Generates a set of linear-phase FIR multiband digital filter coefficients using the # of taps, sampling frequency: fs, Band Parameters, and filter type. Details
![]() |
# of taps contains the total number of coefficients in h. The default is 32. A tap corresponds to a multiplication and an addition. If there are n taps, every filtered sample requires n multiplications and n additions. # of taps must be greater than zero. If # of taps is less than or equal to zero, the VI sets h to an empty array, sets ripple to NaN, and returns an error. | ||||||||
![]() |
sampling freq: fs is the sampling frequency and must be greater than zero. The default is 1.0. | ||||||||
![]() |
Band Parameters is an array of clusters.
Each cluster element contains the necessary information associated with each band for the FIR design. Each cluster contains four elements, as described below.
The Band Parameters cluster array must contain at least one element, that is, one band.
| ||||||||
![]() |
filter type can be the following values.
|
||||||||
![]() |
h is an array of FIR coefficients, which the VI computes using the Parks-McClellan algorithm with the Remes exchange technique. | ||||||||
![]() |
ripple is the optimal ripple the VI computes and is a measure of deviation from the ideal filter specifications. | ||||||||
![]() |
error returns any error or warning from the VI. Refer to Signal Processing Error Codes for more information about these conditions. |
![]() | Note The Parks-McClellan VI finds the coefficients using iterative techniques based upon an error criterion. Although you specify valid filter parameters, the algorithm may fail to converge. |
The Parks-McClellan VI generates only the filter coefficients. It does not perform the filtering function. To filter a sequence X using the set of FIR filter coefficients h, use the Convolution VI with X and h as the input sequences, as shown in the following illustration.
The equi-ripple filters use a similar technique to filter the data.