
Using sourceR for Bayesian non-parametric source attribution of

zoonotic diseases

Poppy Miller

August 31, 2020

Zoonotic diseases are a major cause of morbidity, and productivity losses in both humans and animal
populations. Identifying the source of food-borne zoonoses (e.g. an animal reservoir or food product) is
crucial for the identification and prioritisation of food safety interventions. For many zoonotic diseases it is
difficult to attribute human cases to sources of infection because there is little epidemiological information
on the cases. However, microbial strain typing allows zoonotic pathogens to be categorised, and the relative
frequencies of the strain types among the sources and in human cases allows inference on the likely source
of each infection.

We introduce sourceR, an R package for quantitative source attribution, aimed at food-borne diseases.
sourceR implements a fully joint non-parametric Bayesian model using strain-typed surveillance data from
both human cases and source samples. The model attributes cases of infection in humans to putative sources
of infection thus allowing the development of targeted interventions to reduce prevalence of the disease.
Further source attribution models are planned to be added to the package. The model measures the force of
infection from each source, allowing for varying survivability, pathogenicity and virulence of pathogen strains,
and varying abilities of the sources to act as vehicles of infection. A Bayesian non-parametric (Dirichlet
process) approach is used to cluster pathogen strain types by epidemiological behaviour, avoiding model
overfitting and allowing detection of strain types associated with potentially high virulence, pathogenicity
and survivability. This categorises pathogens by their risk to humans when detected in food sources.

HaldDP Model

To fit the model, strain typed samples are required from both humans and putative sources of infection.
Often, human case data is associated with location such as urban/rural, or even GPS coordinates. On the
other hand, food samples are likely to be less spatially constrained due to distances between production and
sale locations, hence, the model currently does not allow source data to vary by location. Also, both human
and source data may exist for multiple time-periods. We therefore denote the number of human cases of
time i occurring in time-period t at location l by yitl, the number of samples of source j in time-period t by
sjt, with the type counts xijt.

The number of human cases yitl identified by isolation of subtype i in time-period t at location l is modelled
as a Poisson random variable with mean given by a linear combination of source specific effects, type specific
effects and source sample contamination prevalences.

yitl ∼ Poisson (λitl) (1)

λitl = qi

m∑
j=1

ajtl · pijt (2)

where pijt is the absolute prevalence of each pathogen type i in source j at time t. The unknown parameters
in the model are the vectors q and α. Here, q represents the characteristics that determine a type’s capacity
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to cause an infection (such as survivability during food processing, pathogenicity and virulence), and α
accounts for the ability of a particular source to act as a vehicle of infection or exposure to a given food
source. We allow for different exposures of humans to sources in different locations, by allowing the source
effects to vary between times and locations, αjtl. Inference is performed in a Bayesian framework allowing
the model to explicitly include and quantify the uncertainty surrounding each of the parameters.

For each source j, we model the number of positive source samples

xjt ∼ Multinomial(s+jt, rjt) (3)

where xjt = (xijt, i = 1, ..., n)
T

denotes the vector of type-counts in source j in time-period t, s+jt =
∑n
i=1 xijt

denotes the total number of positive samples obtained for source j, and rjt denotes a vector of relative
prevalences Pr (typei|sourcej , timet). The source case model is then coupled to the human case model through
the simple relationship

pijt = rijtkjt (4)

where rijt = xijt/
∑n
i=1 xijt is the relative prevalence of type i given source j and time t and kjt = s+jt/sjt

is the prevalence of any isolate in source j in time-period t (note, sjt is the total number of samples tested
for source j, time t).

The type effects q, which are assumed invariant across time or location, are drawn from a DP with base
distribution Q0 and a concentration parameter aq

qi ∼ DP (aq, Q0) . (5)

The DP groups the elements of q into a finite set of clusters 1 : κ (unknown a priori) with values θ1, ..., θκ
meaning bacterial types are clustered into groups with similar epidemiological behaviour.

The estimated number of cases attributed to a particular source j is

ξ̂jtl = ajtl

n∑
i=1

qi · pijt. (6)

Comparing the relative magnitudes of ξ̂j provides a statistical method to prioritise intervention strategies
to the most important sources of infection. The model is fitted in a Bayesian framework as posteriors for
functions of parameters (such as ξ) are easily calculated, and to allow previous knowledge to be incorporated
via informative priors.

Heterogeneity in the source matrix x is absolutely required to identify clusters from sources, which may not
be guaranteed a priori due to the observational nature of the data collection. However, a sparse or highly
unbalanced source matrix increases posterior correlations between some source and type effects. In our
experience, the algorithm works best when the source matrix has a moderate amount of heterogeneity.

The interpretation of source α and type effects q depends on the quality and type of data collected, the
model specification, and the characteristics of the organism of interest. Source effects account for factors
such as the amount of the food source consumed, the physical properties of the source and the environment
provided for the bacteria through storage and preparation. Including an environmental source in the model
can be thought of as grouping the (individually) unmeasured wildlife sources into one. It may also be a
transmission pathway for pathogens present in livestock sources (for example, through the contamination
of waterways) which complicates the interpretation meaning the source effects no longer directly summarise
the ability of the source to act as a vehicle for food-borne infections [12]. The non-parametric clustering of
the subtypes type effects groups the subtypes by epidemiological traits. This means subtypes assigned to
the same group have similar pathogenicity, virulence and survivability.

Priors

The parameters αtl and q account for a multitude of source and type specific factors which are difficult
to quantify a priori. Therefore, with no single real-world interpretation, the distributional form of the
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priors were chosen for their flexibility. A Dirichlet prior is placed on each rjt which suitably constrains the
individuals rijs such that

∑n
i=1 rijt = 1. A Dirichlet prior is also placed on each αtl, with the constraint∑m

j=1 αjtl = 1 aiding identifiability between the mean of the source and type effect parameters. In sourceR,
the concentration parameter of the DP αq is specified by the analyst as a modelling decision.

Specifying Dirichlet priors: The simplest Dirichlet priors for the source effects and relative prevalences
are symmetric (meaning all of the elements making up the parameter vector a have the same value a,
called the concentration parameter). Symmetric Dirichlet distributions are used as priors when there is no
prior knowledge favouring one component over another. When a is equal to one, the symmetric Dirichlet
distribution is uniform over all points in its support. Values of the concentration parameter above one prefer
variates that are dense, evenly distributed distributions, whilst values of the concentration parameter below
1 prefer sparse distributions. Note, a prior of 1 for the relative prevalences is too strong (if a relatively non-
informative prior is preferred) when there are many observed zero’s in the source data. A more informative
prior can be specified by using a non-symmetric Dirichlet distribution. The magnitude of the vector of a
parameters corresponds to the strength of the prior. The relative values of the a vector corresponds to prior
information on the comparative sizes of the parameters.

Dirichlet Process: The Dirichlet Process non-parametrically clusters the pathogen type effects providing
an automatic data-driven way of reducing the dimensionality of q to aid model identifiability and identify
groups of pathogens with similar virulence, pathogenicity and survivability. The Dirichlet Process is a
random probability measure defined by a base distribution Q0 and a concentration parameter aq [25]. The
base distribution constitutes a prior distribution in the values of each element of the type effects q whilst
the concentration parameter encodes prior information on the number of groups K to which the pathogen
types are assigned. For small values of aq, samples from the DP are likely to have a small number of atomic
measures with large weights. For large values, most samples are likely to be distinct, and hence, concentrated
on Q0. A value of 1 implies that, a priori, two randomly selected types have probability 0.5 of belonging to
the same cluster [16].

The concentration parameter of the DP is specified by the analyst as a modelling decision. The concentration
parameter specifies how strong the prior grouping is. In the limit a → 0, all types will be assigned to one
group, increasing a makes a larger number of groups increasingly likely. The Gamma base distribution Q0

induces a prior for the cluster locations. This prior should not be too diffuse because if these locations are too
spread out, the penalty in the marginal likelihood for allocating individuals to different clusters will be large,
hence the tendency will be to overly favour allocation to a single cluster. However, the prior parameters
may have a stronger effect than anticipated due to the small size of the relative prevalence and source effect
parameters. This can been seen by considering the marginal posterior for θk

θk ∼ Gamma

aθ +
∑
i:Si=k

yi, bθ +
∑
i:Si=k

m∑
j=1

αj · pij


The term

∑
i:Si=k

∑m
j=1 αj · pij is very small (due to the Dirichlet priors on α and rj), which can result in

even a fairly small rate parameter (bθ) dominating.

Fitting the model using sourceR

A simulated data set with data covering 2 times (1, 2) and 2 locations (A, B) is provided with the package,
named sim SA. In accordance with the HaldDP model, the source data varies over time, the source effects
vary over times and locations, and the type effects are fixed over both times and locations. The priors are
chosen to be minimally informative. The algorithm is run for a total of 500,000 iterations (with a burn in of
2000 iterations and thinning 500).

First the human case data, source sample data and prevalences are passed to methods Y, X and Prev to
correctly format them. The first argument to each data formatting method gives the data in long format,

3



the remaining arguments give the headers for the columns containing case or sample counts and identification
variables (time, location, source, type).

y <- Y( # Cases

data = sim_SA$cases ,

y = "Human",

type = "Type",

time = "Time",

location = "Location"

)

x <- X( # Sources

data = sim_SA$sources ,

x = "Count",

type = "Type",

time = "Time",

source = "Source"

)

k <- Prev( # Prevalences

data = sim_SA$prev ,

prev = "Value",

time = "Time",

source = "Source"

)

The model is the constructed using the above data, initial values and priors. Starting values are selected
automatically unless provided via a list named init to the constructor. The priors for the α and R can be
specified as a dataframe with one value per time/ location/ type / source combination or as a single number
(which is replicated for each αjtl and rijt respecitvely).

## Create long -format Dirichlet (1) priors

## Create alpha prior data frame

prior_alpha_long <- expand.grid(

Source = unique(sim_SA$sources$Source),

Time = unique(sim_SA$sources$Time),

Location = unique(sim_SA$cases$Location),

Alpha = 1

)

# Use the Alpha () constructor to specify alpha prior

prior_alpha <- Alpha(

data = prior_alpha_long ,

alpha = ’Alpha’,

source = ’Source ’,

time = ’Time’,

location = ’Location ’

)

## Create r prior data frame

prior_r_long <- expand.grid(

Type = unique(sim_SA$sources$Type),

Source = unique(sim_SA$sources$Source),

Time = unique(sim_SA$sources$Time),

Value = 0.1

)

# Use X() constructor to specify r prior

prior_r <- X(

data = prior_r_long ,

x = ’Value’,

type = ’Type’,

time = ’Time’,

source = ’Source ’

)

## Pack all priors into a list

priors <- list(
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a_theta = 0.01,

b_theta = 0.00001 ,

a_alpha = prior_alpha ,

a_r = prior_r

)

Note, a shorthand specification of the priors is available when a single number is desired for all r’s and
α’s.

## Equivalent result to the longform priors specified above

priors <- list(

a_theta = 0.01,

b_theta = 0.00001 ,

a_alpha = 1,

a_r = 0.1

)

Having specified the priors, initial values for the Markov chain may be specified. This step is optional: in
the absence of user-specified initial values, the chain will be automatically initialised. The user is at liberty
to specify initial values for α, R, and/or q as desired. Values for α and R are specified similarly to the prior
hyperparameters as shown above, with directly equivalent use of the Alpha() and X() constructors. The
HaldDP() model constructor (see below) will warn the user if sum-to-unity constraints in α and R are not
satisfied, and will automatically renormalise vectors where necessary. To specify starting values for q, the
Q() constructor may be used

types <- unique(sim_SA$cases$Type)

q_long <- data.frame(q=rep(15, length(types)), Type=types)

init_q <- Q(q_long , q = ’q’, type = ’Type’)

with all specified initial values packed into a list, e.g.

inits <- list(q = init_q) # Pack starting values into a list

Armed with formatted data, prior hyperparameters, and initial values, construction of a HaldDP() object is
a simple process:

my_model <- HaldDP(y = y, x = x, k = k, priors = priors , inits = inits , a_q = 0.1)

McMC control parameters are set via the mcmc params method. Here, we request 1000 McMC iterations
after 2000 iterations burn-in, and thinning by 500 (for a total of 502000 iterations). We accept the default
number of elements of the R matrix to update per ‘sweep’ of the other parameters.

my_model$mcmc_params(n_iter = 1000, burn_in = 2000, thin = 500)

The model is run using the update function. Additional iterations may be appended using append =

TRUE. Setting append = FALSE the or re-running the mcmc params method will delete the previously saved
posterior.

my_model$update ()

my_model$update(n_iter = 100, append = T)

We provide the extract method for ease of access to the complex posterior. The extract function returns
the posterior for the selected parameters as a list with a multidimensional array for each of alpha, r, q,
s, lambda j and lambda i. This can be flattened to a list of long format data frames using the argument
flatten = T. The posterior can be subset by parameter, time, location type or source.
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## returns the posterior for the r, alpha , q, c,

## lambda_i, xi and xi_prop parameters ,

## for all times , locations , sources and types

## the posterior is returned as a list or arrays

my_model$extract ()

## returns the posterior for the r and alpha parameters ,

## for time 1, location B, sources Source3 , and Source4 ,

## types 5, 25, and 50, and iterations 200:300

## the posterior is returned as a list of dataframes

my_model$extract(params = c("r", "alpha"),

times = "1", location = "B",

sources = c("Source3", "Source4"),

types = c("5", "25", "50"),

iters = 200:300 ,

flatten = T)

Trace and autocorrelation plots for the parameters (Figure 1) indicate that the Markov chain is mixing well
and has converged, and that thinning by 500 is adequate. The following R code demonstrates how to access
and plot the marginal posteriors for some parameters.

## Plot the marginal posterior for source effect 2, time 1, location A

plot(my_model$extract(params = "alpha", times = "1", locations = "B",

sources = "Source4")$alpha , type="l")

## Plot the marginal posterior for the type effect 21

plot(my_model$extract(params = "q", types = "21")$q, type="l")

## Plot the marginal posterior for the relative prevalence for

## Source5 , type 17, at time 2

plot(my_model$extract(params = "r", times = "2", sources = "Source5",

types = "17")$r, type="l")

## Plot the marginal posterior for xi Source1 , time 1, location A

plot(my_model$extract(params = "xi", times = "1", locations = "A",

sources = "Source1")$xi, type = "l")

## Plot the marginal posterior for lambda_i 10, time 2, location B

plot(my_model$extract(params = "lambda_i", times = "2", locations = "B",

types = "10")$lambda_i, type="l")

The summary() function calculates medians and credible intervals calculated with three possible methods
(percentile, SPIn [18], or chen-shao [19]). The output can be subset in the same way as extract().

my_model$summary(alpha = 0.05, CI_type = "percentiles")

my_model$summary(alpha = 0.05, CI_type = "chen -shao",

params = c("r", "alpha"),

times = "1", location = "B",

sources = c("Source3", "Source4"),

types = c("5", "25", "50"),

iters = 200:300 ,

flatten = T)

The heatmap shows the grouping of the type effects (Figure 2) computed using a dissimilarity matrix from
the clustering output of the McMC. The coloured bar under the dendrogram gives the correct grouping from
the simulated data. This shows that the majority of types have been classified correctly. Care must be
taken in performing marginal interpretations of the number of type parameters. It is much easier to split
a group into two (with similar group means) than it is to merge two groups with clearly different means.
Hence, a histogram of the number of groups per iteration is positively skewed compared to the true number
of groups. When fitting the model with simulated data, visually assessing the dendrogram and heatmap to
determine the number of groups usually provides a closer value to the true number of groups than looking
at a histogram, particularly when the group means are well separated.
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Figure 1: Trace and acf plots for a sample of the model parameters. True values of the parameters are shown
in red.

my_model$plot_heatmap ()

The violin plots of the number of cases attributed to each source at each time and location λjtl (Figure 3)
and the number of cases attributed to each type λitl (Figure 4) show that the true values (shown by a red
horizontal line on the graph) are being estimated well.

The sourceR package allows the relative prevalence matrix to be fixed at the maximum likelihood estimates
which increases the posterior precision (and significantly reduces run time), but may bias the results if the
source data is not of high quality. Reducing the number of elements in the relative prevalence matrix r
that get updated at each iteration can significantly reduce computation time at the expense of convergence
speed.

The data, initial values, prior values, acceptance rates, and McMC parameters, can be accessed using a set
of get() methods.

my_model$get_data()

my_model$get_inits()

my_model$get_priors ()

my_model$get_acceptance ()

my_model$get_mcmc_params ()
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