handled slightly differently.  An FD_WRITE message is posted when a socket is first connected with connect()/WSAConnect() or accepted with accept()/WSAAccept(), and then after a send operation fails with WSAEWOULDBLOCK and buffer space becomes available.  Therefore, an application can assume that sends are possible starting from the first FD_WRITE message and lasting until a send returns WSAEWOULDBLOCK.  After such a failure the application will be notified that sends are again possible with an FD_WRITE message.



The FD_OOB event is used only when a socket is configured to receive out-of-band data separately.  If the socket is configured to receive out-of-band data in-line, the out-of-band (expedited) data is treated as normal data and the application should register an interest in, and will  receive, FD_READ events, not FD_OOB events.  An application may set or inspect the way in which out-of-band data is to be handled by using setsockopt() or getsockopt() for the SO_OOBINLINE option.



The error code in an FD_CLOSE message indicates whether the socket close was graceful or abortive.  If the error code is 0, then the close was graceful; if the error code is WSAECONNRESET, then the socket's virtual circuit was reset.  This only applies to connection-oriented sockets such as SOCK_STREAM.  



The FD_CLOSE message is posted when a close indication is received for the virtual circuit corresponding to the socket.  In TCP terms, this means that the FD_CLOSE is posted when the connection goes into the FIN WAIT or CLOSE WAIT states.  This results from the remote end performing a shutdown() on the send side or a closesocket().



Please note your application will receive ONLY an FD_CLOSE message to indicate closure of a virtual circuit, and only when all the received data has been read if this is a graceful close. It will NOT receive an FD_READ message to indicate this condition.



The FD_QOS or FD_GROUP_QOS message is posted when any field in the flow spec associated with socket s or the socket group that s belongs to has changed, respectively.  Applications shouldmight use WSAIoctlgetsockopt() with command optionSIO_GET_QOS SO_QOS or SIO_GET_GROUP_QOSSO_GROUP_QOS to get the current QOS for socket s or for the socket group s belongs to, respectively.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	Indicates that one of the specified parameters was invalid, or the specified socket is in an invalid state.



WSAEINPROGRESS	A blocking Winsock2 call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENOTSOCK	The descriptor is not a socket.



Additional error codes may be set when an application window receives a message.  This error code is extracted from the lParam in the reply message using the WSAGETSELECTERROR macro.  Possible error codes for each network event are:

Event: FD_CONNECT

Error Code		Meaning

WSAEADDRINUSE	The specified address is already in use.



WSAEADDRNOTAVAIL	The specified address is not available from the local machine.



WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.



WSAECONNREFUSED	The attempt to connect was forcefully rejected.



WSAENETUNREACH	The network can't be reached from this host at this time.



WSAENOBUFS	No buffer space is available.  The socket cannot be connected.



WSAETIMEDOUT	Attempt to connect timed out without establishing a connection



Event: FD_CLOSE

Error Code		Meaning

WSAENETDOWN	The network subsystem has failed.



WSAECONNRESET	The connection was reset by the remote side.



WSAECONNABORTED	The connection was aborted due to timeout or other failure.



Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code		Meaning

WSAENETDOWN	The network subsystem has failed.





See Also	select(), WSAEventSelect()

�3.39 WSACancelAsyncRequest()

Description	Cancel an incomplete asynchronous operation.



 	#include <winsock.h>



 	int WSAAPI WSACancelAsyncRequest ( HANDLE hAsyncTaskHandle );





hAsyncTaskHandle	Specifies the asynchronous operation to be canceled.



Remarks	The WSACancelAsyncRequest() function is used to cancel an asynchronous operation which was initiated by one of the WSAAsyncGetXByY() functions such as WSAAsyncGetHostByName().  The operation to be canceled is identified by the hAsyncTaskHandle parameter, which should be set to the asynchronous task handle as returned by the initiating function.





Return Value	The value returned by WSACancelAsyncRequest() is 0 if the operation was successfully canceled.  Otherwise the value SOCKET_ERROR is returned, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	An attempt to cancel an existing asynchronous WSAAsyncGetXByY() operation can fail with an error code of WSAEALREADY for two reasons.  First, the original operation has already completed and the application has dealt with the resultant message.  Second, the original operation has already completed but the resultant message is still waiting in the application window queue.



Note	It is unclear whether the application can usefully distinguish between WSAEINVAL and WSAEALREADY, since in both cases the error indicates that there is no asynchronous operation in progress with the indicated handle.  [Trivial exception: 0 is always an invalid asynchronous task handle.]  The Winsock specification does not prescribe how a conformant Winsock provider should distinguish between the two cases.  For maximum portability, a Winsock application should treat the two errors as equivalent.





Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	Indicates that the specified asynchronous task handle was invalid



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEALREADY	The asynchronous routine being canceled has already completed.





See Also	WSAAsyncGetHostByAddr(), WSAAsyncGetHostByName(), WSAAsyncGetProtoByNumber(), WSAAsyncGetProtoByName(), WSAAsyncGetServByPort(), WSAAsyncGetServByName().

�3.40 WSACancelBlockingCall()

Description	Cancel a blocking call which is currently in progress.



 	#include <winsock.h>



 	int WSAAPI WSACancelBlockingCall ( void );



Remarks	This function cancels any outstanding blocking operation for this task.  It is normally used in two situations:



(1) An application is processing a message which has been received while a blocking call is in progress.  In this case, WSAIsBlocking() will be true.



(2) A blocking call is in progress, and Winsock has called back to the application's "blocking hook" function (as established by WSASetBlockingHook()).



In each case, the original blocking call will terminate as soon as possible with the error WSAEINTR.  (In (1), the termination will not take place until Windows message scheduling has caused control to revert to the blocking routine in Winsock.  In (2), the blocking call will be terminated as soon as the blocking hook function completes.)



In the case of a blocking connect() operation, Winsock will terminate the blocking call as soon as possible, but it may not be possible for the socket resources to be released until the connection has completed (and then been reset) or timed out.  This is likely to be noticeable only if the application immediately tries to open a new socket (if no sockets are available), or to connect() to the same peer.



Canceling an accept() or a select() call does not adversely impact the sockets passed to these calls.  Only the particular call fails; any operation that was legal before the cancel is legal after the cancel, and the state of the socket is not affected in any way.



Canceling any operation other than accept() and select() can leave the socket in an indeterminate state.  If an application cancels a blocking operation on a socket, the only operation that the application can depend on being able to perform on the socket is a call to closesocket(), although other operations may work on some Winsock implementations.  If an application desires maximum portability, it must be careful not to depend on performing operations after a cancel.  An application may reset the connection by setting the timeout on SO_LINGER to 0.



If a cancel operation compromised the integrity of a SOCK_STREAM's data stream in any way, the Winsock provider must reset the connection and fail all future operations other than closesocket() with WSAECONNABORTED.



Return Value	The value returned by WSACancelBlockingCall() is 0 if the operation was successfully canceled.  Otherwise the value SOCKET_ERROR is returned, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	Note that it is possible that the network operation completes before the WSACancelBlockingCall()  is processed, for example if data is received into the user buffer at interrupt time while the application is in a blocking hook.  In this case, the blocking operation will return successfully as if WSACancelBlockingCall() had never been called.  Note that the WSACancelBlockingCall() still succeeds in this case; the only way to know with certainty that an operation was actually canceled is to check for a return code of WSAEINTR from the blocking call.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	Indicates that there is no outstanding blocking call.

�3.41 WSACleanup()

Description	Terminate use of the Winsock DLL.



 	#include <winsock.h>



 	int WSAAPI WSACleanup ( void );



Remarks	An application or DLL is required to perform a (successful) WSAStartup() call before it can use Winsock services.  When it has completed the use of Winsock, the application or DLL must call WSACleanup() to deregister itself from a Winsock implementation and allow the implementation to free any resources allocated on behalf of the application or DLL.  Any open connection-oriented sockets that are connected when WSACleanup() is called are reset; sockets which have been closed with closesocket() but which still have pending data to be sent are not affected--the pending data is still sent.



There must be a call to WSACleanup() for every call to WSAStartup() made by a task.  Only the final WSACleanup() for that task does the actual cleanup; the preceding calls simply decrement an internal reference count in the Winsock DLL.  A naive application may ensure that WSACleanup() was called enough times by calling WSACleanup() in a loop until it returns WSANOTINITIALISED.



Return Value	The return value is 0 if the operation was successful.  Otherwise the value SOCKET_ERROR is returned, and a specific error number may be retrieved by calling WSAGetLastError().



Comments	Attempting to call WSACleanup() from within a blocking hook and then failing to check the return code is a common Winsock programming error.  If an application needs to quit while a blocking call is outstanding, the application must first cancel the blocking call with WSACancelBlockingCall() then issue the WSACleanup() call once control has been returned to the application.



In a multithreaded environment, WSACleanup() terminates Winsock operations for all threads. 



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



See Also	WSAStartup()

�3.42 WSACloseEvent()

Description	Closes an open event object handle.



	#include <winsock.h>



	BOOL WSAAPI WSACloseEvent( WSAEVENT hEvent );



hEvent	Identifies an open event object handle.



Remarks	The Win32 implementation of this function is:



	#define WSACloseEvent( h ) \

		CloseHandle( h )



Return Value	If the function succeeds, the return value is TRUE.



	If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError().



Error Codes	ERROR_INVALID_HANDLE	hEvent is not a valid event object handle.



See Also	WSACreateEvent().

�3.43 WSAConnect()

Description	Establish a connection to a peer, create and/or join a socket groupexchange connect data, , and specify needed quality of service based on the supplied flow spec.



 	#include <winsock.h>



 	int WSAAPI WSAConnect ( SOCKET s, const struct sockaddr FAR * name, �int namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, �GROUP g, LPQOS lpSQOS, LPQOS lpGQOS );





s	A descriptor identifying an unconnected socket.



name	The name of the peer to which the socket is to be connected.



namelen	The length of the name.



lpCallerData	A pointer to the user data that is to be transferred to the peer during connection establishment.



lpCalleeData	A pointer to the user data that is to be transferred back from the peer during connection establishment.



g	The identifier of the socket group.



lpSQOS	A pointer to the flow specs for socket s, one for each direction.



lpGQOS	A pointer to the flow specs for the socket group to be created, one for each direction, if the value of parameter g is SG_CONSTRAINED_GROUP.  Otherwise, this parameter is ignored.(if applicable). 



Remarks	This function is used to create a connection to the specified destination, and to perform a number of other ancillary operations that occur at connect time as well.  For connection-oriented sockets (e.g., type SOCK_STREAM), an active connection is initiated to the foreign host using name (an address in the name space of the socket; for a detailed description, please see bind()).  When this call completes successfully, the socket is ready to send/receive data.  



For a connectionless socket (e.g., type SOCK_ DGRAM), the operation performed by WSAConnect() is merely to establish a default destination address so that the socket may be used on subsequent connection-oriented send and receive operations (send(), WSASend(), recv(), WSARecv()).  On connectionless sockets, exchange of user to user data is not possible and the corresponding parameters will be silently ignored.



If the socket, s, is unbound, unique values are assigned to the local association by the Winsock provider, and the socket is marked as bound.  Note that if the address field of the name structure is all zeroes, WSAConnect() will return the error WSAEADDRNOTAVAIL.



The application is responsible for allocating any memory space pointed to directly or indirectly by any of the parameters it specifies.  LPWSABUF and LPQOS are defined in winsock.h as follows:





	typedef struct _WSABUF {

		int		len; 	// the length of the buffer

		char FAR *	buf;	// the pointer to the buffer

	} WSABUF, FAR * LPWSABUF;



			typedef enum

			{

				GuaranteedService,

				BestEffortService

			} GUARANTEE;



			typedef struct _flowparams

			{

				int64		AverageBandwith;// In Bytes/sec

			     	int64		PeakBandwidth;	// In Bytes/sec

			     	int64		BurstLength;	// In microseconds

				int64		Latency;		// In microseconds

				int64		DelayVariation;	// In microseconds

				GUARANTEE	levelOfGuarantee;// Guaranteed or

								// Best Effort

				int32		CostOfCall;	// Reserved for future

								// use, must be set to 0

				int32		SizePSP;	// Length of provider

								// specific parameters

			      	UCHAR	ProviderSpecificParams[1];// provider specific 										// parameters

			} FLOWPARAMS;



			typedef struct _QualityOfService

			{

			 	FLOWPARAMS	ForwardFP;	// Caller(Initiator) to callee

			 	FLOWPARAMS	BackwardFP;	// Callee to caller

			} QOS, FAR * LPQOS;	



The lpCallerData is a value parameter which contains any user data that is to be sent along with the connection request.  If lpCallerData is NULL, no user data will be passed to the peer. The lpCalleeData is a result parameter which will contain any user data passed back from the peer as part of the connection establishment.  lpCalleeData->len initially contains the length of the buffer allocated by the application and pointed to by lpCalleeData->buf.  lpCalleeData->len will be set to 0 if no user data has been passed back.  The lpCalleeData information will be valid when the connection operation is complete.  For blocking sockets, this will be when the WSAConnect() function returns.  For non-blocking sockets, this will be after the FD_CONNECT notification has occurred. If lpCalleeData is NULL, no user data will be passed back.  The exact format of the user data is specific to the address family to which the socket belongs.



At connect time, an application may attempt to override any previous QOS specification made for the socket via WSAIoctl() with either the SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.



Parameter g is used to indicate the appropriate actions on socket groups:

	if g is an existing socket group id, add s to this group, provided all the 			requirements set by this group is met; or

	if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket 			group and have s as the first member; or

	if g = SG_CONSTRAINED_GROUP, create a constrained socket group and 			have s as the first member; or

	if g = NULL, n operation is performed, and is equivalent to connect().

For unconstrained groups, any set of sockets may be grouped together as long as they are supported by a single service provider and are connection-oriented. A constrained socket grou requires that connections on all grouped sockets be t the same host.  For newly created socket groups, the new group id can be retrieved by using getsockopt() with option SO_GROUP_ID, if this operation completes successfully.  A socket group and its associated ID remain valid until the last socket belonging to this socket group is closed.



lpSQOS specifies two blocks of memory containing the flow specs for socket s, one for each direction.  If either the associated transport provider in general or the specific type of socket in particular cannot honor the QOS request, an error will be returned as indicated below.  The forward or backward flow spec values will be ignored, respectively, for any unidirectional sockets.  The first part of each memory block contains the flow parameters common to all providers, optionally followed by any provider specific portion started at ProviderSpecificParams.  These is no provider specific portion if SizePSP is 0. . A NULL value for lpSQOS indicates no application supplied QOS.



lpGQOS specifies two blocks of memory containing the flow specs for the socket group to be created, one for each direction, provided that the value of parameter g is SG_CONSTRAINED_GROUP.  Otherwise, these values are ignored(if applicable), one for each direction.  The first part of each memory block contains the flow parameters common to all providers, optionally followed by any provider specific portion started at ProviderSpecificParams.  These is no provider specific portion if SizePSP is 0. . A NULL value for lpGQOS indicates no application-supplied group QOS.



Comments	When connected sockets break (i.e. become closed for whatever reason), they should be discarded and recreated.   It is safest to assume that when things go awry for any reason on a connected socket, the application must discard and recreate the needed sockets in order to return  to a stable point.



Return Value	If no error occurs, WSAConnect() returns 0.  Otherwise, it returns SOCKET_ERROR, and a specific error code may be retrieved by calling WSAGetLastError().



On a blocking socket, the return value indicates success or failure of the connection attempt.



On a non-blocking socket (including overlapped sockets), if the return value is SOCKET_ERROR an application should call WSAGetLastError().  If this indicates an error code of WSAEWOULDBLOCK, then your application can either:



1. Use select() to determine the completion of the connection request by checking if the socket is writeable,  or



2. If your application is using WSAAsyncSelect() to indicate interest in connection events, then your application will receive an FD_CONNECT notification when the connect operation is complete.



3. If your applicationis using WSAEventSelect() to indicate interest in connection events, then the associated event object will be signaled when the connect operation is complete.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEADDRINUSE	The specified address is already in use.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEADDRNOTAVAIL	The specified address is not available from the local machine.



WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.



WSAECONNREFUSED	The attempt to connect was forcefully rejected.



WSAEDESTADDREQ	A destination address is required.



WSAEFAULT	The namelen argument is incorrect, the buffer length for lpCalleeData, lpSQOS, and lpGQOS are too small, or the buffer length for lpCallerData is too large.



WSAEINVAL	The socket is not already bound to an address.



WSAEINVAL	The socket is not already bound to an address.



WSAEINVAL	The parameter g specified in the condition function is not a valid value, or the parameter s is a listening socket.



WSAEISCONN	The socket is already connected.



WSAEMFILE	No more socket descriptors are available.



WSAENETUNREACH	The network can't be reached from this host at this time.



WSAENOBUFS	No buffer space is available.  The socket cannot be connected.



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	The flow specs specified in lpSQOS and lpGQOS cannot be satisfied.



WSAEPROTONOSUPPORT	The lpCallerData augment is not supported by the service provider.



WSAETIMEDOUT	Attempt to connect timed out without establishing a connection



WSAEWOULDBLOCK 	The socket is marked as non-blocking and the connection cannot be completed immediately.  It is possible to select() the socket while it is connecting by select()ing it for writing.



See Also	accept(), bind(), connect(), getsockname(), getsockopt(), socket(), select(), WSAAsyncSelect(), WSAEventSelect().�3.44 WSACreateEvent()

Description	Creates a new event object.



	#include <winsock.h>



	WSAEVENT WSAAPI WSACreateEvent( VOID );



Remarks	The event object created by this function is manual reset, with an initial state of nonsignaled. If a Win32 application desires auto reset events, it may call the native CreateEvent() Win32 API directly.



	The Win32 implementation of this function is:



	#define WSACreateEvent() \

		CreateEvent( NULL, FALSE, FALSE, NULL );



Return Value	If the function succeeds, the return value is the handle of the event object.



	If the function fails, the return value is WSA_INVALID_EVENT. To get extended error information, call WSAGetLastError().



Error Codes	ERROR_NOT_ENOUGH_MEMORY Not enough free memory available to create the event object.



See Also	WSACloseEvent().

�3.45 WSADuplicateSocket()

Description	Create a shared socket for a specified tasknew socket descriptor for a shared socket.



 	#include <winsock.h>



 	SOCKET WSAAPI WSADuplicateSocket ( SOCKET s, WSATASK hTargetTask );



s	Specifies the local socket descriptor.



hTargetTask	Specifies the handle of the target task for which the shared socket will be used.





Remarks	This function is used to enable socket sharing by creating a new socket descriptor for an underlying shared socket.  Shared socket descriptors are created in the context of the source task by supplying an existing, local socket descriptor and a handle to the target task (which could be the same task as the source task) for which the shared socket will be used.  The newly created shared socket descriptor only has meaning within the context of the target task.



To get the handle of the target task, it will generally be necessary to use some form of interprocess communication (IPC), which is out of the scope of this specification.  Since the created shared socket only has meaning in the target task, the source task must pass the value of the shared socket descriptor to the target task, again via some IPC mechanism.  One possible scenario for establishing and using a shared socket is illustrated below:



Source Task�IPC�Destination Task��1)  WSASocket()����2) Request target task handle�(�3) Receive task handle request��5) Receive target task handle�(�4) Supply task handle��6) WSADuplicateSocket()����7) Send target socket descriptor�(�8) Receive target socket descriptor��9) Use shared socket for sending��10) Use shared socket for receiving��



Return Value	If no error occurs, WSADuplicateSocket() returns a descriptor referencing the new socket.  Otherwise, a value of INVALID_SOCKET is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Comments	Note: The notification semantics for shared sockets remain an open issue.  The text which follows assumes the independent notification proposal.�Shared sockets may be used in all places where regular sockets are used and are, in fact, indistinguishable from them.  Socket descriptors referencing a common underlying socket share all aspects of the underlying socket object with the exception of the notification mechanism.  Reference counting is employed to ensure that the underlying socket object is not closed until the last shared socket descriptor is closed. 



Since the collection of attributes which comprise a socket’s option set is shared, setting any socket option on a shared socket may have a global effect.  For example, if one task uses ioctlsocket() on a shared socket to set it into non-blocking mode, this change is visible to all of the shared socketdescriptors that reference the underlying common socket objecsocket.



Each shared socket has an independent notification mechanism which conforms to the usual Winsock conventions.  Thus if two or more tasks are sharing an underlying socket object and each requests overlapped  notification via Windows messages when data is ready to be read, all such tasks will receive their stipulated message in an unspecified sequence.  The first task to perform a read will get some or all of the available data, the others will get what's left, if any.  In other words, it is completely up to tasks which share a socket to coordinate their access to the socket.





Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	Indicates that one of the specified parameters was invalid



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEMFILE	No more socket descriptors are available.



WSAENOBUFS	No buffer space is available.  The socket cannot be created.



WSAENOTSOCK	The descriptor is not a socket.



See Also	



�3.46 WSAEnumNetworkEvents()

Description	Discover occurrences of network events for the indicated socket.



 	#include <winsock.h>



 	int WSAAPI WSAEnumNetworkEvents ( SOCKET s, WSAEVENT hEventObject, LPWSANETWORKEVENTS lpNetworkEvents,  LPINT lpiCount);



s	A descriptor identifying the socket.



hEventObject	An optional handle identifying an associated event object to be reset.



lpNetworkEvents	An array of WSANETWORKEVENTS structs, each of which records an occurred network event and the associated error code.



lpiCount	The number of elements in the array.  Upon returning, this parameter indicates the actual number of elements in the array, or the minimum number of elememts needed to retrieve all the network events if the return value is WSAENOBUFS.



Remarks	This function is used to discover  which  network events have occurred for the indicated socket since the last invocation of this function.  It is intended for use in conjunction with WSAEventSelect(), which associates an event object with one or more network events. The socket’s internal record of network events is copied to lpNetworkEvents, whereafter the internal network events record is cleared.  If hEventObject  is non-null, the indicated event object is also reset.  The Winsock DLL guarantees that the operations of copying the network event record, clearing it and resetting any associated event object are atomic, such that the next occurrence of a nominated network event will cause the event object to become set.



The following error codes may be returned along with the respective network event:

Event: FD_CONNECT

Error Code		Meaning

WSAEADDRINUSE	The specified address is already in use.



WSAEADDRNOTAVAIL	The specified address is not available from the local machine.



WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.



WSAECONNREFUSED	The attempt to connect was forcefully rejected.



WSAENETUNREACH	The network can't be reached from this host at this time.



WSAENOBUFS	No buffer space is available.  The socket cannot be connected.



WSAETIMEDOUT	Attempt to connect timed out without establishing a connection



Event: FD_CLOSE

Error Code		Meaning

WSAENETDOWN	The network subsystem has failed.



WSAECONNRESET	The connection was reset by the remote side.



WSAECONNABORTED	The connection was aborted due to timeout or other failure.



Event: FD_READ

Event: FD_WRITE

Event: FD_OOB

Event: FD_ACCEPT

Event: FD_QOS

Event: FD_GROUP_QOS

Error Code		Meaning

WSAENETDOWN	The network subsystem has failed.





Return Value	The return value is 0 if the operation was successful.  Otherwise the value SOCKET_ERROR is returned, and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	Indicates that one of the specified parameters was invalid



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENOBUFS	The supplied buffer is too small.



See Also	WSAEventSelect()



�3.47 WSAEnumProtocols()

Description	Retrieve information about available transport protocols.



 	#include <winsock.h>



 	int WSAAPI WSAEnumProtocols ( LPDWORD lpdwProtocols, LPVOID lpProtocolBuffer, LPDWORD lpdwBufferLength);



lpdwProtocols	A NULL-terminated array of protocol ids.  This parameter is optional; if lpdwProtocols is NULL, information on all available protocols is returned, otherwise information is retrieved only for those protocols listed in the array.



lpProtocolBuffer	A buffer which is filled with PROTOCOL_INFO structures.  See below for a detailed description of the contents of the PROTOCOL_INFO structure.



lpdwBufferLength	On input, the count of bytes in the lpProtocolBuffer buffer passed to WSAEnumProtocols().  On output, the minimum buffer size that can be passed to WSAEnumProtocols() to retrieve all the requested information.  This routine has no ability to enumerate over multiple calls; the passed-in buffer must be large enough to hold all entries in order for the routine to succeed.  This reduces the complexity of the API and should not pose a problem because the number of protocols loaded on a machine is typically small.





Remarks	This function is used to discover information about the collection of transport protocols installed on the local machine. The lpdwProtocols parameter can be used as a filter to constrain the amount of information provided.  Normally it will be supplied as a NULL pointer which will cause the routine to return information on all available transport protocols.



A PROTOCOL_INFO struct is provided in the buffer pointed to by lpProtocolBuffer for each requested protocol.  If the supplied buffer is not large enough (as indicated by the input value of lpdwBufferLength ), the value pointed to by lpdwBufferLength will be updated to indicate the required buffer size.  The application should then obtain a large enough buffer and call this function again.



Definitions	PROTOCOL_INFO Structure:

DWORD dwServiceFlags1 - a bitmask describing the services provided by the protocol.  The following values are possible:

XP1_CONNECTIONLESS -the Protocol provides connectionless (datagram) service.  If not set, the protocol supports connection-oriented data transfer.

XP1_GUARANTEED_DELIVERY - the protocol guarantees that all data sent will reach the intended desitnation.

XP1_GUARANTEED_ORDER - the protocol guarantees that data will only arrive in the order in which it was sent and that it will not be duplicated.  This characteristic does not necessarily mean that the data will always be delivered, but that any data that is delivered is delivered in the order in which it was sent.

XP1_MESSAGE_ORIENTED - the protocol honors message boundaries, as opposed to a stream-oriented Protocol where there is no concept of message boundaries.

XP1_PSEUDO_STREAM - this is a message oriented protocol, but message boundaries will be ignored for all receives.  This is convenient when an application does not desire message framing to be done by the protocol.

XP1_GRACEFUL_CLOSE - the protocol supports two-phase (graceful) close.  If not set, only abortive closes are performed.

XP1_EXPEDITED_DATA - the protocol supports expedited (urgent) data.

XP1_CONNECT_DATA - the protocol supports connect data.

XP1_DISCONNECT_DATA - the protocol supports disconnect data.

XP1_SUPPORTS_BROADCAST - the protocol supports a broadcast mechanism.

XP1_SUPPORTS_MULTICAST - the protocol supports a multicast mechanism.

XP1_QOS_SUPPORTED - the protocol supports quality of service requests.

XP1_ENCRYPTS - the protocol supports data encryption.

XP1_INTERRUPT - for 16 bit environments (only), the protocol allows WSASend()/WSASendto() and WSARecv()/WSARecvfrom() to be invoked in a preemptive VMM context, sometimes referred to as interrupt context.

XP1_UNI_SEND - the protocol is unidirectional in the send direction.

XP1_UNI_RECV - the protocol is unidirectional in the recv direction.



DWORD dwServiceFlags2 - reserved for additional protocol attribute definitions

DWORD dwServiceFlags3- reserved for additional protocol attribute definitions

DWORD dwServiceFlags4 - reserved for additional protocol attribute definitions

INT iProviderID- A unique identifier assigned to the underlying transport service provider at the time it was installed under Winsock 2.  This value is useful for instances where more than one service provider is able to implement a particular protocol.  An application may use the iProviderID  value to distinguish between providers that might otherwise be indistinguishable.

INT iVersion -Protocol version identifier.

 INT iAddressFamily - the value to pass as the address family parameter to the socket()/WSASocket() API in order to open a socket for this protocol.  This value also uniquely defines the structure of protocol addresses (SOCKADDRs) used by the protocol.

INT iMaxSockAddr - The maximum address length.

INT iMinSockAddr - The minimum address length. 

INT iSocketType - The value to pass as the socket type parameter to the socket() API in order to open a socket for this protocol.

INT iProtocol - The value to pass as the protocol parameter to the socket() API in order to open a socket for this protocol.

BOOL bNetworkByteOrder - A flag to indicate whether the protocol’s network byte order is “big-endian” or “little-endian”.

BOOL bMultiple - A flag to indicate that this is one of two or more entries for a single protocol which is capable of implementing multiple behaviors.  An example of this is SPX which on the receiving side can behave either as a message oriented or a stream oriented protocol.

BOOL bFirst - A flag to indicate that this is the prime or most frequently used entry for a protocol which is capable of implementing multiple behaviors.

DWORD dwMessageSize - The maximum message size supported by the protocol.  This is the maximum size that can be sent from any of the host’s local interfaces.  For protocols which do not support message framing, the actual maximum that can be sent to a given address may be less. The following special values are defined:

0 - the protocol is stream-oriented and hence the concept of message size is not relevent.

0x1 - the maximum message size is dependent on the underlying network MTU (maximum sized transmission unit) and hence cannot be known until after a socket is bound.  Applications should use getsockopt()  to retrieve the value of SO_MAX_MSG_SIZE after the socket has been bound to a local address.

0xFFFFFFFF - the protocol is message-oriented, but there is no maximum limit to the size of messages that may be transmitted.

LPSTR lpProtocol - a pointer to a human-readable name identifying the protocol, for example "SPX2".

DWORD dwNameSpaces - information on which name spaces can be found by the transport this protocol is contained within.  Value encoding is TBD.





Return Value	If no error occurs, WSAEnumProtocols() returns the number of protocols to be reported on.  Otherwise a value of TBD is returned and  a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress.



WSAEINVAL	Indicates that one of the specified parameters was invalid.



WSAENOBUFS	The buffer length was too small to receive all the relevant PROTOCOL_INFO structures and associated information.  Pass in a buffer at least as large as the value returned in lpdwBufferLength.



�3.48 WSAEventSelect()

Description	Specify an event object to be associated with the supplied set of FD_XXX network events.



 	#include <winsock.h>



 	int WSAAPI WSAEventSelect ( SOCKET s, WSAEVENT hEventObject, long lNetworkEvents );





s	A descriptor identifying the socket.



hEventObject	A handle identifying the event object to be associated with the supplied set of FD_XXX network events.



lNetworkEvents	A bitmask which specifies the combination of FD_XXX network events in which the application has interest.





Remarks	This function is used to specify an event object, hEventObject, to be associated with the selected FD_XXX network events, lNetworkEvents.  The socket for which an event object is specified is identified by s.  The event object is set  when any of the nominated network events occurr.  



WSAEventSelect() operates very similarly to WSAAsyncSelect(), the difference being in the actions taken when a nominated network event occurs.  Whereas WSAAsyncSelect() causes an application-specified Windows message to be posted, WSAEventSelect() sets  the associated event object and records the occurrence of this event by setting the corresponding bit in an internal network event record.  An application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll on the event object, and use WSAEnumNetworkEvents() to retrieve the contents of the internal network event record and thus determine which of the nominated network events have occurred.



This function automatically sets socket s to non-blocking mode, regardless of the value of lNetworkEvents.  See ioctlsocket() about how to set the non-overlapped socket back to blocking mode.



The lNetworkEvents parameter is constructed by or'ing any of the values specified in the following list.



Value	Meaning

FD_READ	Want to receive notification of readiness for reading

FD_WRITE	Want to receive notification of readiness for writing

FD_OOB	Want to receive notification of the arrival of out-of-band data

FD_ACCEPT	Want to receive notification of incoming connections

FD_CONNECT	Want to receive notification of completed connection

FD_CLOSE	Want to receive notification of socket closure

FD_QOS	Want to receive notification of socket Quality of Service (QOS) changes

FD_GROUP_QOS	Want to receive notification of socket group Quality of Service (QOS) changes





Issuing a WSAEventSelect() for a socket cancels any previous WSAAsyncSelect() or WSAEventSelect() for the same socket and clears all bits in the internal network event record.  For example, to associate an event object with both reading and writing network events, the application must call WSAEventSelect() with both FD_READ and FD_WRITE, as follows:



rc = WSAEventSelect(s, hEventObject, FD_READ|FD_WRITE);



It is not possible to specify different event objects for different network events.  The following code will not work; the second call will cancel the effects of the first, and only FD_WRITE network event will be associated with hEventObject2:



rc = WSAEventSelect(s, hEventObject1, FD_READ);

rc = WSAEventSelect(s, hEventObject2, FD_WRITE);



To cancel the association and selection of network events on a socket, lNetworkEvents should be set to zero, in which case the hEventObject parameter will be ignored.  



rc = WSAEventSelect(s, hEventObject, 0);



Closing a socket with closesocket() also cancels the association and selection of network events specified in WSAEventSelect() for the socket.  The application, however, still needs to call WSACloseEvent() to explicitly close the event object and free any resources.



Since an accept()'ed socket has the same properties as the listening socket used to accept it, any WSAEventSelect() association and network events selection set for the listening socket apply to the accepted socket.  For example, if a listening socket has WSAEventSelect() association of hEventOject with FD_ACCEPT, FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also have FD_ACCEPT, FD_READ, and FD_WRITE network events associated with the same hEventObject.  If a different hEventObject or network events are desired, the application should call WSAEventSelect(), passing the accepted socket and the desired new information.�





Return Value	The return value is 0 if the application's specification of the network events and the associated event object was successful.  Otherwise the value SOCKET_ERROR is returned, and a specific error number may be retrieved by calling WSAGetLastError().





As in the case of the select() and WSAAsyncSelect() functions, WSAEventSelect() will frequently be used to determine when a data transfer operation (send() or recv()) can be issued with the expectation of immediate success.  Nevertheless, a robust application must be prepared for the possibility that the event object is set and it issues a Winsock call which returns WSAEWOULDBLOCK immediately.  For example, the following sequence of operations is possible:



(i)	data arrives on socket s; Winsock sets the  WSAEventSelect event object

(ii)	application does some other processing

(iii)	while processing, application issues an ioctlsocket(s, FIONREAD...) and notices that there is data ready to be read

(iv)	application issues a recv(s,...) to read the data

(v)	application eventually waits on event object specified in WSAEventSelect(), which returns immediately indicating that data is ready to read

(vi)	application issues recv(s,...), which fails with the error WSAEWOULDBLOCK.



Other sequences are possible.  



Having successfully recorded the occurrence of the network event (by setting the corresponding bit in the internal network event record) and signaled the associated event object, no further actions are taken for that network event until the application makes the function call which implicitly reenables the setting of that network event and signaling of the associated event object.



Network Event	Re-enabling function

FD_READ	recv() or recvfrom()

FD_WRITE	send() or sendto()

FD_OOB	recv()

FD_ACCEPT	accept() or WSAAccept() unless the error code returned is WSATRY_AGAIN indicating that the condition function returned CF_DEFER

FD_CONNECT	NONE

FD_CLOSE	NONE

FD_QOS	WSAIoctlgetsockopt() with command SIO_GET_QOS option SO_QOS

FD_GROUP_QOS	WSAIoctlgetsockopt() with command SIO_GET_option SO_GROUP_QOS



Any call to the reenabling routine, even one which fails, results in reenabling of recording  and setting for the relevant network event and event object, respectively.



For FD_READ, FD_OOB, FD_ACCEPT, FD_QOS and FD_GROUP_QOSand FD_ACCEPT network events, network event recording and event object setting are "level-triggered."  This means that if the reenabling routine is called and the relevant network condition is still valid after the call, the network event is recorded  and the associated event object is set .  This allows an application to be event-driven and not be concerned with the amount of data that arrives at any one time.  Consider the following sequence:



(i)	transport provider  receives 100 bytes of data on socket s and causes Winsock DLL to record the FD_READ network event and set  the associated event object.

(ii)	The application issues recv( s, buffptr, 50, 0) to read 50 bytes.

(iii)	The transport provider causes Winsock DLL to record the FD_READ network event and sets the associated event object again since there is still data to be read.



With these semantics, an application need not read all available data in response to an FD_READ network event --a single recv() in response to each FD_READ network event is appropriate. 

 If an application issues multiple recv() calls in response to a single FD_READ, it may receive multiple FD_READ messages.  Such an application may wish to disable FD_READ messages before starting the recv() calls by calling WSAAsyncSelect() with the FD_READ event not set.

The FD_QOS and FD_GROUP_QOS events are considered edge triggered.  A message will be posted exactly once when a QOS change occurs.  Further messages will not be forthcoming until either the provider detects a further change in QOS or the application renegotiates the QOS for the socket.



If a network event has already happened when the application calls WSAEventSelect() or when the reenabling function is called, then a network event is recorded and the associated event object is set as appropriate.  All the network events have persistence beyond the occurrence of their respective events.  For example, consider the following sequence: 1) an application calls listen(), 2) a connect request is received but not yet accepted, 3) the application calls WSAEventSelect() specifying that it is interested in the  FD_ACCEPT network event for the socket.  Due to the persistence of network events, Winsock records  the FD_ACCEPT network event and sets  the associated event object immediately.



The FD_WRITE network event is handled slightly differently.  An FD_WRITE network event is recorded  when a socket is first connected with connect()/WSAConnect() or accepted with accept()/WSAAccept(), and then after a send fails with WSAEWOULDBLOCK and buffer space becomes available.  Therefore, an application can assume that sends are possible starting from the first FD_WRITE network event settting and lasting until a send returns WSAEWOULDBLOCK.  After such a failure the application will find out that sends are again possible when an FD_WRITE network event is recorded  and the associated event object is set .



The FD_OOB network event is used only when a socket is configured to receive out-of-band data separately.  If the socket is configured to receive out-of-band data in-line, the out-of-band (expedited) data is treated as normal data and the application should register an interest in, and will get, FD_READ network event, not FD_OOB network event.  An application may set or inspect the way in which out-of-band data is to be handled by using setsockopt() or getsockopt() for the SO_OOBINLINE option.



The error code in an FD_CLOSE network event indicates whether the socket close was graceful or abortive.  If the error code is 0, then the close was graceful; if the error code is WSAECONNRESET, then the socket's virtual circuit was reset.  This only applies to connection-oriented sockets such as SOCK_STREAM.  



The FD_CLOSE network event is recorded  when a close indication is received for the virtual circuit corresponding to the socket.  In TCP terms, this means that the FD_CLOSE is recorded  when the connection goes into the FIN WAIT or CLOSE WAIT states.  This results from the remote end performing a shutdown() on the send side or a closesocket().



Please note Winsock  will record  ONLY an FD_CLOSE network event to indicate closure of a virtual circuit.  It will NOT record  an FD_READ network event to indicate this condition.



The FD_QOS or FD_GROUP_QOS network event is recorded  when any field in the flow spec associated with socket s or the socket group that s belongs to has changed, respectively.  Applications should use WSAIoctl getsocketopt() with command SIO_GEToption SO_QOS or SIO_GET_SO_GROUP_QOS to get the current QOS for socket s or for the socket group s belongs to, respectively.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	Indicates that one of the specified parameters was invalid, or the specified socket is in an invalid state.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAENOTSOCK	The descriptor is not a socket.





See Also	WSACloseEvent(),WSACreateEvent(), WSAEnumNetworkEvents(), WSAGetOverlappedResult(),WSAWaitForMultipleEvents().

�3.49 WSAGetLastError()

Description	Get the error status for the last operation which failed.



 	#include <winsock.h>



 	int WSAAPI WSAGetLastError ( void );



Remarks	This function returns the last network error that occurred.  When a particular Winsock function indicates that an error has occurred, this function should be called to retrieve the appropriate error code.



Return Value	The return value indicates the error code for the last Winsock routine performed by this thread.





See Also	WSASetLastError()

�3.50 WSAGetOverlappedResult()

Description	Returns the results of an overlapped operation on the specified socket.



	#include <winsock.h>



	BOOL WSAAPI WSAGetOverlappedResult( SOCKET s, LPWSAOVERLAPPED lpOverlapped, LPDWORD lpcbTransfer, BOOL fWait, LPDWORD lpdwFlags );



s	Identifies the socket. This is the same socket that was specified when the overlapped operation was started by a call to WSARecv(), WSARecvfrom(), WSASend(), or WSASendto().



lpOverlapped	Points to a WSAOVERLAPPED structure that was specified when the overlapped operation was started.



lpcbTransfer	Points to a 32-bit variable that receives the number of bytes that were actually transferred by a send or receive operation.



fWait	Specifies whether the function should wait for the pending overlapped operation to complete.  If TRUE, the function does not return until the operation has been completed.  If FALSE and the operation is still pending, the function returns FALSE and the WSAGetLastError() function returns WSA_IO_INCOMPLETE.



lpdwFlags	Points to a 32-bit variable that will receive one or more flags that supplement the completion status. For example, if partial data is received over a message-oriented transport, this is indicated here.



Remarks	The results reported by the WSAGetOverlappedResult() function are those of the specified socket's last overlapped operation to which the specified WSAOVERLAPPED structure was provided, and for which the operation's results were pending. A pending operation is indicated when the function that started the operation returns FALSE, and the WSAGetLastError() function returns WSA_IO_PENDING.  When an I/O operation is pending, the function that started the operation resets the hEvent member of the WSAOVERLAPPED structure to the nonsignaled state.  Then when the pending operation has been completed, the system sets the event object to the signaled state.



	If the fWait parameter is TRUE, WSAGetOverlappedResult() determines whether the pending operation has been completed by waiting for the event object to be in the signaled state.



Return Value	If the function succeeds, the return value is TRUE.  This means that the overlapped operation has completed and that the value pointed to by lpcbTransfer has been updated.  The application should call WSAGetLastError  to obtain any error status for the overlapped operation.  If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError().his means that either the overlapped operation has not completed or that completion status could not be determined due to errors in one or more parameters. On failure, the value pointed to by lpcbTransfer will not  be updated.  Use WSAGetLastError()  to determine the cause of the failure.



Error Codes	WSAENOTSOCK	The descriptor is not a socket.



WSA_INVALID_HANDLE	The hEvent field of the WSAOVERLAPPED structure does not contain a valid event object handle.



WSA_INVALID_PARAMETER	One of the parameters is unacceptable.



WSA_IO_INCOMPLETE	fWait is FALSE and the I/O operation has not yet completed.



See Also	WSACreateEvent(), WSAWaitForMultipleEvents(), WSARecv(), WSARecvfrom(), WSASend(), WSASendto(), WSAConnect(), WSAAccept().

�3.51 WSAGetQoSByName()

Description	Initializes the QoS based on a template.



	#include <winsock.h>



	BOOL WSAAPI WSAGetQOSByName( SOCKET s, LPWSABUF lpQOSName, LPQOS lpQOS);



s	A descriptor identifying a socket.



lpQOSName	Specifies the QoS template name.



lpQOS	A pointer to the QOS structure to be filled.



Remarks	Initializes the QoS structure based on a named template.



Return Value	If the function succeeds, the return value is TRUE.  If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError().



Error Codes	WSA_INVALID_PARAMETER	The specified QoS template is invalid.



See Also	WSAConnect(), WSAAccept(), getsockopt().

�3.52 WSAHtonl()

Description	Convert a u_long from a specified host byte order to network byte order.



 	#include <winsock.h>



 	u_long WSAAPI WSAHtonl ( u_long hostlong );



netOrder	A boolean indicating whether network byte order should be considered “big-endian”(netOrder = 0), or “little-endian” (netOrder = 1).



hostlong	A 32-bit number in host byte order.



Remarks	This routine takes a 32-bit number in the specified host byte order and returns a 32-bit number in network byte order.





Return Value	WSAHtonl() returns the value in network byte order.



See Also	htonl(), htons(), ntohs(), ntohl(), WSAHtons(), WSANtohl(), WSANtohs().

�3.53 WSAHtons()

Description	Convert a u_short from a specified host byte order to network byte order.



 	#include <winsock.h>



 	u_short WSAAPI WSAHtons ( u_short hostshort );



netOrder	A boolean indicating whether network byte order should be considered “big-endian”(netOrder = 0), or “little-endian” (netOrder = 1).



hostshort	A 16-bit number in host byte order.



Remarks	This routine takes a 16-bit number in the specified host byte order and returns a 16-bit number in network byte order.





Return Value	WSAHtons() returns the value in network byte order.



See Also	htonl(), htons(), ntohs(), ntohl(), WSAHtonl(), WSANtohl(), WSANtohs().

�3.54 WSAIoctl()

Description	Control the mode of a socket.



 	#include <winsock.h>



 	int WSAAPI WSAIoctl(SOCKET s, DWORD dwIoControlCode, LPVOID lpvInBuffer, DWORD cbInBuffer, LPVOID lpvOutBuffer, DWORD, cbOutBuffer, LPDWORD lpcbBytesReturned, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);



s		 handle to a socket



dwIoControlCode	control code of operation to perform



lpvInBuffer	 	address of input buffer



cbInBuffer		 size of input buffer



lpvOutBuffer		address of output buffer



cbOutBuffer		size of output buffer



lpcbBytesReturned	address of actual bytes of output



lpoOverlapped 		address of WSAOVERLAPPED structure



lpCompletionRoutine	A pointer to the completion routine called when the operation 	has been completed.



Remarks	This routine is used to to set or retrieve operating parameters associated with the socket, the transport protocol, or the communications subsystem. For non-overlapped socket, this function behaves like the standard ioctlsocket() API with identical blocking semantics and the lpOverlapped and lpCompletionRoutine parameters are ignored. For overlapped sockets, the final completion status is retrieved via the WSAGetOverlappedResult() API. The lpcbBytesReturned parameter is ignored.



In as much as the dwControlCode parameter is now a 32 bit entity, it is possible to adopt an encoding scheme that preserves the currently defined ioctlsocket() opcodes while providing a convenient way to partition the opcode identifier space. The dwIoControlCode parameter is architected to allow for protocol and vendor independence when adding new control codes, while retaining backward compability with the Windows Sockets 1.1 and Unix control codes. The dwIoControlCode parameter has the following form:



3�3�2�2 2�2 2 2 2 2 2 2 1 1 1 1�1 1 1 1 1 1��1�0�9�8 7�6 5 4 3 2 1 0 9 8 7 6�5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0��I�O�V�T�Vendor/Protocol�Code��

I is set if the input buffer is valid for the code, as with IOC_IN.



O is set if the output buffer is valid for the code, as with IOC_OUT. Note that for codes with both input and output parameters, both I and O will be set.



V is set if there are no parameters for the code, as with IOC_VOID.



T is a two-bit quantity which defines the type of ioctl. The following values are defined:



0 - The ioctl is a standard Unix ioctl code, as with FIONREAD, FIONBIO, etc.



1 - The ioctl is a generic Windows Sockets 2.0 ioctl code. New ioctl codes defined for Windows Sockets 2.0 will have T == 1.



2 - The ioctl applies only to a specific protocol.



3 - The ioctl applies only to a specific vendor's provider. This type allows companies to be assigned a vendor number which appears in the 

Vendor/Protocol field, and then the vendor can define new ioctls specific to 

that vendor without having to register the ioctl with a clearinghouse, 

thereby providing vendor flexibility and privacy.



Vendor/Protocol - An 11-bit quantity which defines the vendor who owns the code (if T == 3) or which defines the protocol to which the code applies (if T == 2).  If this is a Unix ioctl code (T == 0) then this field has the same value as the code on Unix.  If this is a generic Windows Sockets 2.0 ioctl (T == 1) then this field can be used as an extension of the "code" field to provide additional code values.



Code - The specific ioctl code for the operation.



	The following Unix commands are supported:



Command	Semantics



FIONBIO	Enable or disable non-blocking mode on socket s.  argp points at an unsigned long, which is non-zero if non-blocking mode is to be enabled and zero if it is to be disabled.  When a socket is created, it operates in blocking mode (i.e. non-blocking mode is disabled).  This is consistent with BSD sockets.



	The WSAAsyncSelect() or WSAEventSelect() routine automatically sets a socket to nonblocking mode.  If WSAAsyncSelect() or WSAEventSelect() has been issued on a socket, then any attempt to use ioctlsocket() to set the socket back to blocking mode will fail with WSAEINVAL.  To set the socket back to blocking mode, an application must first disable WSAAsyncSelect() by calling WSAAsyncSelect() with the lEvent parameter equal to 0, or disable WSAEventSelect() by calling WSAEventSelect() with the lNetworkEvents parameter equal to 0.



FIONBIO	Enable or disable non-blocking mode on the socket s.  argp points at an unsigned long, which is non-zero if non-blocking mode is to be enabled and zero if it is to be disabled.  When a socket is created, it operates in blocking mode (i.e. non-blocking mode is disabled).  This is consistent with BSD sockets.



	The PSCallbackSelect() routine automatically sets a socket to nonblocking mode.  If PSCallbackSelect() has been issued on a socket, then any attempt to use PSioctlsocket() to set the socket back to blocking mode will fail with WSAEINVAL.  To set the socket back to blocking mode, an application must first disable PSCallbackSelect() by calling PSCallbackSelect() with the lEvent parameter equal to 0.



FIONREAD	Determine the amount of data which can be read atomically from socket s. lpvOutBuffer points at an unsigned long in which WSAIoctl () stores the result. If s is stream-oriented (e.g., type SOCK_STREAM), FIONREAD returns the total amount of data which may be read in a single receive operation; this is normally the same as the total amount of data queued on the socket. If s is message-oriented (e.g., type SOCK_DGRAM), FIONREAD returns the size of the first datagram (message) queued on the socket.



SIOCATMARK	Determine whether or not all out-of-band data has been read. This applies only to a socket of stream style (e.g., type SOCK_STREAM) which has been configured for in-line reception of any out-of-band data (SO_OOBINLINE). If no out-of-band data is waiting to be read, the operation returns TRUE. Otherwise it returns FALSE, and the next receive operation performed on the socket will retrieve some or all of the data preceding the "mark"; the application should use the SIOCATMARK operation to determine whether any remains. If there is any normal data preceding the "urgent" (out of band) data, it will be received in order. (Note that receive operations will never mix out-of-band and normal data in the same call.) lpvOutBuffer points at a BOOL in which WSAIoctl () stores the result.



	The following Winsock 2 commands are supported:



Command	Semantics



SIO_GET_QOS	Retrieve the QOS structure associated with the socket.  No input buffer is required, the QOS structure will be copied into the ouput buffer. The WSAENOPROTOOPT error code is indicated for service providers which do not support QOS.



SIO_GET_GROUP_QOS	�Retrieve the QOS structure associated with the socket group to which this socket belongs.  No input buffer is required, the QOS structure will be copied into the ouput buffer. If this socket does not belong to an appropriate socket group, the SendingFlowspec and ReceivingFlowspec fields of the returned QOS struct are set to NULL. The WSAENOPROTOOPT error code is indicated for service providers which do not support QOS.



SIO_SET_QOS	Establish the supplied QOS structure with the socket.  No output buffer is required, the QOS structure will be obtained from the input buffer. The WSAENOPROTOOPT error code is indicated for service providers which do not support QOS.



SIO_SET_GROUP_QOS	�Establish the supplied QOS structure with the socket group to which this socket belongs.  No output buffer is required, the QOS structure will be obtained from the input buffer. The WSAENOPROTOOPT error code is indicated for service providers which do not support QOS.



It can also be used on connectionless sockets which have a stipulated default peer address established via the connect() or WSAConnect() functions.



{Hmmm, “input queue” implies receive buffering is occurring, which sort of defeats the purpose of overlapped I/O.  Should this be a valid flag for overlappedWhen called with an overlapped socket, the lpOverlapped parameter must be valid for the duration of the overlapped operation. The WSAOVERLAPPED structure has the following form:



	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// ignored

		DWORD		OffsetHigh;		// ignored

		WSAEVENT	hEvent;

Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().





 	#include <winsock.h>



	int WSAAP If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must be an event object handle which is signaled when the overlapped operation completes. An application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll on the event object. 	} WSAOVERLAPPED, LPWSAOVERLAPPED;



If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must be a valid event object handle which is signaled when the overlapped operation completes. An application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll on the event object.  



If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to pass context information to the completion routine.  



WSASendto() is normally used on a connectionless socket to send a datagram to a specific peer socket identified by the lpTo parameter.  On a connection-oriented socket, the lpTo and iTolen parameters are ignored; in this case the WSASendto() is equivalent to WSASend().



If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must be an event object handle which is signaled when the overlapped operation completes. An application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll on the event object.  



The prototype of the completion routine is as follows:



	VOID CALLBACK CompletionRoutine( SOCKET s, DWORD dwError, 	DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped );



CompletionRoutine is a placeholder for an application-defined or library-defined function. dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped. cbTransferred specifies the number of bytes returned. This function does not return a value.



Returning from this function allows invocation of another pending completion routine for this socket. In Win32 environments, all waiting completion routines are called before the alterable thread’s wait is satisfied with a return code of WSA_IO_COMPLETION. The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to pass context information to the completion routine.  



lpFlags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the lpFlags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_PEEK	Peek at the incoming data.  The data is copied into the buffer but is not removed from the input queue. {Hmmm, “input queue” implies receive buffering is occurring, which sort of defeats the purpose of overlapped I/O.  Should this be a valid flag for overlapped I/O?}



MSG_OOB	Process out-of-band data (See section  for a discussion of this topic.)





Compatibility	The ioctl codes with T == 0 are a subset of the ioctl codes used in Berkeley sockets. In particular, there is no command which is equivalent to FIOASYNC, while SIOCATMARK is the only socket-level command which is supported. 



be valid for the duration of the overlapped operation.  The WSAOVERLAPPED structure has the following form:



	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// ignored

		DWORD		OffsetHigh;		// ignored

		WSAEVENT	hEvent;

Return Value	Upon successful completion, the WSAIoctl () returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful PSStartup() must occur before using this SPI.



WSAENETDOWN	The network subsystem has failed.



WSAEINVAL	cmd is not a valid command, or a supplied input parameter is not acceptable, or the command is not applicable to the type of socket supplied



WSAEINPROGRESS	The function is invoked when a callback is in progress.



WSAENOTSOCK	The descriptor s is not a socket.





See Also	socket(), WSAsocket(), setsockopt(), getsockopt().



�3.545 WASIsBlocking()

Description	Determine if a blocking call is in progress.



 	#include <winsock.h>



 	BOOL WSAAPI WSAIsBlocking ( void );



Remarks	This function allows a task to determine if it is executing while waiting for a previous blocking call to complete.



Return Value	The return value is TRUE if there is an outstanding blocking function awaiting completion.  Otherwise, it is FALSE.



Comments	In Win16 environments, although a call issued on a blocking socket appears to an application program as though it "blocks", the Winsock DLL has to relinquish the processor to allow other applications to run.  This means that it is possible for the application which issued the blocking call to be re-entered, depending on the message(s) it receives.  In this instance, the WSAIsBlocking() function can be used to ascertain whether the task has been re-entered while waiting for an outstanding blocking call to complete.  Note that Winsock prohibits more than one outstanding call per thread.



�3.55 WSANtohl()

Description	Convert a u_long from a specified network byte order to host byte order.



 	#include <winsock.h>



 	u_long WSAAPI WSANtohl ( bool netOrder, u_long netlong );



netOrder	A boolean indicating whether network byte order should be considered “big-endian”(netOrder = 0), or “little-endian” (netOrder = 1).



netlong	A 32-bit number in network byte order.



Remarks	This routine takes a 32-bit number in the specified network byte order and returns a 32-bit number in host byte order.





Return Value	WSANtohl() returns the value in host byte order.



See Also	ntohl(), htonl(), htons(), ntohs(), WSAHtonl(), WSAHtons(), WSANtohs().

�3.56 WSANtohs()

Description	Convert a u_short from a specified network byte order to host byte order.



 	#include <winsock.h>



 	u_short WSAAPI WSANtohs (bool netOrder, u_short netshort );



netOrder	A boolean indicating whether network byte order should be considered “big-endian”(netOrder = 0), or “little-endian” (netOrder = 1).



netshort	A 16-bit number in network byte order.



Remarks	This routine takes a 16-bit number in the specified network byte order and returns a 16-bit number in host byte order.





Return Value	WSANtohs() returns the value in host byte order.



See Also	htonl(), htons(), ntohs(), ntohl(), WSAHtonl(), WSAHtons(), WSANtohl().

�3.57 WSARecv()

Description	Receive data from a socket, using overlapped I/O where applicable.





 	#include <winsock.h>





 	#include <winsock.h>



 	int WSAAPI 	int WSAAPI WSARecv ( SOCKET s, LPVOID lpBuffer, DWORD nNumberOfBytesToRecvWSABUF lpBuffesr, DWORD dwBufferCount, LPDWORD lpNumberOfBytesRecvd, LPINT lpFlags, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine );





s	A descriptor identifying a connected socket.



lpBuffer	A pointer to the buffer for the incoming data.



nNumberOfBytesToRecv	The number of bytes to receive from the networks	A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer.



dwBufferCount	The number of WSABUF structures in the lpBuffers array.



lpNumberOfBytesRecvd	A pointer to the number of bytes received by this call if the receive operation completes immediately.



lpFlags	A pointer to flags.



lpOverlapped	A pointer to a WSAOVERLAPPED structure (ignored for non-overlapped sockets).



lpCompletionRoutine	A pointer to the completion routine called when the receive operation has been completed (ignored for non-overlapped sockets).



Remarks	This function provides functionality over and above the standard recv() function in three important areas:

It can be used in conjunction with overlapped sockets to perform overlapped receive operations.

It allows multiple receive buffers to be specified making it applicable to the scatter/gather type of I/O.

The lpFlags parameter is both an INPUT and an OUTPUT paramter, allowing applications to sense the output state of the MSG_PARTIAL flag bit.  Note however, that the MSG_PARTIAL flag bit is not supported by all protocols.



isWSARecv() is primarily used on a connection-oriented socket specified by s.  It may also be used, however, on connectionless sockets which have a stipulated default peer address established via the connect() or WSAConnect() functions.



For overlapped sockets itWSARecv() is used  to post a bufferone or more  buffers into which incoming data will be placed as it becomes available, after which the application-specified completion indication (invocation of the completion routine or setting of an event object) occurs. The final completion status is retrieved via WSAGetOverlappedResult().

available.  For non-overlapped sockets it behaves the same as the standard recv() function except that the flags parameter is both an input and an output parameter. 

For non-overlapped sockets, the blocking semantics are identical to that of the standard recv() function and the lpOverlapped  and lpCompletionRoutine parameters are ignored. Any data which has already been received and buffered by the transport will be copied into the supplied user buffers. For the case of a blocking socket with no data currently having been received and buffered by the transport, the call will block until data is received.







The WSABUF structures pointed to by the lpBuffers parameter are transient. If this operation completes in an overlapped manner, it is the service provider’s responsibility to capture these WSABUF structures before returning from this call. This enables applications to build stack-based WSABUF arrays.



For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed into the buffer until the buffer is filleds until the buffers are filled, the connection is closed, or internally buffered data is exhausted. .  Regardless of whether or not the incoming data fills the buffers, the completion indication occurs for overlapped sockets.  If the socket has been configured for in-line reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be filled.  The application may use the ioctlsocket() SIOCATMARK to determine whether any more out-of-band data remains to be read.



For message-oriented sockets (e.g., type SOCK_DGRAM), an incoming message is placed into the supplied buffer, up to the size of the buffer supplieds, up to the total size of the buffers supplied, and the completion indication occurs for overlapped sockets.  If the message is larger than the buffer supplied, the buffer is filled with the first part of the message.  The MSG_PARTIAL flag is set for the socket, if this feature is supported by the underlying protocol, and subsequent receive operation(s) will retrive the rest of the message.  Otherwise, the excess data is lost, and WSARecv() returns the error WSAEMSGSIZE.



If no incoming data is available at the socket, the recv() call waits for data to arrive unless the socket is non-blocking.  In this case a value of SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK.  The select(), WSAAsyncSelect() or WSACallbackSelect() calls may be used to determine when more data arrives.



If the socket is connection-oriented and the remote side has shut down the connection gracefully, WSARecv() will fail with the error WSAEDISCON.  If the connection has been reset, a WSARecv() will fail with the error WSAECONNRESET.



lpFlags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the lpFlags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_PEEK	Peek at the incoming data.  The data is copied into the buffer but is not removed from the input queue. This flag is valid only for non-overlapped sockets. 



MSG_OOB	Process out-of-band data (See section �ref oob�B.3.2.3 B.3.2.3 � for a discussion of this topic.)



MSG_PARTIAL	The data supplied is a portion of the message transmitted by the sender.  Remaining portions of the message will normally be made available in subsequent receive operations.  The next receive operation with MSG_PARTIAL flag cleared indicates end of sender’s message.



Upon the completion of an overlapped operationIf an  overlapped operation completes immediately, the lpNumberOfBytesRecvd parameter is filled with the number of bytes received.  If  the overlapped operation is successfully initated and completes later, lpNumberOfBytesRecvd is not updated.  Applications may determine the amount of data transferred either via the cbTransferred parameter in the completion function (if specified), or via the lpcbTransfer parameter in WSAGetOverlappedResult().



 received, and, fFor message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial message is received.  If a complete message is received, MSG_PARTIAL is cleared  in lpFlags.  In the case of delayed completion, the value pointed to by lpFlags is not updated until the completion indication has been given.





Overlapped socket I/O:

This function may be called from within the completion routine of a previous WSARead(), WSAReadfrom(), WSASend() or WSASendto() function. In Win16 environments, this function may also be called from within a preemptive VMM context provided that the XP1_INTERRUPT bit in the associated PROTOCOL_INFO struct is TRUE.



The lpOverlapped parameter must be valid for the duration of the overlapped operation.  If multiple I/O operations are simultaneously outstanding, each must referece a separate overlapped structure. The WSAOVERLAPPED structure has the following form:

muc

	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// ignored

		DWORD		OffsetHigh;		// ignored

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR *LPWSAOVERLAPPED;



If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must be a valid event object handle which is signaled when the overlapped operation completes. An application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll on the event object.  



If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to pass context information to the completion routine



In Win16 environments, callback functions may be invoked in a preemptive VMM context which is sometimes referred to as an interrupt context.  Applications must be aware that in this special context a very limited set of runtime and Windows library functions can be safely made.  As a rule, an application should confine itself to the same set of runtime functions that the Windows documentation indicates may safely be called during a multimedia timer callback function.  



In Windows 95 and NT, the completion function follows the same rules as stipulated for Win32 file I/O completion routines.  The completion function will not be invoked until the thread is in an alertable wait state such as can occur when the function WSAWaitForMultipleEvents() is invoked.



In all environments,  transports do allow an application to invoke send and receive operations from within the context of the socket I/O completion function, and guarantee that, for a given socket, I/O completion functions will not be nested.  This permits time-sensitive data transmissions to occur entirely within a preemptive context.



The prototype of the completion routine is as follows:



	VOID CALLBACK CompletionRoutine( SOCKET s, DWORD dwError, 	DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped );



CompletionRoutine is a placeholder for an application-defined or library-defined function name.  dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped.  cbTransferred specifies the number of bytes received.  This function does not return a value.



Returning from this function allows invocation of another pending completion routine for this socket.  In Win32 environments, all waiting completion routines are called before the alterable thread’s wait is satisfied with a return code of WSA_IO_COMPLETION.  The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed.  However, the posted buffers are guaranteed to be filled in the same order they are supplied 





Return Value	If no error occurs and the receive operation has completed immediately, WSARecv() returns the number of bytes received.  If the connection has been closed, it returns 0.  Note that in this case the completion indication (invocation of the designated completion routine or the setting of an event object) will have already occurred.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().  The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time.  Any other error code indicates that the overlapped operations was not successfully initiated and no completion indication will occur.





Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAENOTCONN	The socket is not connected.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking PII operation is in progress.



WSAENETRESET	The connection must be reset because the service provider dropped it.



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only send operations.



WSAESHUTDOWN	The socket has been shutdown; it is not possible to WSARecv() on a socket after shutdown() has been invoked with how set to SD_RECEIVE or SD_BOTH.



WSAEWOULDBLOCK	Overlapped sockets: There are too many outstanding overlapped I/O requests.  Non-overlapped sockets: The socket is marked as non-blocking and the receive operation cannot be completed immediately.



WSAEMSGSIZE	The message was too large to fit into the specified buffer and was truncated.



WSAEINVAL	The socket has not been bound with bind(), or the socket is not created with the overlapped flag.



WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure.



WSAECONNRESET	The virtual circuit was reset by the remote side.



WSAEDISCON	The remote side gracefully close the connection.



WSA_IO_PENDING	An overlapped operation was successfully initiated and completion will be indicated at a later time.



See Also	WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(), WSAWaitForMultipleEvents()

�3.58 WSARecvfrom()

Description	Receive a datagram and store the source address, using overlapped I/O where applicable..



 	#include <winsock.h>



	int WSAAPI WSARecvfrom ( SOCKET s, LPVOID lpBuffer, DWORD nNumberOfBytesToRecvWSABUF lpBuffesr, DWORD dwBufferCount, LPDWORD lpNumberOfBytesRecvd, LPINT lpFlags, LPVOID lpFrom, LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine );





s	A descriptor identifying a socket



lpBuffer	A pointer to the buffer for the incoming data.



nNumberOfBytesToRecv	The number of bytes to receive from the network.s	A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer.



dwBufferCount	The number of WSABUF structures in the lpBuffers array. 



lpNumberOfBytesRecvd	A pointer to the number of bytes received by this call if the receive operation completes immediately.



lpFlags	A pointer to flags.



lpFrom	An optional pointer to a buffer which will hold the source address upon the completion of the overlapped operation.



lpFromlen	An optional pointer to the size of the from buffer.



lpOverlapped	A pointer to a WSAOVERLAPPED structure (ignored for non-overlapped sockets).



lpCompletionRoutine	A pointer to the completion routine called when the receive operation has been completed (ignored for non-overlapped sockets).



Remarks	This function provides functionality over and above the standard recvfrom() function in three important areas:

It can be used in conjunction with overlapped sockets to perform overlapped receive operations.

It allows multiple receive buffers to be specified making it applicable to the scatter/gather type of I/O.

The lpFlags parameter is both an INPUT and an OUTPUT paramter, allowing applications to sense the output state of the MSG_PARTIAL flag bit.  Note however, that the MSG_PARTIAL flag bit is not supported by all protocols.



WSARecvFrom() is used primarily on a connectionless socket specified by s.  



Remarks	For overlapped sockets, this function is used to post a bufferone or more buffers into which incoming data will be placed as it becomes available on a (possibly connected) socket. For non-overlapped sockets it behaves the same as the standard recv() function except that the flags parameter is both an input and an output parameter.  The data must have already been received by the transport for, after which the application-specified completion indication (invocation of the completion routine or setting of an event object) occurs. The final completion status is retrieved via non-overlapped socketsWSAGetOverlappedResult().  Also note that the values pointed to by lpFrom and lpFromlen are not updated until completion is indicated.  Applications must not use or disturb these values until they have been updated.



For non-overlapped sockets, the blocking semantics are identical to that of the standard recvfrom() function and the lpOverlapped  and lpCompletionRoutine parameters are ignored. Any data which has already been received and buffered by the transport will be copied into the supplied user buffers. For the case of a blocking socket with no data currently having been received and buffered by the transport, the call will block until data is received.



For connectionless socket types, the address from which the data originated is copied to the buffer pointed by lpFrom.  The value pointed to by lpFromlen is initialized to the size of this buffer, and is modified on return to indicate the actual size of the address stored there. As noted previously for overlapped sockets, the lpFrom and lpFromlen parameters are not updated until after the overlapped I/O has completed.  The lpFrom and lpFromlen parameters are ignored for connection-oriented sockets.



For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed into the buffer until the buffer is filled.s until the buffers are filled, the connection is closed, or internally buffered data is exhausted. Regardless of whether or not the incoming data fills the buffer, the completion indication occurs for overlapped sockets.  For message-oriented sockets, an incoming message is placed into the supplied buffer, up to the size of the buffer supplieds, up to the total size of the buffers supplied, and the completion indication occurs for overlapped sockets.  If the message is larger than the buffer supplied, the buffer is filled with the first part of the message.  The MSG_PARTIAL flag is set for the socket, if this feature is supported by the underlying protocol, and subsequent receive operation(s) will retrive the rest of the message.  Otherwise, the excess data is lost, and WSARecvfrom() returns the error code WSAEMSGSIZE.



If no incoming data is available at the socket, the recvfrom() call waits for data to arrive unless the socket is non-blocking.  In this case a value of SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK.  The select(), WSAAsyncSelect() or WSACallbackSelect() may be used to determine when more data arrives.



If the socket is connection-oriented and the remote side has shut down the connection gracefully, a WSARecvfrom() will fail with the error WSAEDISCON.  If the connection has been reset WSARecvfrom() will fail with the error WSAECONNRESET.



lpFlags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the flags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_PEEK	Peek at the incoming data.  The data is copied into the buffer but is not removed from the input queue. This flag is valid only for non-overlapped sockets.



MSG_OOB	Process out-of-band data (See section �ref oob�B.3.2.3 B.3.2.3 � for a discussion of this topic.)



MSG_PARTIAL	The data supplied is a portion of the message transmitted by the sender.  Remaining portions of the message will normally be made available in subsequent receive operations.  The next receive operation with MSG_PARTIAL flag cleared indicates end of sender’s message.



Upon the completion of the overlapped operationIf an overlapped operation completes immediately, the lpNumberOfBytesRecvd parameter is filled with the number of bytes received.  If  the overlapped operation is successfully initated and completes later, lpNumberOfBytesRecvd is not updated.  Applications may determine the amount of data transferred either via the cbTransferred parameter in the completion function (if specified), or via the lpcbTransfer parameter in WSAGetOverlappedResult().



received, and, fFor message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial message is received.  If a complete message is received, MSG_PARTIAL is cleared  in lpFlags. In the case of delayed completion, the value pointed to by lpFlags is not updated until the completion indication has been given.





Overlapped socket I/O:

This function may be called from within the completion routine of a previous WSARead(), WSAReadFrom(), WSASend() or WSASendTo() function. In Win16 environments, this function may also be called from within a preemptive VMM context provided that the XP1_INTERRUPT bit in tthe associated PROTOCOL_INFO struct is TRUE.



The lpOverlapped parameter muchst be valid for the duration of the overlapped operation. If multiple I/O operations are simultaneously outstanding, each must referece a separate overlapped structure.   The WSAOVERLAPPED structure has the following form:



	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// ignored

		DWORD		OffsetHigh;		// ignored

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;



If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must be an event object handle which is signaled when the overlapped operation completes. An application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll on the event object.  



If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to pass context information to the completion routine.  



In Win16 environments, callbackompletion functions may be invoked in a preemptive VMM context which is sometimes referred to as an interrupt context.  Applications must be aware that in this special context a very limited set of runtime and Windows library functions can be safely made.  As a rule, an application should confine itself to the same set of runtime functions that the Windows documentation indicates may safely be called during a multimedia timer callback function.  



In Windows 95 and NT, the completion function follows the same rules as stipulated for Win32 file I/O completion routines.  The completion function will not be invoked until the thread is in an alertable wait state such as can occur when the function WSAWaitForMultipleEvents() is invoked.



In all environments,  transports do allow an application to invoke send and receive operations from within the context of the socket I/O completion function, and guarantee that, for a given socket, I/O completion functions will not be nested.  This permits time-sensitive data transmissions to occur entirely within a preemptive context.



The prototype of the completion routine is as follows:



	VOID CALLBACK CompletionRoutine( SOCKET s, DWORD dwError, 	DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped );



CompletionRoutine is a placeholder for an application-defined or library-defined function name.  dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped.  cbTransferred specifies the number of bytes received.  This function does not return a value.



Returning from this function allows invocation of another pending completion routine for this socket.  In Win32 environments, all waiting completion routines are called before the alterable thread’s wait is satisfied with a return code of WSA_IO_COMPLETION.  The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed.  However, the posted buffers are guaranteed to be filled in the same order they are supplied





Return Value	If no error occurs and the receive operation has completed immediately, WSARecvfrom() returns 0.  Note that in this case the completion indication (invocation of the designated completion routine or the setting of an event object) will have already occurred.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().WSAGetLastError().  The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time.  Any other error code indicates that the overlapped operations was not successfully initiated and no completion indication will occur.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEFAULT	The lpFromlen argument was invalid: the lpFrom buffer was too small to accommodate the peer address.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking PII operation is in progress.



WSAEINVAL	The socket has not been bound with bind(), or the socket is not created with the overlapped flag.



WSAENETRESET	The connection must be reset because the Winsock provider dropped it.



WSAENOTCONN	The socket is not connected (connection-oriented sockets only).



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only send operations.



WSAESHUTDOWN	The socket has been shutdown; it is not possible to WSARecvfrom() on a socket after shutdown() has been invoked with how set to SD_RECEIVE or SD_BOTH.



WSAEWOULDBLOCK	Overlapped sockets: There are too many outstanding overlapped I/O requests. .  Non-overlapped sockets: The socket is marked as non-blocking and the receive operation cannot be completed immediately.



WSAEMSGSIZE	The message was too large to fit into the specified buffer and was truncated.



WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure.



WSAECONNRESET	The virtual circuit was reset by the remote side.



WSAEDISCON	The remote side gracefully close the connection.



WSA_IO_PENDING	An overlapped operation was successfully initiated and completion will be indicated at a later time.



See Also	WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(), WSAWaitForMultipleEvents()



�3.59 WSAResetEvent()

Description	Resets the state of the specified event object to nonsignaled.



	#include <winsock.h>



	BOOL WSAAPI WSAResetEvent( WSAEVENT hEvent );



hEvent	Identifies an open event object handle.



Remarks	The Win32 implementation of this function is:



	#define WSAResetEvent( h )

		ResetEvent( h )



Return Value	If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError().



Error Codes	WSA_INVALID_HANDLE	hEvent is not a valid event object handle.



See Also	WSACreateEvent(), WSASetEvent(), WSACloseEvent().

�3.60 WSASend()

Description	Send data on a connected socket, using overlapped I/O where applicable.



 	#include <winsock.h>



	int WSAAPI WSASend ( SOCKET s, LPVOID lpBuffer, DWORD nNumberOfBytesToSendWSABUFlpBuffesr, DWORD dwBufferCount, LPDWORD lpNumberOfBytesSent, int iFlags, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine );





s	A descriptor identifying a connected socket.



lpBuffer	A pointer to the buffer for the outgoing data.



nNumberOfBytesToSend	The number of bytes to send to the networks	A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer.



dwBufferCount	The number of WSABUF structures in the lpBuffers array.



lpNumberOfBytesSent	A pointer to the number of bytes sent by this call if the I/O operation completes immediately.



iFlags	Flags.



lpOverlapped	A pointer to a WSAOVERLAPPED structure (ignored for non-overlapped sockets).



lpCompletionRoutine	A pointer to the completion routine called when the send operation has been completed (ignored for non-overlapped sockets).



Remarks	This function provides functionality over and above the standard send() function in two important areas:

It can be used in conjunction with overlapped sockets to perform overlapped send operations.

It allows multiple send buffers to be specified making it applicable to the scatter/gather type of I/O.



Remarks	WSASend() is used  to write outgoing data from one or more buffers on a connection-oriented socket specified by s.  It may also be used, however, on connectionless sockets which have a stipulated default peer address established via the connect() or WSAConnect() functions.

on a connected socket. 



For overlapped sockets (created using WSASocket() with flag WSA_FLAG_OVERLAPPED) this will occur using overlapped I/O. A completion indication will occur (invocation of the completion routine or setting of an event object) when the supplied buffer(s) have been consumed by the transport. The final completion status is retrieved via WSAGetOverlappedResult().



If the socket, s, is not an overlapped socketFor non-overlapped sockets, the last two parameters (lpOverlapped, lpCompletionRoutine) are ignored and WSASend() behaves exactly like send().adopts the same blocking semantics as  send(). Data is copied from the supplied buffer(s) into the transport’s buffer.  If the socket is non-blocking and there is not sufficient space in the transport’s buffer, WSASend()  will return with only part of the application’s buffers having been consumed.  Given the same buffer situation and a blocking socket, WSASend() will block until all of the application’s buffer contents have been consumed.

	

For message-oriented sockets, care must be taken not to exceed the maximum message size of the underlying provider, which can be obtained by getting the value of socket option SO_MAX_MSG_SIZE.  If the data is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.



Note that the successful completion of a WSASend() does not indicate that the data was successfully delivered. 



Flags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the flags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_DONTROUTE�Specifies that the data should not be subject to routing.  A Winsock service provider may choose to ignore this flag; see also the discussion of the SO_DONTROUTE option in section �ref Socket_Options�B.3.4 B.3.4 �.



MSG_OOB	Send out-of-band data (stream style socket such as SOCK_STREAM only; see also section �ref oob�B.3.2.3 B.3.2.3 �)



MSG_PARTIAL	Specifies that lpBuffers only contains a partial message.  Note that this flag will be ignored by transports which do not support partial message transmissions.







Overlapped socket I/O:

Upon completion of an overlapped operationIf an overlapped operation completes immediately, the value pointed to by the lpNumberOfBytesSent parameter is updated with the number of bytes sent.  Otherwise, this parameter will be ignored.  Applications may determine the amount of data transferred either via the cbTransferred parameter in the completion function (if specified), or via the lpcbTransfer parameter in WSAGetOverlappedResult().





If no buffer space is available within the transport system to hold the data to be transmitted, send() will block unless the socket has been placed in a non-blocking I/O mode.  On non-blocking stream-oriented sockets, the number of bytes written may be between 1 and the requested length, depending on buffer availability on both the local and foreign hosts.  The select(), WSAAsyncSelect() or WSACallbackSelect() call may be used to determine when it is possible to send more data.



This function may be called from within the completion routine of a previous WSARead(), WSAReadFrom(), WSASend() or WSASendTo() function. In Win16 environments, this function may also be called from within a preemptive VMM context provided that the XP1_INTERRUPT bit in the socket’s PROTOCOL_INFO struct is TRUE.



The lpOverlapped parameter muchst be valid for the duration of the overlapped operation. If multiple I/O operations are simultaneously outstanding, each must referece a separate overlapped structure.   The WSAOVERLAPPED structure has the following form:



	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// ignored

		DWORD		OffsetHigh;		// ignored

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;



If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must be a valid event object handle which is signaled when the overlapped operation completes. An application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll on the event object.  



If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to pass context information to the completion routine.  



In Win16 environments, callback functions may be invoked in a preemptive VMM context which is sometimes referred to as an interrupt context.  Applications must be aware that in this special context a very limited set of runtime and Windows library functions can be safely made.  As a rule, an application should confine itself to the same set of runtime functions that the Windows documentation indicates may safely be called during a multimedia timer callback function.  



In Windows 95 and NT, the completion function follows the same rules as stipulated for Win32 file I/O completion routines.  The completion function will not be invoked until the thread is in an alertable wait state such as can occur when the function WSAWaitForMultipleEvents() is invoked.



In all environments,  transports do allow an application to invoke send and receive operations from within the context of the socket I/O completion function, and guarantee that, for a given socket, I/O completion functions will not be nested.  This permits time-sensitive data transmissions to occur entirely within a preemptive context.



The prototype of the completion routine is as follows:



	VOID CALLBACK CompletionRoutine( SOCKET s, DWORD dwError, 	DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped );



CompletionRoutine is a placeholder for an application-defined or library-defined function name.  dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped.  cbTransferred specifies the number of bytes sent.  This function does not return a value.



Returning from this function allows invocation of another pending completion routine for this socket.  In Win32 environments, all waiting completion routines are called before the alterable thread’s wait is satisfied with a return code of WSA_IO_COMPLETION.  The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed.  However, the posted buffers are guaranteed to be sent in the same order they are supplied



, s is in non-blocking mode, and the MSG_INTERRUPT flag is set.  Note that the meaning of the return value in this case is changed.



 

Return Value	If no error occurs and the receive operation has completed immediately, WSASend() returns 0. the total number of characters sent.  (Note that this may be less than the number indicated by len.) Note that in this case the completion indication (invocation of the designated completion routine or the setting of an event object) will have already occurred.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().WSAGetLastError().  The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time.  Any other error code indicates that the overlapped operations was not successfully initiated and no completion indication will occur.







Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEACCES	The requested address is a broadcast address, but the appropriate flag was not set.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking PII operation is in progress.



WSAEFAULT	The lpBuffer argument is not in a valid part of the user address space.



WSAENETRESET	The connection must be reset because the Winsock provider dropped it.



WSAENOBUFS	The Winsock provider reports a buffer deadlock.



WSAENOTCONN	The socket is not connected.



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only receive operations.



WSAESHUTDOWN	The socket has been shutdown; it is not possible to WSASend() on a socket after shutdown() has been invoked with how set to SD_SEND or SD_BOTH.



WSAEWOULDBLOCK	There are too many outstanding overlapped I/O requests.



WSAEMSGSIZE	The socket is message-oriented, and the message is larger than the maximum supported by the underlying transport.



WSAEINVAL	The socket has not been bound with bind(), or the socket is not created with the overlapped flag.



WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure.



WSAECONNRESET	The virtual circuit was reset by the remote side.



WSA_IO_PENDING	An overlapped operation was successfully initiated and completion will be indicated at a later time.







See Also	WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(), WSAWaitForMultipleEvents()



�3.61 WSASendto()

Description	Send data to a specific destination, using overlapped I/O where applicable.



 	#include <winsock.h>



	int WSAAPI WSASendto ( SOCKET s, LPVOID lpBuffer, DWORD nNumberOfBytesToSendWSABUFlpBuffers, DWORD dwBufferCount, LPDWORD lpNumberOfBytesSent, int iFlags, LPVOID lpTo, int iTolen, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine );





s	A descriptor identifying a connected socket which was created using WSASocket() with flag WSA_FLAG_OVERLAPPED.



lpBuffer	A pointer to the buffer for the outgoing data.



nNumberOfBytesToSend	The number of bytes to send to the networks	A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer.



dwBufferCount	The number of WSABUF structures in the lpBuffers array.



lpNumberOfBytesSent	A pointer to the number of bytes sent by this call if the I/O operation completes immediately.



iFlags	Flags.



lpTo	An optional pointer to the address of the target socket.



iTolen	The size of the address in lpTo.



lpOverlapped	A pointer to a WSAOVERLAPPED structure (ignored for non-overlapped sockets).



lpCompletionRoutine	A pointer to the completion routine called when the send operation has been completed (ignored for non-overlapped sockets).



Remarks	This function provides functionality over and above the standard sendto() function in two important areas:

It can be used in conjunction with overlapped sockets to perform overlapped send operations.

It allows multiple send buffers to be specified making it applicable to the scatter/gather type of I/O.



WSASendto() is used to write outgoing data from one or more buffers on a connectionless socket specified by s. WSASendto() is normally used on a connectionless socket to send a datagram to a specific peer socket identified by the lpTo parameter.  On a connection-oriented socket, the lpTo and iTolen parameters are ignored; in this case the WSASendto() is equivalent to WSASend().





Remarks	WSASendto() is used to write outgoing data on a socket asynchronously.For overlapped sockets (created using WSASocket() with flag WSA_FLAG_OVERLAPPED) this will occur using overlapped I/O. A completion indication will occur (invocation of the completion routine or setting of an event object) when the supplied buffer(s) have been consumed by the transport. The final completion status is retrieved via WSAGetOverlappedResult().



If the socket, s, is not an overlapped socketFor non-overlapped  sockets, the last two parameters (lpOverlapped, lpCompletionRoutine) are ignored and WSASend() behaves exactly like send().adopts the same blocking semantics as send(). Data is copied from the supplied buffer(s) into the transport’s buffer.  If the socket is non-blocking and there is not sufficient space in the transport’s buffer, WSASend()  will return with only part of the application’s buffers having been consumed.  Given the same buffer situation and a blocking socket, WSASend() will block until all of the application’s buffer contents have been consumed.



	For message-oriented sockets, care must be taken not to exceed the maximum message size of the underlying transport, which can be obtained by getting the value of socket option SO_MAX_MSG_SIZE.  If the data is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.



Note that the successful completion of a WSASendto() does not indicate that the data was successfully delivered. 



If no buffer space is available within the transport system to hold the data to be transmitted, sendto() will block unless the socket has been placed in a non-blocking I/O mode.  On non-blocking stream-oriented sockets, the number of bytes written may be between 1 and the requested length, depending on buffer availability on both the local and foreign hosts.  The select(), WSAAsyncSelect() or WSACallbackSelect() call may be used to determine when it is possible to send more data.



Flags may be used to influence the behavior of the function invocation beyond the options specified for the associated socket.  That is, the semantics of this function are determined by the socket options and the flags parameter.  The latter is constructed by or-ing any of the following values:



Value	Meaning

MSG_DONTROUTE�Specifies that the data should not be subject to routing.  A Winsock service provider may choose to ignore this flag; see also the discussion of the SO_DONTROUTE option in section �ref Socket_Options�B.3.4 B.3.4 �.



MSG_OOB	Send out-of-band data (stream style socket such as SOCK_STREAM only; see also section �ref oob�B.3.2.3 B.3.2.3 �)



MSG_PARTIAL	Specifies that lpBuffer only contains a partial message.  Note that this flag will be ignored by transports which do not support partial message transmissions.





Overlapped socket I/O:

Upon completion of the overlapped operationIf an overlapped operation completes immediately, the value pointed to by the lpNumberOfBytesSent parameter is updated with the number of bytes sent.

 Otherwise, this parameter will be ignored.  Applications may determine the amount of data transferred either via the cbTransferred parameter in the completion function (if specified), or via the lpcbTransfer parameter in WSAGetOverlappedResult().







This function may be called from within the completion routine of a previous WSARead(), WSAReadFrom(), WSASend() or WSASendTo() function. In Win16 environments, this function may also be called from within a preemptive VMM context provided that the XP1_INTERRUPT bit in the socket’s PROTOCOL_INFO struct is TRUE.



The lpOverlapped parameter muchst be valid for the duration of the overlapped operation. If multiple I/O operations are simultaneously outstanding, each must referece a separate overlapped structure.  The WSAOVERLAPPED structure has the following form:



	typedef struct _WSAOVERLAPPED {

		DWORD		Internal;		// reserved

		DWORD		InternalHigh;	// reserved

		DWORD		Offset;		// ignored

		DWORD		OffsetHigh;		// ignored

		WSAEVENT	hEvent;

	} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;



If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must be an event object handle which is signaled when the overlapped operation completes. An application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult() to wait or poll on the event object.  



If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the application to pass context information to the completion routine.  



In Win16 environments, callback functions may be invoked in a preemptive VMM context which is sometimes referred to as an interrupt context.  Applications must be aware that in this special context a very limited set of runtime and Windows library functions can be safely made.  As a rule, an application should confine itself to the same set of runtime functions that the Windows documentation indicates may safely be called during a multimedia timer callback function.  



In Windows 95 and NT, the completion function follows the same rules as stipulated for Win32 file I/O completion routines.  The completion function will not be invoked until the thread is in an alertable wait state such as can occur when the function WSAWaitForMultipleEvents() is invoked.



In all environments,  transports do allow an application to invoke send and receive operations from within the context of the socket I/O completion function, and guarantee that, for a given socket, I/O completion functions will not be nested.  This permits time-sensitive data transmissions to occur entirely within a preemptive context.



The prototype of the completion routine is as follows:



	VOID CALLBACK CompletionRoutine( SOCKET s, DWORD dwError, 	DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped );



CompletionRoutine is a placeholder for an application-defined or library-defined function name.  dwError specifies the completion status for the overlapped operation as indicated by lpOverlapped.  cbTransferred specifies the number of bytes sent.  This function does not return a value.



Returning from this function allows invocation of another pending completion routine for this socket.  In Win32 environments, all waiting completion routines are called before the alterable thread’s wait is satisfied with a return code of WSA_IO_COMPLETION.  The completion routines may be called in any order, not necessarily in the same order the overlapped operations are completed.  However, the posted buffers are guaranteed to be sent in the same order they are supplied





Return Value	If no error occurs and the receive operation has completed immediately, WSASendto() returns 0. the total number of characters sent.  (Note that this may be less than the number indicated by len.) Note that in this case the completion indication (invocation of the designated completion routine or the setting of an event object) will have already occurred.  Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be retrieved by calling WSAGetLastError().WSAGetLastError().  The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time.  Any other error code indicates that the overlapped operations was not successfully initiated and no completion indication will occur.





Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEACCES	The requested address is a broadcast address, but the appropriate flag was not set.



WSAEINTR	The (blocking) call was canceled via WSACancelBlockingCall().



WSAEINPROGRESS	A blocking PII operation is in progress.



WSAEFAULT	The lpBuffer or lpTo parameters are not part of the user address space, or the lpTo argument is too small (less than the sizeof a struct sockaddr).



WSAENETRESET	The connection must be reset because the Winsock provider dropped it.



WSAENOBUFS	The Winsock provider reports a buffer deadlock.



WSAENOTCONN	The socket is not connected (connection-oriented sockets only)



WSAENOTSOCK	The descriptor is not a socket.



WSAEOPNOTSUPP	MSG_OOB was specified, but the socket is not stream style such as type SOCK_STREAM, out-of-band data is not supported in the communication domain associated with this socket, or the socket is unidirectional and supports only receive operations.



WSAESHUTDOWN	The socket has been shutdown; it is not possible to WSASendto() on a socket after shutdown() has been invoked with how set to SD_SEND or SD_BOTH.



WSAEWOULDBLOCK	There are too many outstanding overlapped I/O requests.



WSAEMSGSIZE	The socket is message-oriented, and the message is larger than the maximum supported by the underlying transport.



WSAEINVAL	The socket has not been bound with bind(), or the socket is not created with the overlapped flag.



WSAECONNABORTED	The virtual circuit was aborted due to timeout or other failure.



WSAECONNRESET	The virtual circuit was reset by the remote side.



WSAEADDRNOTAVAIL	The specified address is not available from the local machine.



WSAEAFNOSUPPORT	Addresses in the specified family cannot be used with this socket.



WSAEDESTADDRREQ	A destination address is required.



WSAENETUNREACH	The network can't be reached from this host at this time.



WSA_IO_PENDING	An overlapped operation was successfully initiated and completion will be indicated at a later time.



See Also	WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(), WSAWaitForMultipleEvents()

�3.62 WSASetBlockingHook()

Description	Establish an application-specific blocking hook function.



 	#include <winsock.h>



 	FARPROC WSAAPI WSASetBlockingHook ( FARPROC lpBlockFunc );





lpBlockFunc	A pointer to the procedure instance address of the blocking function to be installed.



Remarks	This function installs a new function which a Winsock implementation should use to implement blocking socket function calls.



A Winsock implementation includes a default mechanism by which blocking socket functions are implemented.  The function WSASetBlockingHook() gives the application the ability to execute its own function at "blocking" time in place of the default function.



When an application invokes a blocking Winsock operation, Winsock initiates the operation and then enters a loop which is similar to the following pseudocode:



for(;;) {

     /* flush messages for good user response */

     while(BlockingHook())

          ;

     /* check for WSACancelBlockingCall() */

     if(operation_cancelled())

          break;

     /* check to see if operation completed */

     if(operation_complete())

          break;     /* normal completion */

}



Note that Winsock implementations may perform the above steps in a different order; for example, the check for operation complete may occur before calling the blocking hook.  The default BlockingHook() function is equivalent to:



BOOL DefaultBlockingHook(void) {

     MSG msg;

     BOOL ret;

     /* get the next message if any */

     ret = (BOOL)PeekMessage(&msg,NULL,0,0,PM_REMOVE);

     /* if we got one, process it */

     if (ret) {

          TranslateMessage(&msg);

          DispatchMessage(&msg);

     }

     /* TRUE if we got a message */

     return ret;

}



The WSASetBlockingHook() function is provided to support those applications which require more complex message processing - for example, those employing the MDI (multiple document interface) model.  It is not intended as a mechanism for performing general applications functions.  In particular, the only Winsock function which may be issued from a custom blocking hook function is WSACancelBlockingCall(), which will cause the blocking loop to terminate.



This function must be implemented on a per-task basis for non-multithreaded versions of Windows and on a per-thread basis for multithreaded versions of Windows such as Windows NT.  It thus provides for a particular task or thread to replace the blocking mechanism without affecting other tasks or threads.



In multithreaded versions of Windows, there is no default blocking hook--blocking calls block the thread that makes the call.  However, an application may install a specific blocking hook by calling WSASetBlockingHook().  

This allows easy portability of applications that depend on the blocking hook behavior.



Return Value	The return value is a pointer to the procedure-instance of the previously installed blocking function.  The application or library that calls the WSASetBlockingHook () function should save this return value so that it can be restored if necessary.  (If "nesting" is not important, the application may simply discard the value returned by WSASetBlockingHook() and eventually use WSAUnhookBlockingHook() to restore the default mechanism.)  If the operation fails, a NULL pointer is returned, and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



See Also	WSAUnhookBlockingHook()

�3.63 WSASetEvent()

Description	Sets the state of the specified event object to signaled.



	#include <winsock.h>



	BOOL WSAAPI WSASetEvent( WSAEVENT hEvent );



hEvent	Identifies an open event object handle.



Remarks	The Win32 implementation of this function is:



	#define WSASetEvent( h ) \

		SetEvent( h )



Return Value	If the function succeeds, the return value is TRUE.



	If the function fails, the return value is FALSE. To get extended error information, call WSAGetLastError().



Error Codes	WSA_INVALID_HANDLE	hEvent is not a valid event object handle.



See Also	WSACreateEvent(), WSAResetEvent(), WSACloseEvent().

�3.64 WSASetLastError()

Description	Set the error code which can be retrieved by WSAGetLastError().



 	#include <winsock.h>



 		void WSAAPI WSASetLastError ( int iError );





iError	Specifies the error code to be returned by a subsequent WSAGetLastError() call.



Remarks	This function allows an application to set the error code to be returned by a subsequent WSAGetLastError() call for the current thread.  Note that any subsequent Winsock routine called by the application will override the error code as set by this routine.





Return Value	None.



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



See Also	WSAGetLastError()

�3.65 WSASocket()

Description	Create a socket which is bound to a specific transport service provider, optionally create and/or join a socket group.



 	#include <winsock.h>



 	SOCKET WSAAPI WSASocket ( int af, int type, int protocol, LPROTOCOL_INFO lpProtocolInfo, int iFlags);





af	An address family specification.  The only format currently supported is PF_INET, which is the ARPA Internet address format.



type	A type specification for the new socket.



protocol	A particular protocol to be used with the socket, or 0 if the caller does not wish to specify a protocol.



lpProtocolInfo	A pointer to a PROTOCOL_INFO struct that defines the characteristics of the socket to be created.  If this parameter is not NULL, the first three parameters (af, type, protocol) are ignored.  



g	The identifier of the socket group.



iFlags	The socket attribute specification.



Remarks	WSASocket() causes a socket descriptor and any related resources to be allocated and associated with a transport service provider.  This association will occur in one of two ways, depending on whether the lpProtocolInfo parameter is specified as a NULL pointer. If lpProtocolInfo is non-NULL, the first three parameters (af, type, protocol) will be ignored, and the transport provider indicated in the referenced PROTOCOL_INFO struct will be used. Applications may obtain PROTOCOL_INFO structs by using WSAEnumProtocols().  ��If lpProtocolInfo is NULL, the first three parameters (af, type, protocol) will determine which service provider is used.  The Winsock DLL will select the first transport provider able to support the stipulated address family, socket type and protocol values.

If protocol is not specified (i.e., equal to zero), the default for the specified socket type is used.  However, the address family may be given as AF_UNSPEC (unspecified), in which case the protocol parameter must be specified.  The protocol number to use is particular to the "communication domain'' in which communication is to take place. 





Parameter g is used to indicate the appropriate actions on socket groups:

	if g is an existing socket group id, join the new socket to this group, provided all 		the requirements set by this group are met; or

	if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket 			group and have the new socket be  the first member; or

	if g = SG_CONSTRAINED_GROUP, create a constrained socket group and 			have the new socket be the first member; or

	if g = NULL, no group operation is performed

For unconstrained groups, any set of sockets may be grouped together as long as they are supported by a single service provider.  A constrained socket group may consist only of connection-oriented sockets, and requires that connections on all grouped sockets be to the same address on the same host.  For newly created socket groups, the new group id can be retrieved by using getsockopt() with option SO_GROUP_ID, if this operation completes successfully.  A socket group and its associated ID remain valid until the last socket belonging to this socket group is closed.



The following type specifications may be supported (all sockets are bi-directional unless specified otherwise):



Type	Explanation

SOCK_STREAM	Alias for SOCK_REL_STREAM.



SOCK_DGRAM	Alias for SOCK_UNREL_DGRAM.



SOCK_SEQPACKET	Alias for SOCK_REL_DSTREAM.



SOCK_RAW	Raw socket.



SOCK_REL_STREAM	Connection-oriented reliable, unduplicated, sequenced, byte streamwith an out-of-band data transmission mechanism.  Uses TCP for the Internet address family.



SOCK_REL_DSTREAM	Connection-oriented reliable, unduplicated, sequenced, message streamwith an out-of-band data transmission mechanism. 



SOCK_UNREL_DSTREAM	Connection-oriented unreliable, unduplicated, sequenced, message streamwith an out-of-band data transmission mechanism.



SOCK_REL_UNISEND_DSTREAM	Connection-oriented, reliable, one-way (send only), unduplicated, sequenced, message stream. The matching socket at the remote side need to be of style SOCK_REL_UNIRECV_DSTREAM.



SOCK_REL_UNIRECV_DSTREAM	Connection-oriented, reliable, one-way (receive only), unduplicated, sequenced, message stream.  The matching socket at the remote side need to be of style SOCK_REL_UNISEND_DSTREAM.



SOCK_UNREL_UNISEND_DSTREAM	Connection-oriented, unreliable, one-way (send only), unduplicated, sequenced, message stream. The matching socket at the remote side need to be of style SOCK_UNREL_UNIRECV_DSTREAM.



SOCK_UNREL_UNIRECV_DSTREAM	Connection-oriented, unreliable, one-way (receive only), unduplicated, sequenced, message stream.  The matching socket at the remote side need to be of style SOCK_UNREL_UNISEND_DSTREAM.



SOCK_REL_DGRAM	Connectionless, reliable, datagram.



SOCK_UNREL_DGRAM	Connectionless, unreliable, datagram.



SOCK_REL_ISOCH_DSTREAM	Connection-oriented reliable, unduplicated, sequenced, isochronous, message streamwith an out-of-band data transmission mechanism. 



SOCK_UNREL_ISOCH_DSTREAM	Connection-oriented unreliable, unduplicated, sequenced, isochronous, message streamwith an out-of-band data transmission mechanism.  



SOCK_UNREL_ISOCH_STREAM	Connection-oriented unreliable, unduplicated, sequenced, isochronous, byte streamwith an out-of-band data transmission mechanism. 



The iFlags parameter may be used to specify the attributes of the socket by or-ing any of the following Flags:



Flag	Meaning

WSA_FLAG_OVERLAPPED�This flag causes an overlapped socket to be created. Overlapped sockets may utilize WSASend(), WSASendto(), WSARecv(), WSARecvfrom() for overlapped I/O operations, which allows multiple of these operations to be initiated and in progress  simultaneously.



Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections, and must be in a connected state before any data may be sent or received on it.  A connection to another socket is created with a connect()/WSAConnect() call.  Once connected, data may be transferred using send()/WSASend() and recv()/WSARecv() calls.  When a session has been completed, a closesocket() must be performed.  Out-of-band data may also be transmitted as described in send() and received as described in recv().



The communications protocols used to implement a reliable, connection-oriented socket ensure that data is not lost or duplicated.  If data for which the peer protocol has buffer space cannot be successfully transmitted within a reasonable length of time,  the connection is considered broken and subsequent calls will fail with the error code set to WSAETIMEDOUT.



Connectionless, message-oriented sockets allow sending and receiving of datagrams to and from arbitrary peers using sendto()/WSASendto() and recvfrom()/WSARecvFrom().  If such a socket is connect()ed to a specific peer, datagrams may be send to that peer using send()/WSASend() and may be received from (only) this peer using recv()/WSARecv().





Return Value	If no error occurs, WSASocket() returns a descriptor referencing the new socket.  Otherwise, a value of INVALID_SOCKET is returned, and a specific error code may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



WSAENETDOWN	The network subsystem has failed.



WSAEAFNOSUPPORT	The specified address family is not supported.



WSAEINPROGRESS	A blocking Winsock call is in progress, or the service provider is still processing a callback function (see section � REF EINPROGRESS \* MERGEFORMAT �B.3.6.6 B.3.6.6 �).



WSAEMFILE	No more socket descriptors are available.



WSAENOBUFS	No buffer space is available.  The socket cannot be created.



WSAEPROTONOSUPPORT	The specified protocol is not supported.



WSAEPROTOTYPE	The specified protocol is the wrong type for this socket.



WSAESOCKTNOSUPPORT	The specified socket type is not supported in this address family.



WSAEINVAL	The parameter g specified is not valid.



See Also	accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(), listen(), recv(), recvfrom(), select(), send(), sendto(), shutdown(), ioctlsocket().

�3.66 WSAStartup()

Description	



 	#include <winsock.h>



 	int WSAAPI WSAStartup ( WORD wVersionRequested, 

	LPWSADATA lpWSAData );





wVersionRequested	The highest version of Winsock support that the caller can use.  The high order byte specifies the minor version (revision) number; the low-order byte specifies the major version number.



lpWSAData	A pointer to the WSADATA data structure that is to receive details of the Winsock implementation.



Remarks	This function MUST be the first Winsock function called by an application or DLL.  It allows an application or DLL  to specify the version of Winsock required and to retrieve details of the specific Winsock implementation.  The application or DLL may only issue further Winsock functions after a successful WSAStartup() invocation.



In order to support future Winsock implementations and applications which may have functionality differences from current version of Winsock, a negotiation takes place in WSAStartup().  The caller of WSAStartup() and the Winsock DLL indicate to each other the highest version that they can support, and each confirms that the other's highest version is acceptable.  Upon entry to WSAStartup(), the Winsock DLL examines the version requested by the application.  If this version is higher than the lowest version supported by the DLL, the call succeeds and the DLL returns in wHighVersion the highest version it supports and in wVersion the minimum of its high version and wVersionRequested.  The Winsock DLL then assumes that the application will use wVersion.  If the wVersion field of the WSADATA structure is unacceptable to the caller, it should call WSACleanup() and either search for another Winsock DLL or fail to initialize.



This negotiation allows both a Winsock DLL and a Winsock application to support a range of Winsock versions.  An application can successfully utilize a Winsock DLL if there is any overlap in the version ranges.  The following chart gives examples of how WSAStartup() works in conjunction with different application and Winsock DLL versions: 



App versions�DLL Versions�wVersionRequested�wVersion�wHighVersion�End Result ��1.1�1.1�1.1�1.1�1.1�use 1.1��1.0 1.1�1.0�1.1�1.0�1.0�use 1.0 ��1.0�1.0 1.1�1.0�1.0�1.1�use 1.0��1.1�1.0 1.1�1.1�1.1�1.1�use 1.1��1.1�1.0�1.1�1.0�1.0�Application fails��1.0�1.1�1.0�---�---�WSAVERNOTSUPPORTED��1.0 1.1�1.0 1.1�1.1�1.1�1.1�use 1.1��1.1 2.0�1.1�2.0�1.1�1.1�use 1.1��2.0�1.1�2.0�1.1�1.1�Application fails��

The following code fragment demonstrates how an application which supports only version 1.1 of Winsock makes a WSAStartup() call:



WORD wVersionRequested;

WSADATA wsaData;

int err;



wVersionRequested = MAKEWORD( 1, 1 );



err = WSAStartup( wVersionRequested, &wsaData );

if ( err != 0 ) {

    /* Tell the user that we couldn't find a useable */

    /* Winsock DLL.                                  */

    return;

}



/* Confirm that the Winsock DLL supports 1.1.*/

/* Note that if the DLL supports versions greater    */

/* than 1.1 in addition to 1.1, it will still return */

/* 1.1 in wVersion since that is the version we      */

/* requested.                                        */



if ( LOBYTE( wsaData.wVersion ) != 1 ||

         HIBYTE( wsaData.wVersion ) != 1 ) {

    /* Tell the user that we couldn't find a useable */

    /* Winsock DLL.                                  */

    WSACleanup( );

    return;   

}



/* The Winsock DLL is acceptable.  Proceed.  */



And this code fragment demonstrates how a Winsock DLL which supports only version 1.1 performs the WSAStartup() negotiation:



/* Make sure that the version requested is >= 1.1.   */

/* The low byte is the major version and the high    */

/* byte is the minor version.                        */



if ( LOBYTE( wVersionRequested ) < 1 ||

     ( LOBYTE( wVersionRequested ) == 1 &&

       HIBYTE( wVersionRequested ) < 1 ) {

    return WSAVERNOTSUPPORTED;

}



/* Since we only support 1.1, set both wVersion and  */

/* wHighVersion to 1.1.                              */



lpWsaData->wVersion = MAKEWORD( 1, 1 );

lpWsaData->wHighVersion = MAKEWORD( 1, 1 );



Once an application or DLL has made a successful WSAStartup() call, it may proceed to make other Winsock calls as needed.  When it has finished using the services of the Winsock DLL, the application or DLL must call WSACleanup() in order to allow the Winsock DLL to free any resources for the application.



Details of the actual Winsock implementation are described in the WSAData structure defined as follows:



struct WSAData {

	WORD			wVersion;

	WORD			wHighVersion;

	char 			szDescription[WSADESCRIPTION_LEN+1];

	char			szSystemStatus[WSASYSSTATUS_LEN+1];

	unsigned short	iMaxSockets;

	unsigned short	iMaxUdpDg; 

	char FAR *		lpVendorInfo;

};



The members of this structure are:

Element	Usage

wVersion	The version of the Winsock specification that the Winsock DLL expects the caller to use.

wHighVersion	The highest version of the Winsock specification that this DLL can support (also encoded as above).  Normally this will be the same as wVersion.

szDescription	A null-terminated ASCII string into which the Winsock DLL copies a description of the Winsock implementation.  The text (up to 256 characters in length) may contain any characters except control and formatting characters: the most likely use that an application will put this to is to display it (possibly truncated) in a status message.

szSystemStatus	A null-terminated ASCII string into which the Winsock DLL copies relevant status or configuration information.  The Winsock DLL should use this field only if the information might be useful to the user or  support staff: it should not be considered as an extension of the szDescription field.

iMaxSockets	The maximum number of sockets which a single process can potentially open.  Application writers may use this number as a crude indication of whether the Winsock implementation is usable by the application.  For example, an X Windows server might check iMaxSockets when first started: if it is less than 8, the application would display an error message instructing the user to reconfigure the networking software.  (This is a situation in which the szSystemStatus text might be used.)  Obviously there is no guarantee that a particular application can actually allocate iMaxSockets sockets, since there may be other Winsock applications in use.

iMaxUdpDg	This value is retained for compatibility with Windows Sockets specification 1.1, but should not be used when developing new applications.  The value supplied here will be obtained from the first UDP protocol provider found.  For the actual maximum message size specific to a particular Winsock service provider and socket type, applications should use getsockopt() to retrieve the value of option SO_MAX_MSG_SIZE after a socket has been created.  The minimum value of iMaxUdpDg for a compliant PII implementation is 512.  Note that regardless of the value of iMaxUdpDg, it is inadvisable to attempt to send a broadcast datagram which is larger than the Maximum Transmission Unit (MTU) for the network.  (The PII  does not provide a mechanism to discover the MTU, but it must be no less than 512 bytes.)

lpVendorInfo	This value  should be ignored.  It is retained for compatibility with Windows Sockets specification 1.1. The value supplied here will be obtained from the first UDP protocol provider found .  Applications needing to access vendor-specific configuration information should use getsockopt() to retrieve the value of option PVD_CONFIG.  The definition of this value (if utilized) is beyond the scope of this specification.



Note that an application should ignore the iMaxsockets, iMaxUdpDg, and lpVendorInfo fields in WSAData if the value in wVersion after a successful call to WSAStartup() is at least 2.0.   This is because the architecture of Winsock has been changed in version 2.0 to support multiple providers, and WSAData no longer applies to a single vendor’s stack. Two new socket options are introduced to supply provider-specific information: SO_MAX_MSG_SIZE (replaces the iMaxUdpDg element) and PVD_CONFIG (allows any other provider-specific configuration to occur).



An application or DLL may call WSAStartup() more than once if it needs to obtain the WSAData structure information more than once.  On each such call the application may specify any version number supported by the DLL.



There must be one WSACleanup() call corresponding to every WSAStartup() call to allow third-party DLLs to make use of a Winsock DLL on behalf of an application.  This means, for example, that if an application calls WSAStartup() three times, it must call WSACleanup() three times.  The first two calls to WSACleanup() do nothing except decrement an internal counter; the final WSACleanup() call for the task does all necessary resource deallocation for the task.





Return Value	WSAStartup() returns zero if successful.  Otherwise it returns one of the error codes listed below.  Note that the normal mechanism whereby the application calls WSAGetLastError() to determine the error code cannot be used, since the Winsock DLL may not have established the client data area where the "last error" information is stored.





Error Codes	WSASYSNOTREADY	Indicates that the underlying network subsystem is not ready for network communication.



WSAVERNOTSUPPORTED	The version of Winsock  support requested is not provided by this particular Winsock implementation.



WSAEINVAL	The PII version specified by the application is not supported by this DLL.



See Also	send(), sendto(), WSACleanup()

�3.67 WSAUnhookBlockingHook()

Description	Restore the default blocking hook function.



 	#include <winsock.h>



 	int WSAAPI WSAUnhookBlockingHook ( void );



Remarks	This function removes any previous blocking hook that has been installed and reinstalls the default blocking mechanism.  



WSAUnhookBlockingHook() will always install the default mechanism, not the previous mechanism.  If an application wish to nest blocking hooks - i.e. to establish a temporary blocking hook function and then revert to the previous mechanism (whether the default or one established by an earlier WSASetBlockingHook()) - it must save and restore the value returned by WSASetBlockingHook(); it cannot use WSAUnhookBlockingHook().



In multithreaded versions of Windows such as Windows NT, there is no default blocking hook.  Calling WSAUnhookBlockingHook() disables any blocking hook installed by the application and any blocking calls made block the thread which made the call.



Return Value	The return value is 0 if the operation was successful.  Otherwise the value SOCKET_ERROR is returned, and a specific error number may be retrieved by calling WSAGetLastError().



Error Codes	WSANOTINITIALISED	A successful WSAStartup() must occur before using this API.



See Also	WSASetBlockingHook()

�3.68 WSAWaitForMultipleEvents()

Description	Returns either when any one or when all of the specified event objects are in the signaled state, or when the time-out interval elapses.



	#include <winsock.h>



	DWORD WSAAPI WSAWaitForMultipleEvents( DWORD cEvents, �const WSAEVENT FAR * lphEvents, BOOL fWaitAll, DWORD dwTimeout, �BOOL fAlertable );



cEvents	Specifies the number of event object handles in the array pointed to by lphEvents. The maximum number of event object handles is WSA_MAXIMUM_WAIT_EVENTS.



lphEvents	Points to an array of event object handles.



fWaitAll	Specifies the wait type. If TRUE, the function returns when all event objects in the lphEvents array are signaled at the same time. If FALSE, the function returns when any one of the event objects is signaled. In the latter case, the return value indicates the event object whose state caused the function to return.



dwTimeout	Specifies the time-out interval, in milliseconds. The function returns if the interval elapses, even if conditions specified by the fWaitAll parameter are not satisfied. If dwTimeout is zero, the function tests the state of the specified event objects and returns immediately. If dwTimeout is WSA_INFINITE, the function's time-out interval never elapses.



fAlertable	Specifies whether the function returns when the system queues an I/O completion routine for execution by the calling thread. If TRUE, the function returns and the completion routine is executed. If FALSE, the function does not return and the completion routine is not executed. Note that this parameter is ignored in Win16.



Remarks	In nonpreemptive environments (Win16), the blocking hook is called if this function must wait for the event(s) to become signaled. In preemptive environments (Win32), the blocking hook is never called from within this function.



	The Win32 implementation for this function is:



	#define WSAWaitForMultipleEvents( c, p, w, t, a ) \

		WaitForMultipleEventsEx( (c), (p), (w), (t), (a) )



Return Value	If the function succeeds, the return value indicates the event object that caused the function to return.



	If the function fails, the return value is WSA_WAIT_FAILED. To get extended error information, call WSAGetLastError().



	The return value upon success is one of the following values:



Value		Meaning



	WSA_WAIT_EVENT_0 to (WSA_WAIT_EVENT_0 + cEvents - 1) 

	If fWaitAll is TRUE, the return value indicates that the state of all specified event objects is signaled. If fWaitAll is FALSE, the return value minus WSA_WAIT_EVENT_0 indicates the lphEvents array index of the object that satisfied the wait.



	WAIT_IO_COMPLETION (Win32 only) 

	One or more I/O completion routines are queued for execution.



	WSA_WAIT_TIMEOUT 

	The time-out interval elapsed and the conditions specified by the fWaitAll parameter are not satisfied.



Error Codes	WSA_NOT_ENOUGH_MEMORY Not enough free memory available to complete the operation



WSA_INVALID_HANDLE	One or more of the values in the lphEvents array is not a valid event object handle.



WSA_INVALID_PARAMETER	The cEvents parameter does not contain a valid handle count.



See Also	WSACreateEvent(), WSACloseEvent().

�Appendix A.  Error Codes and Header Files

A.1 Error Codes

The following is a list of possible error codes returned by the WSAGetLastError() call, along with their explanations.  The error numbers are consistently set across all Winsock-compliant implementations.



Winsock code�Berkeley equivalent�Error�Interpretation��WSAEINTR�EINTR�10004�As in standard C��WSAEBADF�EBADF�10009�As in standard C��WSAEACCES�EACCES�10013�As in standard C��WSAEFAULT�EFAULT�10014�As in standard C��WSAEINVAL�EINVAL�10022�As in standard C��WSAEMFILE�EMFILE�10024�As in standard C��WSAEWOULDBLOCK�EWOULDBLOCK�10035�As in BSD��WSAEINPROGRESS�EINPROGRESS�10036�This error is returned if any�Winsock function is �called while a blocking function is�in progress.��WSAEALREADY�EALREADY�10037�As in BSD��WSAENOTSOCK�ENOTSOCK�10038�As in BSD��WSAEDESTADDRREQ�EDESTADDRREQ�10039�As in BSD��WSAEMSGSIZE�EMSGSIZE�10040�As in BSD��WSAEPROTOTYPE�EPROTOTYPE�10041�As in BSD��WSAENOPROTOOPT�ENOPROTOOPT�10042�As in BSD��WSAEPROTONOSUPPORT�EPROTONOSUPPORT�10043�As in BSD��WSAESOCKTNOSUPPORT�ESOCKTNOSUPPORT�10044�As in BSD��WSAEOPNOTSUPP�EOPNOTSUPP�10045�As in BSD��WSAEPFNOSUPPORT�EPFNOSUPPORT�10046�As in BSD��WSAEAFNOSUPPORT�EAFNOSUPPORT�10047�As in BSD��WSAEADDRINUSE�EADDRINUSE�10048�As in BSD��WSAEADDRNOTAVAIL�EADDRNOTAVAIL�10049�As in BSD��WSAENETDOWN�ENETDOWN�10050�As in BSD.  This error may be reported at any time if the Winsock implementation detects an underlying failure.��WSAENETUNREACH�ENETUNREACH�10051�As in BSD��WSAENETRESET�ENETRESET�10052�As in BSD��WSAECONNABORTED�ECONNABORTED�10053�As in BSD��WSAECONNRESET�ECONNRESET�10054�As in BSD��WSAENOBUFS�ENOBUFS�10055�As in BSD��WSAEISCONN�EISCONN�10056�As in BSD��WSAENOTCONN�ENOTCONN�10057�As in BSD��WSAESHUTDOWN�ESHUTDOWN�10058�As in BSD��WSAETOOMANYREFS�ETOOMANYREFS�10059�As in BSD��WSAETIMEDOUT�ETIMEDOUT�10060�As in BSD��WSAECONNREFUSED�ECONNREFUSED�10061�As in BSD��WSAELOOP�ELOOP�10062�As in BSD��WSAENAMETOOLONG�ENAMETOOLONG�10063�As in BSD��WSAEHOSTDOWN�EHOSTDOWN�10064�As in BSD��WSAEHOSTUNREACH�EHOSTUNREACH�10065�As in BSD��WSASYSNOTREADY��10091�Returned by WSAStartup() �indicating that the network subsystem is unusable.��WSAVERNOTSUPPORTED��10092�Returned by WSAStartup() �indicating that the Winsock�DLL cannot support this app.��WSANOTINITIALISED��10093�Returned by any function except WSAStartup() indicating that a successful WSAStartup() has not yet been performed.��WSAHOST_NOT_FOUND�HOST_NOT_FOUND�11001�As in BSD.��WSATRY_AGAIN�TRY_AGAIN�11002�As in BSD��WSANO_RECOVERY�NO_RECOVERY�11003�As in BSD��WSANO_DATA�NO_DATA�11004�As in BSD��



The first set of definitions is present to resolve contentions between standard C error codes which may be defined inconsistently between various C compilers.



The second set of definitions provides Winsock versions of regular Berkeley Sockets error codes.



The third set of definitions consists of extended Winsock-specific error codes.



The fourth set of errors are returned by Winsock getXbyY() and WSAAsyncGetXByY() functions, and correspond to the errors which in Berkeley software would be returned in the h_errno variable.  They correspond to various failures which may be returned by the Domain Name Service.  If the Winsock provider  does not use the DNS, it will use the most appropriate code.  In general, a Winsock application should interpret WSAHOST_NOT_FOUND and WSANO_DATA as indicating that the key (name, address, etc.) was not found, while WSATRY_AGAIN and WSANO_RECOVERY suggest that the name service itself is non-operational.



The error numbers are derived from the Winsock.h header file listed in section �ref winsock_h�A.2.2 A.2.2 �, and are based on the fact that Winsock error numbers are computed by adding 10000 to the "normal" Berkeley error number.



Note that this table does not include all of the error codes defined in Winsock.h.  This is because it includes only errors which might reasonably be returned by a Winsock implementation: Winsock.h, on the other hand, includes a full set of BSD definitions to ensure compatibility with ported software.





�A.2 Header Files

A.2.1 Berkeley Header Files

The Winsock SDK includes a set of vestigial header files with names that match a number of the header files in the Berkeley software distribution.  These files are provided for source code compatibility only, and each consists of three lines:



#ifndef _WinsockAPI_

#include <Winsock.h>

#endif



The header files provided for compatibility are:

netdb.h

arpa/inet.h

sys/time.h

sys/socket.h

netinet/in.h



The file Winsock.h contains all of the type and structure definitions, constants, macros, and function prototypes used by the Winsock specification.  An application writer may choose to ignore the compatibility headers and include Winsock.h in each source file.



�

A.2.2 Winsock Header File - Winsock.h



The Winsock.h header file includes a number of types and definitions from the standard Windows header file windows.h.  The windows.h in the Windows 3.0 SDK (Software Developer's Kit) lacks a #include guard, so if you need to include windows.h as well as Winsock.h, you should define the symbol _INC_WINDOWS before #including Winsock.h, as follows:

#include <windows.h>

#define _INC_WINDOWS

#include <Winsock.h>

Users of the SDK for Windows 3.1 and later need not do this.



A Winsock service provider vendor MUST NOT make any modifications to this header file which could impact binary compatibility of Winsock applications.  The constant values, function parameters and return codes, and the like must remain consistent across all Winsock service provider vendors.





/* Winsock.H--definitions to be used with the Winsock 2.0 DLL and 

 *             Winsock 2.0 applications.

 *

 * This header file corresponds to version 2.0 of the Winsock specification.

 *

 * This file includes parts which are Copyright (c) 1982-1986 Regents

 * of the University of California.  All rights reserved.  The

 * Berkeley Software License Agreement specifies the terms and

 * conditions for redistribution.

 */



#ifndef _WINSOCK2API_

#define _WINSOCK2API_



#ifndef _WINSOCKAPI_

#include <winsock.h>

#endif



#ifdef WIN32



        #define WSAAPI                  FAR PASCAL

        #define WSATASK                 HANDLE

        #define WSAEVENT                HANDLE

        #define LPWSAEVENT              LPHANDLE



        #define WSA_INVALID_EVENT       ((WSAEVENT)NULL)

        #define WSA_MAXIMUM_WAIT_EVENTS (MAXIMUM_WAIT_OBJECTS)

        #define WSA_WAIT_FAILED         (WAIT_FAILED)

        #define WSA_WAIT_EVENT_0        (WAIT_OBJECT_0)

        #define WSA_WAIT_TIMEOUT        (WAIT_TIMEOUT)

        #define WSA_INFINITE            (INFINITE)

        #define WSA_IO_PENDING          (ERROR_IO_PENDING)

        #define WSA_IO_INCOMPLETE       (ERROR_IO_INCOMPLETE)

        #define WSA_INVALID_HANDLE      (ERROR_INVALID_HANDLE)

        #define WSA_INVALID_PARAMETER   (ERROR_INVALID_PARAMETER)

        #define WSA_NOT_ENOUGH_MEMORY   (ERROR_NOT_ENOUGH_MEMORY)



        #define WSAEDISCON               ???



        #define WSAOVERLAPPED           OVERLAPPED

        #define LPWSAOVERLAPPED         LPOVERLAPPED



#else // WIN16



        #define WSAAPI                  FAR PASCAL

        #define WSATASK                 HTASK

        typedef DWORD                   WSAEVENT, FAR * LPWSAEVENT;



        #define WSA_INVALID_EVENT       ((WSAEVENT)NULL)

        #define WSA_MAXIMUM_WAIT_EVENTS ((DWORD)64)

        #define WSA_WAIT_FAILED         ((DWORD)-1L)

        #define WSA_WAIT_EVENT_0        ((DWORD)0)

        #define WSA_WAIT_TIMEOUT        ((DWORD)0x102L)

        #define WSA_INFINITE            ((DWORD)-1L)

        #define WSA_IO_PENDING          (WSAEWOULDBLOCK)

        #define WSA_IO_INCOMPLETE       (WSAEWOULDBLOCK)

        #define WSA_INVALID_HANDLE      (WSAENOTSOCK)

        #define WSA_INVALID_PARAMETER   (WSAEINVAL)

        #define WSA_NOT_ENOUGH_MEMORY   (WSAENOBUFFS)



        #define WSAEDISCON               ???



        typedef struct _WSAOVERLAPPED

        {

            DWORD    Internal;

            DWORD    InternalHigh;

            DWORD    Offset;

            DWORD    OffsetHigh;

            WSAEVENT hEvent;

        } WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;



#endif  // WIN32



/*

 * Winsock 2.0 extension -- new options

 */

#define SO_QOS            0x2001          /* QOS for sockets */

#define SO_GROUP_QOS      0x2002          /* QOS for socket groups */

#define SO_GROUP_ID       0x2003          /* sharing the same physical connection */

#define SO_GROUP_PRIORITY 0x2004          /* the relative priority with a group */

#define SO_MAX_MSG_SIZE    0x2005          /* maximum datagram size */

#define PVD_CALL_ID       0x3001          /* an opaque Winsock call ID */

#define PVD_CONFIG        0x3002          /* configuration info for service provider */

#define TAPI_DEVICE_ID    0x3003          /* a TAPI line device ID */



/* 

 * Winsock 2.0 extension -- level number for (get/set)socketopt() to apply to 

 *                          service provider level.

 */

#define SOL_PROVIDER    IPPROTO_TCP     /* options for service provider level */



/*

 * Winsock 2.0 extension -- WSABUF and QOS struct

 */

typedef struct _WSABUF {

	int         len;     // the length of the buffer

	char FAR *  buf;     // the pointer to the buffer

} WSABUF, FAR * LPWSABUF;



typedef enum

{

	GuaranteedService,

	BestEffortService

} GUARANTEE;



typedef struct _flowparams

{

	int64		AverageBandwith;		// In Bytes/sec

	int64		PeakBandwidth;			// In Bytes/sec

	int64		BurstLength;			// In microseconds

	int64		Latency;			// In microseconds

	int64		DelayVariation;		// In microseconds

	GUARANTEE	levelOfGuarantee;		// Guaranteed or Best Effort

	int32		CostOfCall;			// Reserved for future use,

							// must be set to 0 now

	int32		SizePSP;			// Length of provider

							// specific parameters

      	UCHAR		ProviderSpecificParams[1];	// provider specific parameters

} FLOWPARAMS;



typedef struct _QualityOfService

{

 	FLOWPARAMS	ForwardFP;	// Caller(Initiator) to callee

	FLOWPARAMS	BackwardFP;	// Callee to caller

} QOS, FAR * LPQOS;



/*

 * Winsock 2.0 extension -- manifest constants for return values of the condition function

 */

#define CF_ACCEPT       0x0000

#define CF_REJECT       0x0001

#define CF_DEFER        0x0002



/*

 * Winsock 2.0 extension -- manifest constants for shutdown()

 */

#define SD_RECEIVE      0x00

#define SD_SEND         0x01

#define SD_BOTH         0x02



/*

 * Winsock 2.0 extension -- data type and manifest constants for socket groups

 */

typedef unsigned int             GROUP;



#define SG_UNCONSTRAINED_GROUP   0x01

#define SG_CONSTRAINED_GROUP     0x02



/*

 * Winsock 2.0 extension -- new flags for WSAAsyncSelect() and WSAEventSelect()

 */

#define FD_QOS          0x40

#define FD_GROUP_QOS    0x80



/*

 * Winsock 2.0 extension -- data type for WSAEnumNetworkEvents()

 */

typedef stuct _WSANETWORKEVENTS {

       long lNetworkEvent,

       int iErrorCode

} WSANETWORKEVENTS, FAR * LPWSANETWORKEVENTS;



/*

 * Winsock 2.0 extension -- data type for the condition function in WSAAccept()

 */

typedef int (CALLBACK * LPCONDITIONPROC) (LPWSABUF lpCallerId,

                                          LPWSABUF lpCallerData, 

                                          LPQOS lpSQOS,

                                          LPQOS lpGQOS,

                                          LPWSABUF lpCalleeId,

                                          LPWSABUF lpCalleeData,

                                          GROUP FAR * g,

                                          DWORD dwCallbackData);



/* Winsock 2.0 API new function prototypes */



#ifdef __cplusplus

extern "C" {

#endif



SOCKET WSAAPI WSAAccept (SOCKET s, 

                         struct sockaddr FAR *addr,

                         int FAR *addrlen, 

                         LPCONDITIONPROC lpfnCondition,

                         DWORD dwCallbackData);



BOOL WSAAPI WSACloseEvent (WSAEVENT hEvent);



int WSAAPI WSAConnect (SOCKET s, 

                       const struct sockaddr FAR *name, 

                       int namelen,

                       LPWSABUF lpCallerData,

                       LPWSABUF lpCalleeData,

                       GROUP g,

                       LPQOS lpSQOS,

                       LPQOS lpGQOS);



WSAEVENT WSAAPI WSACreateEvent (VOID);



SOCKET WSAAPI WSADuplicateSocket(SOCKET s, 

                                 HTASK hTargetTask);



int WSAAPI WSAEnumNetworkEvents (SOCKET s,

                                 WSAEVENT hEventObject,

                                 LPWSANETWORKEVENTS lpNetworkEvents,

                                 LPINT lpiCount);



int WSAAPI WSAEnumProtocols (LPDWORD lpdwProtocols,

                             LPVOID lpProtocolBuffer,

                             LPDWORD lpdwBufferLength);



int WSAAPI WSAEventSelect (SOCKET s,

                           WSAEVENT hEventObject,

                           long lNetworkEvents);



BOOL WSAAPI WSAGetOverlappedResult (SOCKET s,

                                    LPWSAOVERLAPPED lpOverlapped,

                                    LPDWORD lpcbTransfer,

                                    BOOL fWait,

                                    LPDWORD lpdwFlags);



BOOL WSAAPI WSAGetQOSByname (SOCKET s,

                             LPWSABUF lpQOSName,

                             LPQOS lpQOS);



int WSAAPI WSARecv (SOCKET s, 

                    LPVOID lpBuffer, 

                    DWORD nNumberOfBytesToRecv, 

                    LPDWORD lpNumberOfBytesRecvd, 

                    LPINT lpFlags, 

                    LPWSAOVERLAPPED lpOverlapped, 

                    LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);



int WSAAPI WSARecvfrom (SOCKET s, 

                        LPVOID lpBuffer, 

                        DWORD nNumberOfBytesToRecv, 

                        LPDWORD lpNumberOfBytesRecvd, 

                        LPINT lpFlags, 

                        LPVOID lpFrom, 

                        LPINT lpFromlen, 

                        LPWSAOVERLAPPED lpOverlapped, 

                        LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);



BOOL WSAAPI WSAResetEvent(WSAEVENT hEvent);



int WSAAPI WSASend (SOCKET s, 

                    LPVOID lpBuffer, 

                    DWORD nNumberOfBytesToSend, 

                    LPDWORD lpNumberOfBytesSent, 

                    int iFlags, 

                    LPWSAOVERLAPPED lpOverlapped, 

                    LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine );



int WSAAPI WSASendto (SOCKET s, 

                      LPVOID lpBuffer, 

                      DWORD nNumberOfBytesToSend, 

                      LPDWORD lpNumberOfBytesSent, 

                      int iFlags, 

                      LPVOID lpTo, 

                      int iTolen, 

                      LPWSAOVERLAPPED lpOverlapped, 

                      LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine );



BOOL WSAAPI WSASetEvent(WSAEVENT hEvent);



SOCKET WSAAPI WSASocket (int af, 

                         int type, 

                         int protocol, 

                         int iProviderID, 

 			   GROUP g,

                         int iFlags);



DWORD WSAAPI WSAWaitForMultipleEvents(DWORD cEvents,

                                      const WSAEVENT FAR * lphEvents, 

                                      BOOL fWaitAll, 

                                      DWORD dwTimeout, 

                                      BOOL fAlertable );



#ifdef __cplusplus

}

#endif





#endif  /* _WINSOCK2API_ */



�Appendix B.  Windows Sockets Introduction

The following material is targetted at those desiring a brief introduction to the socket programing paradigm in general and/or Windows Sockets.  



Note:

This material was extracted from the Winsock 1.1 specification and is not yet updated to reflect Winsock 2 extensions.

B.1 Berkeley Sockets

The Windows Sockets interface is patternerd after the Berkeley Sockets programming model which is the de facto standard for TCP/IP networking.  It is intended to provide a high degree of familiarity for programmers who are used to programming with sockets in UNIX� and other environments, and to simplify the task of porting existing sockets-based source code.



B.2 Microsoft Windows and Windows-specific extensions

The Winsock API is intended to be usable within all implementations and versions of Microsoft Windows from Microsoft Windows Version 3.0 onwards.  It thus provides for  Winsock applications in both 16 and 32 bit operating environments.  



Winsock makes provisions for multithreaded Windows processes.  A process contains one or more threads of execution.  In the Windows 3.1 non-multithreaded world, a task corresponds to a process with a single thread.  All references to threads in this document refer to actual "threads" in multithreaded Windows environments.  In non multithreaded environments (such as Windows 3.0), use of the term thread refers to a Windows process.



The Microsoft Windows extensions included in Windows Sockets are provided to allow application developers to create software which conforms to the Windows programming model.  It is expected that this will facilitate the creation of robust and high-performance applications, and will improve the cooperative multitasking of applications within non-preemptive versions of Windows.  With the exception of WSAStartup() and WSACleanup() their use is not mandatory.



B.3 PROGRAMMING WITH SOCKETS

B.3.1 Winsock Installation Checking

To detect the presence of a Winsock implementation on a system, an application which has been linked with the Winsock Import Library may simply call the WSAStartup() routine.  If an application wishes to be a little more sophisticated it can examine the $PATH environment variable and search for instances of Winsock.DLLs. (There may be  multiple versions of Winsock.DLL in the system.)  For each instance it can issue a LoadLibrary() call and use the WSAStartup() routine to discover implementation specific data.



B.3.2 Sockets

The following material is derived from the document "An Advanced 4.3BSD Interprocess Communication Tutorial" by Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley, Steve Miller, and Chris Torek.



B.3.2.1 Socket Types

The basic building block for communication is the socket.  A socket is an endpoint of communication to which a name may be bound.  Each socket in use has a type and an associated process.  Sockets exist within communication domains.  A communication domain is an abstraction introduced to bundle common properties of threads communicating through sockets.  Sockets normally exchange data only with sockets in the same domain (it may be possible to cross domain boundaries, but only if some translation process is performed).  



Sockets are typed according to the communication properties visible to a user.  Applications are presumed to communicate only between sockets of the same type, although there is nothing that prevents communication between sockets of different types should the underlying communication protocols support this.  



TCP/IP stacks support two socket types: SOCK_STREAM which provides a connection-oriented, reliable byte stream, and SOCK_DGRAM which provides connectionless, unreliable datagram service.



Raw sockets provide a mechanism to bypass the usual protocol layers and are very much dependent on the particulars of each service provider.  Service providers are not required to support raw sockets.





B.3.2.2 Client-server model

The most commonly used paradigm in constructing distributed applications is the client/server model.  In this scheme client applications request services from a server application.  This implies an asymmetry in establishing communication between the client and server.  



The client and server require a well-known set of conventions before service may be rendered (and accepted).  This set of conventions comprises a protocol which must be implemented at both ends of a connection.  Depending on the situation, the protocol may be symmetric or asymmetric.  In a symmetric protocol, either side may play the master or slave roles.  In an asymmetric protocol, one side is immutably recognized as the master, with the other as the slave.  An example of a symmetric protocol is the TELNET protocol used in the Internet for remote terminal emulation.  An example of an asymmetric protocol is the Internet file transfer protocol, FTP.  No matter whether the specific protocol used in obtaining a service is symmetric or asymmetric, when accessing a service there is a "client process'' and a "server process''.  



A server application normally listens at a well-known address for service requests.  That is, the server process remains dormant until a connection is requested by a client's connection to the server's address.  At such a time the server process "wakes up'' and services the client, performing whatever appropriate actions the client requests of it.  While connection-oriented services are the norm, some services are based on the use of datagram sockets.  



B.3.2.3 Out-of-band data

Note: The following discussion of out-of-band data, also referred to as TCP Urgent data,  follows the model used in the Berkeley software distribution.  Users and implementors should be aware of the fact that there are at present two conflicting interpretations of RFC 793 (in which the concept is introduced), and that the implementation of out-of-band data in the Berkeley Software Distribution does not conform to the Host Requirements laid down in RFC 1122.  To minimize interoperability problems, applications writers are advised not to use out-of-band data unless this is required in order to interoperate with an existing service.  Winsock suppliers are urged to document the out-of-band semantics (BSD or RFC 1122) which their product implements.  It is beyond the scope of this specification to mandate a particular set of semantics for out-of-band data handling.



Note that the out-of-band data functionality is mainly inherited from the TCP/IP world, and may not be available to other communication domains supported by this specification.  



The stream socket abstraction includes the notion of "out of band'' data.  Out-of-band data is a logically independent transmission channel associated with each pair of connected stream sockets.  Out-of-band data is delivered to the user independently of normal data.  The abstraction defines that the out-of-band data facilities must support the reliable delivery of at least one out-of-band message at a time.  This message may contain at least one byte of data, and at least one message may be pending delivery to the user at any one time.  For communications protocols which support only in-band signaling (i.e.,  the urgent data is delivered in sequence with the normal data), the system normally extracts the data from the normal data stream and stores it separately.  This allows users to choose between receiving the urgent data in order and receiving it out of sequence without having to buffer all the intervening data.  It is possible to "peek'' at out-of-band data.  



An application may prefer to process out-of-band data "in-line", as part of the normal data stream.  This is achieved by setting the socket option SO_OOBINLINE (see section �ref setsockopt�3.28 3.28 �, setsockopt()).  In this case, the application may wish to determine whether any of the unread data is "urgent" (the term usually applied to in-line out-of-band data).  To facilitate this, the Winsock implementation will maintain a logical "mark" in the data stream to indicate the point at which the out-of-band data was sent.  An application can use the SIOCATMARK ioctlsocket() command (see section �ref ioctlsocket�3.19 3.19 �) to determine whether there is any unread data preceding the mark.  For example, it might use this to resynchronize with its peer by ensuring that all data up to the mark in the data stream is discarded when appropriate.



The WSAAsyncSelect() or WSACallbackSelect() routine is particularly well suited to handling notification of the presence of out-of-band-data.



B.3.2.4 Broadcasting

By using a datagram socket, it is possible to send broadcast packets on many networks supported by the system.  The underlying networks must themselves support broadcast: Winsock provides no simulation of broadcast in software.  Broadcast messages can place a high load on a network, since they force every host on the network to service them.  Consequently, the ability to send broadcast packets has been limited to sockets which are explicitly marked as allowing broadcasting.  Broadcast is typically used for one of two reasons: to find a resource on a local network without prior knowledge of its address, or to implement important functions such as routing require that information be sent to all accessible neighbors.



The destination address of the message to be broadcast depends on the network(s) on which the message is to be broadcast.  The Internet domain supports a shorthand notation for broadcast on the local network, namely the address INADDR_BROADCAST.  Received broadcast messages contain the senders address and port, as datagram sockets must be bound before use.



Some types of network support the notion of different types of broadcast.  For example, the IEEE 802.5 token ring architecture supports the use of link-level broadcast indicators, which control whether broadcasts are forwarded by bridges.  The Winsock specification does not provide any way to control the semantics of broadcasting.



B.3.3 Byte Ordering

The Intel byte ordering is like that of the DEC VAX�, and therefore differs from the Internet and 68000�-type processor byte ordering.  Thus care must be taken to ensure correct orientation.



Any reference to addresses or port numbers passed to or from a Winsock routine must be in network order.  In the case of IP, this includes the IP address and port fields of a struct sockaddr_in (but not the sin_family field).



Consider an application which normally contacts a server on the TCP port corresponding to the "time" service, but which provides a mechanism for the user to specify that an alternative port is to be used.  The port number returned by getservbyname() is already in network order, which is the format required for constructing an address, so no translation is required.  However if the user elects to use a different port, entered as an integer, the application must convert this from host to network order (using the htons() function) before using it to construct an address.  Conversely, if the application wishes to display the number of the port within an address (returned via, e.g., getpeername()), the port number must be converted from network to host order (using ntohs()) before it can be displayed.



Since the Intel and Internet byte orders are different, the conversions described above are unavoidable.  Application writers are cautioned that they should use the standard conversion functions provided as part of Winsock rather than writing their own conversion code, since future implementations of Winsock are likely to run on systems for which the host order is identical to the network byte order.  Only applications which use the standard conversion functions are likely to be portable.



B.3.4 Socket Options

Winsock supports a subset of the Berkley socket options. Details for these options are described in the pages describing setsockopt() and getsockopt().



B.3.5 Database Files

The getXbyY()� and WSAAsyncGetXByY() classes of routines are provided for retrieving network specific information.  The getXbyY() routines were originally designed (in the first Berkeley UNIX releases) as mechanisms for looking up information in text databases.  Although the information may be retrieved by the Winsock implementation in different ways, a Winsock application requests such information in a consistent manner through either the getXbyY() or the WSAAsyncGetXByY() class of routines.



B.3.6 Deviation from Berkeley Sockets

There are a few limited instances where Windows Sockets has had to divert from strict adherence to the Berkeley conventions, usually because of difficulties of implementation in a Windows environment.



B.3.6.1 socket data type and error values

A new data type, SOCKET, has been defined.  The definition of this type was necessary for future enhancements to the Winsock specification, such as being able to use sockets as file handles in Windows NT�.  Definition of this type also facilitates porting of applications to a Win/32 environment, as the type will automatically be promoted from 16 to 32 bits.



In UNIX, all handles, including socket handles, are small, non-negative integers, and some applications make assumptions that this will be true.  Winsock handles have no restrictions, other than that the value INVALID_SOCKET is not a valid socket.  Socket handles may take any value in the range 0 to INVALID_SOCKET-1.



Because the SOCKET type is unsigned, compiling existing source code from, for example, a UNIX environment may lead to compiler warnings about signed/unsigned data type mismatches.



This means, for example, that checking for errors when the socket() and accept() routines return should not be done by comparing the return value with -1, or seeing if the value is negative (both common, and legal, approaches in BSD).  Instead, an application should use the manifest constant INVALID_SOCKET as defined in Winsock.h.  For example:

	TYPICAL BSD STYLE:

s = socket(...);

if (s == -1)	/* or s < 0 */

	{...}



	PREFERRED STYLE:

s = socket(...);

if (s == INVALID_SOCKET)

	{...}



B.3.6.2 select() and FD_*

Because a SOCKET is no longer represented by the UNIX-style "small non-negative integer", the implementation of the select() function was changed in Winsock.  Each set of sockets is still represented by the fd_set type, but instead of being stored as a bitmask the set is implemented as an array of SOCKETs.  To avoid potential problems, applications must adhere to the use of the FD_XXX macros to set, initialize, clear, and check the fd_set structures.



B.3.6.3 Error codes - errno, h_errno & WSAGetLastError()

Error codes set by Winsock are NOT made available via the errno variable.  Additionally, for the getXbyY() class of functions, error codes are NOT made available via the h_errno variable.  Instead, error codes are accessed by using the WSAGetLastError() API described in section �ref WSAGetLastError�3.49 3.49 �.  This function is provided in Winsock as a precursor (and eventually an alias) for the Win32 function GetLastError().  This is intended to provide a reliable way for a thread in a multi-threaded process to obtain per-thread error information.



For compatibility with BSD, an application may choose to include a line of the form:



#define errno WSAGetLastError()



This will allow networking code which was written to use the global errno to work correctly in a single-threaded environment.  There are, obviously, some drawbacks.  If a source file includes code which inspects errno for both socket and non-socket functions, this mechanism cannot be used.  Furthermore, it is not possible for an application to assign a new value to errno.  (In Winsock the function WSASetLastError() may be used for this purpose.)



	TYPICAL BSD STYLE:

r = recv(...);

if (r == -1

    && errno == EWOULDBLOCK)

	{...}



	PREFERRED STYLE:

r = recv(...);

if (r == -1       /* (but see below) */

    && WSAGetLastError() == EWOULDBLOCK)

	{...}



Although error constants consistent with 4.3 Berkeley Sockets are provided for compatibility purposes, applications should, where possible, use the "WSA" error code definitions.  For example, a more accurate version of the above source code fragment is:



r = recv(...);

if (r == -1       /* (but see below) */

    && WSAGetLastError() == WSAEWOULDBLOCK)

	{...}



B.3.6.4 Pointers

All pointers used by applications with Winsock should be FAR.  To facilitate this, data type definitions such as LPHOSTENT are provided.



B.3.6.5 Renamed functions

In two cases it was necessary to rename functions which are used in Berkeley Sockets in order to avoid clashes with other APIs.



B.3.6.5.1 close() & closesocket()

In Berkeley Sockets, sockets are represented by standard file descriptors, and so the close() function can be used to close sockets as well as regular files.  While nothing in the Winsock prevents an implementation from using regular file handles to identify sockets, nothing requires it either.  For Windows 3.1, socket descriptors do not correspond to regular file handles, and file operations such as read(), write(), and close() will not work correctly when applied to sockets.  Sockets must be closed by using the closesocket() routine.  Using the close() routine to close a socket is incorrect and the effects of doing so are undefined by this specification.



B.3.6.5.2 ioctl() & ioctlsocket()

Various C language run-time systems use the ioctl() routine for purposes unrelated to Winsock.  For this reason we have defined the routine ioctlsocket() which is used to handle socket functions which in the Berkeley Software Distribution are performed using ioctl() and fcntl().



B.3.6.6 Blocking routines & EINPROGRESS

Although blocking operations on sockets are supported under Winsock, their use is strongly discouraged.  Programmers who are constrained to use blocking mode - for example, as part of an existing application which is to be ported - should be aware of the semantics of blocking operations in Winsock.  See section �ref blocking�B.4.1.1 B.4.1.1 � for more details.



An application could also receive WSAEINPROGRESS if the underlying service provider believes it is still in the process of invoking a callback function for some other socket (possibly belonging to another application) such as might occur if the callback function incorrectly yielded the processor.  A possible recovery mechanism would be to yield the processor and try again later.



B.3.6.7 Maximum number of sockets supported

The maximum number of sockets supported by a particular Winsock service provider is implementation specific.  An application should make no assumptions about the availability of a certain number of sockets.  This topic is addressed further in section �ref WSAStartup�3.66 3.66 �, WSAStartup().  However, independent of the number of sockets supported by a particular implementation is the issue of the maximum number of sockets which an application can actually make use of.



The maximum number of sockets which a Winsock application can make use of is determined at the application's compile time by the manifest constant FD_SETSIZE.  This value is used in constructing the fd_set structures used in select() (see section �ref select�3.25 3.25 �).  The default value in Winsock.h is 64.  If an application is designed to be capable of working with more than 64 sockets, the implementor should define the manifest FD_SETSIZE in every source file before including Winsock.h.  One way of doing this may be to include the definition within the compiler options in the makefile, for example adding  -DFD_SETSIZE=128 as an option to the compiler command line for Microsoft C.  It must be emphasized that defining FD_SETSIZE as a particular value has no effect on the actual number of sockets provided by a Winsock service provider.



B.3.6.8 Include files

For ease of portability of existing Berkeley sockets based source code, a number of standard Berkeley include files are supported.  However, these Berkeley header files merely include the Winsock.h include file, and it is therefore sufficient (and recommended) that Winsock application source files simply include Winsock.h.



B.3.6.9 Return values on API failure

The manifest constant SOCKET_ERROR is provided for checking API failure.  Although use of this constant is not mandatory, it is recommended.  The following example illustrates the use of the SOCKET_ERROR constant:



	TYPICAL BSD STYLE:

r = recv(...);

if (r == -1     /* or r < 0 */

    && errno == EWOULDBLOCK)

	{...}

	PREFERRED STYLE:

r = recv(...);

if (r == SOCKET_ERROR

    && WSAGetLastError() == WSAEWOULDBLOCK)

	{...}



B.3.6.10 Raw Sockets

The Winsock specification does not mandate that a Winsock service provider support raw sockets, that is, sockets of type SOCK_RAW.  However, service providers are allowed and encouraged to supply raw socket support.  A Winsock-compliant application that wishes to use raw sockets should attempt to open the socket with the socket() call (see section �ref socket�3.30 3.30 �), and if it fails either attempt to use another socket type or indicate the failure to the user.



B.3.7 Winsock in Multithreaded Versions of Windows

The Winsock interface is designed to work for both single-threaded versions of Windows (such as Windows 3.1) and preemptive multithreaded versions of Windows (such as Windows NT).  In a multithreaded environment the sockets interface is basically the same, but the author of a multithreaded application must be aware that it is the responsibility of the application, not Winsock, to synchronize access to a socket between threads.  This is the same rule as applies to other forms of I/O such as file I/O.  Failure to synchronize calls on a socket leads to unpredictable results; for example if there are two simultaneous calls to send(), there is no guarantee as to the order in which the data will be sent.  



Closing a socket in one thread that has an outstanding blocking call on the same socket in another thread will cause the blocking call to fail with WSAEINTR, just as if the operation were canceled.  This also applies if there is a select() call outstanding and the application closes one of the sockets being selected.



There is no default blocking hook (see section 3.1.1 for details) installed in preemptive multithreaded versions of Windows.  This is because the machine will not be blocked if a single application is waiting for an operation to complete and hence not calling PeekMessage() or GetMessage() which cause the application to yield in nonpreemptive Windows.  However, for backwards compatibility the WSASetBlockingHook() call is implemented in multithreaded versions of Windows, and any application whose behavior depends on the default blocking hook may install their own blocking hook which duplicates the default hook's semantics, if desired.



B.4  Socket Library Overview

B.4.1 Socket Functions

The Winsock specification includes the following Berkeley-style socket routines:



accept() *�An incoming connection is acknowledged and associated with an immediately created socket.  The original socket is returned to the listening state.��bind()�Assign a local name to an unnamed socket.��closesocket() *�Remove a socket from the per-process object reference table.  Only blocks if SO_LINGER is set.��connect() *�Initiate a connection on the specified socket.��getpeername()�Retrieve the name of the peer connected to the specified socket.��getsockname()�Retrieve the local address to which  the specified socket is bound.��getsockopt()�Retrieve options associated with the specified socket.��htonl()�Convert a 32-bit quantity from host byte order to network byte order.��htons()�Convert a 16-bit quantity from host byte order to network byte order.��inet_addr()�Converts a character string representing a number in the Internet standard ".'' notation to an Internet address value.��inet_ntoa()�Converts an Internet address value to an ASCII string in ".'' notation i.e.  "a.b.c.d''.��ioctlsocket()�Provide control for sockets.��listen()�Listen for incoming connections on a specified socket.��ntohl()�Convert a 32-bit quantity from network byte order to host byte order.��ntohs()�Convert a 16-bit quantity from network byte order to host byte order.��recv() *�Receive data from a connected socket.��recvfrom() *�Receive data from either a connected or unconnected socket.��select() *�Perform synchronous I/O multiplexing.��send() *�Send data to a connected socket.��sendto() *�Send data to either a connected or unconnected socket.��setsockopt()�Store options associated with the specified socket.��shutdown()�Shut down part of a full-duplex connection.��socket()�Create an endpoint for communication and return a socket.��

* = The routine can block if acting on a blocking socket.



B.4.1.1 Blocking/Non blocking & Data Volatility

One major issue in porting applications from a Berkeley sockets environment to a Windows environment involves "blocking"; that is, invoking a function which does not return until the associated operation is completed.  The problem arises when the operation may take an arbitrarily long time to complete: an obvious example is a recv() which may block until data has been received from the peer system.  The default behavior within the Berkeley sockets model is for a socket to operate in a blocking mode unless the programmer explicitly requests that operations be treated as non-blocking.  In Win16 environments (which are non-preemptive and have no direct operating system support for blocking operations), it is strongly recommended that programmers use the nonblocking (asynchronous) operations if at all possible.  Use blocking operations only if absolutely necessary, and carefully read and understand this section if you must use blocking operations.  These cautions and restrictions do not apply to Win32 environments which are both multi-threaded and preemptive.



Even on a blocking socket, some operations (e.g. bind(), getsockopt(), getpeername()) can be completed immediately.  For such operations there is no difference between blocking and non-blocking operation.  Other operations (e.g. recv()) may be completed immediately or may take an arbitrary time to complete, depending on various transport conditions.  When applied to a blocking socket, these operations are referred to as blocking operations.  All routines which can block are listed with an asterisk in the tables above and below.



Within Winsock, a blocking operation which cannot be completed immediately is handled as follows.  The service provider initiates the operation, and then enters a loop in which it dispatches any Windows messages (yielding the processor to another thread if necessary) and then checks for the completion of the Winsock function.  If the function has completed, or if WSACancelBlockingCall() has been invoked, the blocking function completes with an appropriate result.  Refer to section �ref WSASetBlockingHook�3.62 3.62 �, WSASetBlockingHook(), for a complete description of this mechanism, including pseudocode for the various functions.



If a Windows message is received for a process for which a blocking operation is in progress, there is a risk that the application will attempt to issue another Winsock call.  Because of the difficulty of managing this condition safely, the Winsock specification does not support such application behavior.  Two functions are provided to assist the programmer in this situation.  WSAIsBlocking() may be called to determine whether or not a blocking Winsock call is in progress.  WSACancelBlockingCall() may be called to cancel an in-progress blocking call, if any.  Except where otherwise noted, any other Winsock function which is called in this situation will fail with the error WSAEINPROGRESS.  It should be emphasized that this restriction applies to both blocking and non-blocking operations.



Although this mechanism is sufficient for simple applications, it cannot support the complex message-dispatching requirements of more advanced applications (for example, those using the MDI model).  For such applications, the Winsock API includes the function WSASetBlockingHook(), which allows the application to specify a special routine which will be called instead of the default message dispatch routine described above.



The Winsock provider calls the blocking hook only if all of the following are true: the routine is one which is defined as being able to block, the specified socket is a blocking socket, and the request cannot be completed immediately.  (A socket is set to blocking by default, but the IOCTL FIONBIO,  and WSAAsyncSelect() set a socket to nonblocking mode.)  If an application uses only non-blocking sockets and uses the WSAAsyncSelect() and/or the WSAAsyncGetXByY() routines instead of select() and the getXbyY() routines, then the blocking hook will never be called and the application does not need to be concerned with the reentrancy issues the blocking hook can introduce.



If an application invokes an asynchronous or non-blocking operation which takes a pointer to a memory object (e.g. a buffer, or a global variable) as an argument, it is the responsibility of the application to ensure that the object is available to Winsock throughout the operation.  The application must not invoke any Windows function which might affect the mapping or addressability of the memory involved.  In a multithreaded system, the application is also responsible for coordinating access to the object using appropriate synchronization mechanisms.  Winsock cannot, and will not, address these issues.  The possible consequences of failing to observe these rules are beyond the scope of this specification.



B.4.2 Database Functions

The Winsock specification defines the following "database" routines.  As noted earlier, a Winsock service provider may choose to implement these in a manner which does not depend on local database files.  The pointer returned by certain database routines such as gethostbyname() points to a structure which is allocated by Winsock or its service providers.  The data which is pointed to is volatile and is good only until the next Winsock API call from that thread.  Additionally, the application must never attempt to modify this structure or to free any of its components.  Only one copy of this structure is allocated for a thread, and so the application should copy any information which it needs before issuing any other Winsock API calls.





gethostbyaddr() *�Retrieve the name(s) and address corresponding to a network address.��gethostbyname() *�Retrieve the name(s) and address corresponding to a host name.��gethostname()�Retrieve the name of the local host.��getprotobyname() *�Retrieve the protocol name and number corresponding to a protocol name.��getprotobynumber() *�Retrieve the protocol name and number corresponding to a protocol number.��getservbyname() *�Retrieve the service name and port corresponding to a service name.��getservbyport() *�Retrieve the service name and port corresponding to a port.��

* = The routine can block under some circumstances.



B.4.3 Microsoft Windows-specific Extension Functions

The Winsock specification provides a number of extensions to the standard set of Berkeley Sockets routines.  Principally, these extended functions allow message or function-based, asynchronous access to network events.  While use of this extended API set is not mandatory for socket-based programming  (with the exception of WSAStartup() and WSACleanup()), it is recommended for conformance with the Microsoft Windows programming paradigm.





WSAAccept() *�An extended version of accept() which allows for conditional acceptance and socket grouping.��WSAAsyncGetHostByAddr()�A set of functions which provide asynchronous��WSAAsyncGetHostByName()�versions of the standard Berkeley��WSAAsyncGetProtoByName()�getXbyY() functions.  For example, the��WSAAsyncGetProtoByNumber()�WSAAsyncGetHostByName() function provides an��WSAAsyncGetServByName()�asynchronous message based implementation of��WSAAsyncGetServByPort()�the standard Berkeley gethostbyname() function.��WSAAsyncSelect()�Perform asynchronous version of select()��WSACancelAsyncRequest()�Cancel an outstanding instance of a WSAAsyncGetXByY() function.��WSACancelBlockingCall()�Cancel an outstanding "blocking" Winsock call��WSACleanup()�Sign off from the underlying Winsock DLL.��WSACloseEvent()�Destroys an event object.��WSAConnect()�An extended version of connect() which allows for 

socket 

groupingexchange of connect data and QOS specification.��WSACreateEvent()�Creates an event object.��WSADuplicateSocket()�Allow an underlying socket to be shared by creating a virtual socket.��WSAEnumNetworkEvents()�Discover occurrences of network events.��WSAEnumProtocols()�Retrieve information about each available protocol.

��WSAEventSelect()�Associate network events with an event object.��WSAGetLastError()�Obtain details of last Winsock error��WSAGetOverlappedResult()�Get completion status of overlapped operation.��WSAGetQOSByName()�Supply QOS parameters based on a well-known service name.��WSAHtonl()�Extended version of htonl()��WSAHtons()�Extended version of htons()��WSAIoctl()�Overlapped-capable version of ioctl()��WSAIsBlocking()�Determine if the underlying Winsock DLL is already blocking an existing call for this thread��WSANtohl()�Extended version of ntohl()��WSANtohs()�Extended version of ntohs()��WSAProviderSelection()�Set the Winsock service provider to be used for upcoming Winsock calls.��WSARecv()�An extended version of recv() which accommodates scatter/gether I/O, overlapped sockets and provides the flags parameter as IN OUT��WSARecvFrom()�An extended version of recvfrom() which accommodates scatter/gether I/O, overlapped sockets and provides the flags parameter as IN OUT��WSAResetEvent()�Resets an event object.��WSASend()�An extended version of send() which accommodates scatter/gether I/O and overlapped sockets��WSASendTo()�An extended version of sendto() which accommodates scatter/gether I/O and overlapped sockets��WSASetBlockingHook()�"Hook" the blocking method used by the underlying Winsock implementation��WSASetEvent()�Sets an event object.��WSASetLastError()�Set the error to be returned by a subsequent WSAGetLastError()��WSASocket()�An extended version of socket() which takes a PROTOCOL_INFO struct as input and allows overlapped sockets to be created.  Also allows socket groups to be formed.��WSASocket()�An extended version of socket() which takes a PROTOCOL_INFO struct as input and allows overlapped sockets to be created.��WSAStartup()�Initialize the underlying Winsock DLL.��WSAUnhookBlockingHook()�Restore the original blocking function��WSAWaitForMultipleEvents()�Blocks on multiple event objects.��

B.4.3.1 Asynchronous select() Mechanism

The WSAAsyncSelect() API allows an application to register an interest in one or many network events.  This API is provided to supersede the need to do polled network I/O.  Any situation in which select() or non-blocking I/O routines (such as send() and recv()) are either already used or are being considered is usually a candidate for the WSAAsyncSelect() API.  When declaring interest in such condition(s), you supply a window handle to be used for notification.  The corresponding window then receives message-based notification of the conditions in which you declared an interest.



WSAAsyncSelect() allows interest to be declared in the following conditions for a particular socket:

	Socket readiness for reading

	Socket readiness for writing

	Out-of-band data ready for reading

	Socket readiness for accepting incoming connection

	Completion of non-blocking connect()

	Connection closure

	Change in quality of service parameters



B.4.3.2 Asynchronous Database Routines

The asynchronous "database" functions allow applications to request information in an asynchronous manner.  Some network implementations and/or configurations perform network based operations to resolve such requests.  The WSAAsyncGetXByY() functions allow application developers to request services which would otherwise block the operation of the whole Windows environment if the standard Berkeley function were used.  The WSACancelAsyncRequest() function allows an application to cancel any outstanding asynchronous request.



B.4.3.3 Hooking Blocking Methods

As noted in section �ref blocking�B.4.1.1 B.4.1.1 � above, Winsock implements blocking operations in such a way that Windows message processing can continue, which may result in the application which issued the call receiving a Windows message.  In certain situations an application may want to influence or change the way in which this pseudo-blocking process is implemented.  The WSASetBlockingHook() provides the ability for an application to substitute a named routine to be used when Winsock relinquishes the processor during a "blocking" operation.



B.4.3.4 Error Handling

For compatibility with thread-based environments, details of API errors are obtained through the WSAGetLastError() API.  Although the accepted "Berkeley-Style" mechanism for obtaining socket-based network errors is via "errno", this mechanism cannot guarantee the integrity of an error ID in a multi-threaded environment.  WSAGetLastError() allows you to retrieve an error code on a per thread basis.



WSAGetLastError() returns error codes which avoid conflict with standard Microsoft C error codes.  Certain error codes returned by certain Winsock routines fall into the standard range of error codes as defined by Microsoft C.  If you are NOT using an application development environment which defines error codes consistent with Microsoft C, you are advised to use the Winsock error codes prefixed by "WSA" to ensure accurate error code detection.



Note that this specification defines a recommended set of error codes, and lists the possible errors which may be returned as a result of each function.  It may be the case in some implementations that other Winsock error codes will be returned in addition to those listed, and applications should be prepared to handle errors other than those enumerated under each API description.  However Winsock will not return any value which is not enumerated in the table of legal Winsock errors given in Appendix A.1.



B.4.3.5 Accessing Winsock DLL from an Intermediate DLL

The Winsock DLL may be accessed both directly from an application and through an "intermediate" DLL.  An example of such an intermediate DLL would be a virtual network API layer that supports generalized network functionality for applications and uses Winsock.  Such a DLL could be used by several applications simultaneously, and the DLL must take special precautions with respect to the WSAStartup() and WSACleanup() calls to ensure that these routines are called in the context of each task that will make Winsock calls.  This is because the Winsock DLL will need a call to WSAStartup() for each task in order to set up task-specific data structures, and a call to WSACleanup() to free any resources allocated for the task.  



There are (at least) two ways to accomplish this.  The simplest method is for the intermediate DLL to have calls similar to WSAStartup() and WSACleanup() that applications call as appropriate.  The DLL would then call WSAStartup() or WSACleanup()  from within these routines.  Another mechanism is for the intermediate DLL to build a table of task handles, which are obtained from the GetCurrentTask() Windows API, and at each entry point into the intermediate DLL check whether WSAStartup() has been called for the current task, then call WSAStartup() if necessary.



If a DLL makes a blocking call and does not install its own blocking hook, then the DLL author must be aware that control may be returned to the application either by an application-installed blocking hook or by the default blocking hook.  Thus, it is possible that the application will cancel the DLL's blocking operation via WSACancelBlockingCall().  If this occurs, the DLL's blocking operation will fail with the error code WSAEINTR, and the DLL must return control to the calling task as quickly as possible, as the user has likely pressed a cancel or close button and the task has requested control of the CPU.  It is recommended that DLLs which make blocking calls install their own blocking hooks with WSASetBlockingHook() to prevent unforeseen interactions between the application and the DLL.



Note that this is not necessary for DLLs in Windows NT because of its different process and DLL structure.  Under Windows NT, the intermediate DLL could simply call WSAStartup() in its DLL initialization routine, which is called whenever a new process which uses the DLL starts.





�Appendix C.  Open Issues



The following issues are not yet resolved (or sometimes simply not addressed yet due to lack of time)



Make sure that 16 <-> 32 bit conversion of error codes happens correctly.return values happens correctly.�   Solution: Use sign extension when converting from 16 to 32 bits.

Resolve concerns regarding availability of source code for Winsock 2 DLL's, and policies for how and when bugs will be fixed.

Specify the debugging support that will be built into Winsock.DLL

The QOS section needs to be revised and updated.

Is there a need for a generic, asynchrouous (overlapped) ioctl/setsockopt function?

Define the notification mechansim for shared sockets.  Proposals include:�	- totally independent notification on each descriptor�	- each event may be sent to one and only one descriptor



If an app asks for connect data but the protocol does not support it, does the request fail or does the connect data get ignored?  (general concensus was to fail)

Is the output flags param of WSARecv used to indicate MSG_OOB as well as MSG_PARTIAL?

Should winsock2 define a generic configuration mechanism?

How does the user or an application determine the order in which providers are considered when Winsock.DLL must select a provider on the basis of a tripple (address family, socket type, protocol)?  Is there a control panel applet or somesuch that controls this?

  Control panel applet is the right way to go, but where is the How will scatter/gather semantics be supported?

appropriate place to specify/describe this?

How can overlapped I/O operations that are pending be cancelled?

Header files are still incomplete

For listening sockets, the backlog may be specified as SOMAXCONN which allows the service provider to choose the largest “reasonable” value.   Do apps need a way to discover what SOMAXCONN is, and if so should we do this via a socket option or via the PROTOCOL_INFO struct?

Should we adopt the WSASendDisconnect() and WSAReceiveDisconnect() functions to accomodate exchange of disconnect data?  These would also act as a replacement for shutdown(), and make it easier to sipulate whether socket closure should be abortive or graceful.



�Note that there is a timing window between the accept() call and the call to WSAAsyncSelect() to change the events or wMsg.  An application which desires a different wMsg for the listening and accept()'ed sockets should ask for only FD_ACCEPT events on the listening socket, then set appropriate events after the accept().  Since FD_ACCEPT is never sent for a connected socket and FD_READ, FD_WRITE, FD_OOB, and FD_CLOSE are never sent for listening sockets, this will not impose difficulties.

�Note that there is a timing window between the accept() call and the call to WSAEventSelect() to change the network events or hEventObject.  An application which desires a different hEventObject for the listening and accept()'ed sockets should ask for only FD_ACCEPT network event on the listening socket, then set appropriate network events after the accept().  Since FD_ACCEPT never happens to a connected socket and FD_READ, FD_WRITE, FD_OOB, and FD_CLOSE never happen to listening sockets, this will not impose difficulties.

� UNIX is a trademark of Unix System Laboratories, Inc.

� VAX is a trademark of Digital Equipment Corporation.

� 68000 is a trademark of Motorola, Inc.

� This specification uses the function name getXbyY() to represent the set of routines gethostbyaddr(), gethostbyname(), etc. Similarly WSAAsyncGetXByY() represents WSAAsyncGetHostByAddr(), etc.

� NT and Windows/NT are trademarks of Microsoft Corporation.



		



�PAGE  �





�PAGE  �iiiv�





		New Concepts, Additions and Changes � PAGE �1411�











accept �page �1613�







bind �page �1815�







closesocket �page �2017�







connect �page �2219�



�PAGE�78� gethostbyname



gethostbyaddr �page �2522�







gethostbyname �page �2623�



gethostname �page �2724�







getprotobyname �page �2825�







getprotobynumber �page �3027�



�PAGE�84� getservbyport



getservbyname �page �3229�







getpeername �page �3431�







getsockname �page �3532�







getsockopt �page �4037�







htonl �page �4139�







htons �page �4240�







inet_addr �page �4341�







inet_ntoa �page �4442�







ioctlsocket �page �4644�







listen �page �4745�







ntohl �page �4947�







ntohs �page �5048�







recv �page �5250�







recvfrom �page �5553�







select �page �5957�







send �page �6159�







sendto �page �6462�







setsockopt �page �6967�







shutdown �page �7068�







socket �page �7371�



WSAAccept  �page �7775�







WSAAsyncGetHostByAddr �page �8078�







WSAAsyncGetHostByName �page �8280�







WSAAsyncGetProtoByName �page �8583�







WSAAsyncGetProtoByNumber �page �8886�







WSAAsyncGetServByName �page �9290�







WSAAsyncGetServByPort �page �9593�







WSAAsyncSelect  �page �10098�







WSACancelAsyncRequest �page �102100�







WSACancelBlockingCall �page �105103�







WSACleanup �page �106104�







WSACloseEvent �page �107105�







WSAConnect �page �110109�







WSACreateEvent �page �112111�







WSADuplicateSocket �page �114113�



�PAGE�60� send



WSAEnumNetworkEvents �PAGE�116115�



�PAGE�60� send



WSAEnumProtocols  � PAGE �120119�







		WSAEventSelect � PAGE �125124�







WSAGetLastError �page �126125�







WSAGetOverlappedResult �page �128133�



WSAGetQoSByName �page �129134�







WSAHtonl �page �130135�







WSAHtons �page �131136�







WSAIsBlocking �page �135�















WSANtohl �page �137142�







WSANtohs �page �138143�







		WSARecv � PAGE �140148�



�PAGE�60� send



WSARecvfrom �PAGE�145153�







WSAResetEvent �page �149154�







WSASend �PAGE�151159�







WSASendto �page �156164�







WSASetBlockingHook �page �161166�







WSASetEvent �page �162167�







WSASetLastError �page �163168�







WSASocket �page �165171�







WSAStartup �page �170175�







WSAUnhookBlockingHook �page �171176�







WSAWaitForMultipleEvents �page �173178�







Appendix A1: Error Codes �page �175180�







Appendix A2: Header Files �page �176181�







Winsock.h �page �181186�







Appendix B: Windows Sockets Introduction  �page �193199�



Appendix C: Open Issues  �page �196200�








