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1 Introduction

Gene set methods are critical to the analysis of gene expression data. The npGSEA package provides
methods to run permutation-based gene set enrichment analyses without the typically computationally
expensive permutation cost. These methods allow users to adjust for covariates and approximate
corresponding permutation distributions. We are currently evaluating the applicability and accuracy of
our method for RNA-seq expression data.

Our methods find the exact relevant moments of a weighted sum of (squared) test statistics under
permutation, taking into account correlations among the test statistics. We find moment-based gene
set enrichment p-values that closely approximate the permutation method p-values.

This vignette describes a typical analysis workflow and includes some information about the statistical
theory behind npGSEA. For more technical details, please see Larson and Owen, 2014 .

2 Example workflow for GSEA

2.1 Preparing our gene sets and our dataset for analysis

For our example, we will use the ALL dataset. We begin by loading relevant libraries, subsetting the
data, and running featureFilter on this data set. For details on these methods, please see the 1imma
manual.

library(ALL)

library(hgu95av2.db)

library(genefilter)

library(limma)

library (GSEABase)

library(npGSEA)

data(ALL)

ALL <- ALL[, ALL$mol.biol %in% c('NEG','BCR/ABL') &
lis.na(ALL$sex)]

ALL$mol.biol <- factor (ALL$mol.biol,
levels = c('NEG', 'BCR/ABL'))

ALL <- featureFilter(ALL)

vV + VvV + V V V V V V V.YV

We adjust the feature names of the ALL dataset so that they match the names of our gene sets below.
We convert them to entrez ids.

> featureNames (ALL) <- select(hgu95av2.db, featureNames(ALL),
+ "ENTREZID", "PROBEID")$ENTREZID

We now make four arbitrary gene sets by randomly selecting from the genes in our universe.

> xData <- exprs(ALL)
> geneEids <- rownames(xData)
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set.seed(12345)

setl <- GeneSet(genelds=sample(geneEids, 15, replace=FALSE),
setName="setl",
shortDescription="This is setl")

set2 <- GeneSet (genelds=sample(geneEids,50, replace=FALSE),
setName="get2",
shortDescription="This is set2")

set3 <- GeneSet (genelds=sample(geneEids, 100, replace=FALSE),
setName="set3",
shortDescription="This is set3")

set4 <- GeneSet(genelds=sample(geneEids,500, replace=FALSE),
setName="gset4",
shortDescription="This is set4")

+ +V + +V ++V+ 4+ VYV

As a positive control, we also make three gene sets that include our top differentially expressed genes.

model <- model.matrix(“mol.biol, ALL)

fit <- eBayes(lmFit(ALL, model))

tt <- topTable(fit, coef=2, n=200)

ttUp <- ttlwhich(tt$logFC >0), ]

ttDown <- tt[which(tt$logFC <0), ]

setb <- GeneSet(genelds=rownames (ttUp) [1:20],
setName="setb",
shortDescription="This is a true set of the top 20 DE
genes with a positive fold change")

set6 <- GeneSet (genelds=rownames (ttDown) [1:20],
setName="get6",
shortDescription="This is a true set of the top 20 DE genes
with a negative fold change")

set7 <- GeneSet (genelds=c(rownames(ttUp) [1:10], rownames(ttDown) [1:10]),
setName="set7",
shortDescription="This is a true set of the top 10 DE genes
with a positive and a negative fold change")

+ + + Vv + + +V + + + V V V V VYV

We then collapse all of our gene sets into a GeneSetCollection. For more information on GeneSets
and GeneSetCollections, see the GSEABase manual.

> gsc <- GeneSetCollection( c(setl, set2, set3, setd4, setb, set6, set7) )
> gsc

GeneSetCollection
names: setl, set2, ..., set7 (7 total)
unique identifiers: 6529, 8608, ..., 2625 (690 total)

types in collection:
geneldType: NullIdentifier (1 total)
collectionType: NullCollection (1 total)
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2.2 Running npGSEA

Now that we have both our gene sets and experiment, we are ready to run npGSEA and determine the
level of enrichment in our experiment. We can use npGSEA with our eset or expression data (xData)
directly. We call npGSEASummary to get a summary of the results. T_Gw is explained in more detail in
Section 3.2.

> yFactor <- ALL$mol.biol
> resl <- npGSEA(x = ALL, y = yFactor, set = setl) ##with the eset
> resl

Normal Approximation for setl

T_Gw = 0.373

var(T_Gw) = 0.00695

pLeft = 1, pRight = 3.83e-06, pTwoSided = 7.66e-06

> res2_exprs <- npGSEA(xData, ALL$mol.biol, gsc[[2]]) ##with the expression data
> res2_exprs

Normal Approximation for set2

T_Gw = 0.716

var(T_Gw) = 0.0332

pLeft = 1, pRight = 4.28e-05, pTwoSided = 8.56e-05

npGSEA has several built in accessor functions to gather more information about the analysis of your
set of interest in your experiment

> res3 <- npGSEA(ALL, yFactor, set3)
> res3

Normal Approximation for set3

T_Gw = 0.153

var(T_Gw) = 0.0454

pLeft = 0.764, pRight = 0.236, pTwoSided = 0.473

> geneSetName (res3)
| "set3"

> stat(res3)

| [1] 0.1529218

> sigmaSq(res3)

| [1] 0.04535932

> zStat (res3)

| [1] 0.7180194

> pTwoSided(res3)
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Figure 1: Set3 normal approximation results This plot displays the standard normal curve and our
observed zStat for set3 in this analysis.

| [1] 0.4727453

> pLeft(res3)

| [1] 0.7636273

> pValues(res3)

| plLeft = 0.764, pRight = 0.236, pTwoSided = 0.473
> dim(xSet(res3))

| [1] 100 109

There is also a npGSEA specific plot function (npGSEAPlot) to visualize the results of your analysis.
Highlighted in red on the plot is the corresponding zStat of our analysis.

> npGSEAPlot (res3)

2.3 Running npGSEA with the beta and chi-sq approximations

There are three types of approximation methods in npGSEA: "norm”, "beta”, and "chiSq". Each method
is discussed in brief in Section 3. The "norm” approximation method is the default. Note that each of

these methods has the same 3, (see methods section).
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> resb_norm <- npGSEA(ALL, yFactor, setb, approx= "norm")
> resb5_norm

Normal Approximation for setb

T_Gw = 5.81

var(T_Gw) = 0.533

pLeft = 1, pRight = 8.72e-16, pTwoSided = 1.74e-15

> betaHats(res5_norm)

[,1]
1490  0.6254202
168544 0.1183495
1893  0.2738035
2013  0.1377552
2022  0.2714648
216 0.2272578
2273  0.4176803
23179 0.2861124
25 0.2509990
2549  0.2452185
2934  0.3947695
5445  0.2701762
55884 0.1880845
57556 0.4375653
687 0.5354771
6915 0.1266511
7277  0.3961132
92 0.1851782
9369  0.1146599
9788  0.3049948

> npGSEAPlot (res5_norm)
The beta approximation yields results quite similar to the normal approximation.

> resb_beta <- npGSEA(ALL, yFactor, setb, approx= "beta")
> resb_beta

Beta Approximation for setb

T_Gw = 5.81

var(T_Gw) = 0.533

pLeft = 1, pRight = 5.24e-29, pTwoSided = 1.05e-28

> betaHats(res5_beta)

[,1]
1490  0.6254202
168544 0.1183495
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1893  0.2738035
2013  0.1377552
2022  0.2714648
216 0.2272578
2273  0.4176803
23179 0.2861124
25 0.2509990
2549  0.2452185
2934  0.3947695
5445  0.2701762
55884 0.1880845
57556 0.4375653
687 0.5354771
6915 0.1266511
7277  0.3961132
92 0.1851782
9369  0.1146599
9788  0.3049948

> npGSEAPlot (res5_beta)

The chi-sq approximation method is only available for the two-sided test. Here we call npGSEA and
then show how the chiSqStat is related to C_Gw. C_Gw is explained in more detail in Section 3.2.

> resb_chiSq <- npGSEA(ALL, yFactor, setb, approx= "chiSq")
> resb_chiSq

Chi-sq Approximation for setb
C_Gw = 2.06
df = 2.42, sigmaSq = 0.0232
pIwoSided = 0
> betaHats(res5_chiSq)
[,1]
1490  0.6254202
168544 0.1183495
1893  0.2738035
2013  0.1377552
2022  0.2714648
216 0.2272578
2273  0.4176803
23179 0.2861124
25 0.2509990
2549  0.2452185
2934  0.3947695
5445  0.2701762
556884 0.1880845
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Figure 2: Setb normal, beta, and chi-sq approximation results These plots displays the reference
normal, beta, and chi-sq curves, and our observed zStat, betaStat, and chiSqStat for set5 in this
analysis.

57556 0.4375653
687 0.5354771
6915  0.1266511
7277  0.3961132
92 0.1851782
9369  0.1146599
9788  0.3049948

> chiSqStat(res5_chiSq)

| [1] 88.81123

> stat(resb_chiSq)

| [1] 2.05971

> stat(resb_chiSq)/sigmaSq(res5_chiSq)
| [1] 88.81123

> npGSEAPlot (res5_chiSq)

Note that, as we expected, set5 is a significantly enriched in all three methods. In each of the three
corresponding plots, the observed statistic is a very rare event.

2.4 Adding weights to the model

Sometimes we do not want to weigh each gene in our set equally. We want to assign a larger weight to
genes that are of a particular interest, and a lower weight to genes that we know may behave poorly.
In this example, we weight the genes in set7 by their variance.
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> res7_nowts <- npGSEA(x = ALL, y= yFactor, set = set7)
> res7_nowts

Normal Approximation for set7

T_Gw = 1.69

var(T_Gw) = 0.0772

pLeft = 1, pRight = 6.39e-10, pTwoSided = 1.28e-09

> wts <- apply(exprs(ALL) [match(geneIlds(set7), featureNames(ALL)), ],

+ 1, var)

> wts <- 1/wts

> res7_wts <- npGSEA(x = ALL, y = yFactor, set = set7, w = wts, approx= "norm")
> res7_wts

Normal Approximation for set7

T_Gw = 12.1

var(T_Gw) = 2.69

pLeft = 1, pRight = 8.87e-14, pTwoSided = 1.77e-13

By adding these weights, we get a slightly more significant result. We can add weights for the beta and
chi-sq approximations, too. By default, npGSEA assigns a weight of 1 for all genes.

2.5 Adding covariates to model

Often we want to correct for confounders in our model. To do this with npGSEA, we provide a vector or
matrix in the covars slot of our function. npGSEA then projects both the data (x) and the outcome of
interest (y) against our covariate matrix/vector. The resulting residuals are used for further analysis.

In this example, we correct for the age and sex of the subjects in our experiment. For more details on
model selection and its relation to inference, please see the 1imma manual.

> res3_age <- npGSEA(x = ALL, y = yFactor, set = set3, covars = ALL$age)
> res3_age

Normal Approximation for set3

T_Gw = 0.0295

var(T_Gw) = 0.0367

pLeft = 0.561, pRight = 0.439, pTwoSided = 0.878

> res3_agesex <- npGSEA(x = ALL, y = yFactor, set = set3, covars = cbind(ALL$age, ALL$se:
> res3_agesex

Normal Approximation for set3

T_Gw = 0.0335

var (T_Gw) = 0.0361

pLeft = 0.57, pRight = 0.43, pTwoSided = 0.86

By adjusting for these variables, we get a slight different result than above. Note that we can adjust
for covariates in the beta and chi-sq approximation methods, too.
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2.6 Running npGSEA with multiple gene sets

To explore multiple gene sets, we let set be a GeneSetCollection. This returns a list of npGSEAResultNorm
objects, called a npGSEAResultNormCollection. We can access statistics for each GeneSet in our
analysis through accessors of npGSEAResultNormCollection.

> resgsc_norm <- npGSEA(x = ALL, y = yFactor, set = gsc)
> unlist( pLeft(resgsc_norm) )

setl set2 set3 setd setb set6
9.999962e-01 9.999572e-01 7.636273e-01 6.354175e-01 1.000000e+00 4.247294e-11
set7

1.000000e+00
> unlist( stat (resgsc_norm) )

setl set?2 set3 setd setb set6 set7
0.3729966 0.7161718 0.1529218 0.2547710 5.8077311 -3.8513598 1.6860483

> unlist( zStat (resgsc_norm) )

setl set2 set3 setd setb set6 set7
4.4744408 3.9280248 0.7180194 0.3462365 7.9583579 -6.4915710 6.0700222

Note how quick our method is. We get results as accurate as permutation methods in a fraction of the
time, even for multiple gene sets.

Using the ReportingTools package, we can publish these results to a HTML page for exploration. We
first adjust for multiple testing.

> pvals <- p.adjust( unlist(pTwoSided(resgsc_norm)), method= "BH" )

> library(ReportingTools)

> npgseaReport <- HTMLReport (shortName = "npGSEA",

+ title = "npGSEA Results", reportDirectory = "./reports")

> publish(gsc, npgseaReport, annotation.db = "org.Hs.eg",

+ setStats = unlist(zStat (resgsc_norm)), setPValues = pvals)
> finish(npgseaReport)

3 Methods in brief

3.1 Disadvantages to a permutation approach

There are three main disadvantages to permutation-based analyses: cost, randomness, and granularity.

Testing many sets of genes becomes computationally expensive for two reasons. First, there are many
test statistics to calculate in each permuted version of the data. Second, to allow for multiplicity
adjustment, we require small nominal p-values to draw inference about our sets, which in turn requires
a large number of permutations.
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Permutations are also subject random inference. Because permutations are based on a random shuffling
of the data, there is a chance that we will obtain a different p-value for our set of interest each time
we run our permutation analysis.

Permutations also have a granularity problem. If we do M permutations, then the smallest possible
p-value we can attain is 1/(M + 1). When it is necessary to adjust for multiplicity, the permutation
approach becomes very computationally expensive. Another aspect of the granularity problem is that
permutations give us no basis to distinguish between two gene sets that both have the same p-value
1/(M + 1). There may be many such gene sets, and they have meaningfully different effect sizes.

Because of each of these limitations of permutation testing, there is a need to move beyond permutation-
based GSEA methods. The methods we present in npGSEA and discuss in brief below are not as
computationally expensive, random, or granular than their permutation counterparts. More details on
our method can be found in Larson and Owen (2014).

3.2 Test statistics

We present our notation using the language of gene expression experiments.

Let g and h denote individual genes and GG be a set of genes. Our experiment has n subjects. The
subjects may represent patients, cell cultures, or tissue samples. The expression level for gene ¢ in
subject 7 is Xy;, and Y is the target variable on subject 7. Y] is often a treatment, disease, or genotype.
We center the variables so that > Y; = > | X = 0,Vg.

Our measure of association for gene g on our treatment of interest is
. 1
69 = Z XgiYi'
iz

We consider the linear statistic

Tow = Z Wg/g
geG
and the quadratic statistic
52
CG,UJ - Z wg/697
geG

where w, corresponds to the weight given to gene g in set G.

3.3 Moment based reference distributions

To avoid the issues discussed above, we approximate the distribution of the permuted test statistics
Tt by Gaussian or by rescaled beta distributions. For the quadratic statistic C¢ ,, we use a distribution
of the form o°x{,).

For the Gaussian treatment of T, we calculate 0 = Var(T,,) under permutation, and then report

the p-value
p=Pr(N(0,0%) < Tg.).
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The above is a left tail p-value. Two-sided and right tailed p-values are analogous.

When we want something sharper than the normal distribution, we can use a scaled Beta distribution,
of the form A + (B — A)Beta(a, ). The Beta(a, 8) distribution has a continuous density function
on 0 <z <1 fora,B >0. We choose A, B, o and 3 by matching the upper and lower limits of T¢ ,,
under permutation, as well as its mean and variance. The observed left tailed p-value is

Tew— A)

p= Pr(Beta(a,ﬂ) < 5

For the quadratic test statistic C,, we use a 029&,}) reference distribution reporting the p-value

Pr(U2X%V) Z CG7w)7

after matching the first and second moments of 02x%y) to E(Cg,) and E(CZ,,) under permutation,
respectively.

Additional details on how o2, A, B, «, 8, E(Cg.w), E(Céw), and v are derived can be found in Larson
and Owen (2014).
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5 References

Larson and Owen. (2014). Moment based gene set tests. Submitted.



	1 Introduction 
	2 Example workflow for GSEA
	2.1 Preparing our gene sets and our dataset for analysis
	2.2 Running npGSEA
	2.3 Running npGSEA with the beta and chi-sq approximations
	2.4 Adding weights to the model
	2.5 Adding covariates to model
	2.6 Running npGSEA with multiple gene sets

	3 Methods in brief
	3.1 Disadvantages to a permutation approach
	3.2 Test statistics
	3.3 Moment based reference distributions

	4 Session Info
	5 References

