
SUMOPy user manual

Joerg Schweizer, University of Bologna, DICAM
2016-10-30
Version 1

Abstract

This document describes the capabilities and basic usage of the
software SUMOPy. SUMOPy is intended to expand the user-base
of the traffic micro-simulator SUMO (Simulation of Urban MO-
bility http://sumo.dlr.de/wiki/Main_Page) by providing a user-
friendly, yet flexible simulation suite.

A further scope of SUMOPy is to manage the huge amount of data
necessary to run complex multi-modal simulations. This includes
different demand generation models as well as a large range of
modes, such as road transport, public transport, and bicycles. In
the future also modes like self-driving cars and Personal Rapid
Transit (PRT) will be supported.

SUMOPy consists of a GUI interface, network editor as well as a
simple to use scripting language which facilitates the use of SUMO.

Contents

1 Introduction 3

2 Installation 3

2.1 Windows . 4

2.2 Linux . 4

3 The graphical user interface 5

3.1 Getting started! . 5

3.1.1 Running SUMOPy 5

3.1.2 Opening/creating a scenario 5

3.1.3 Browsing the scenario 6

3.1.4 Navigating the Network 6

3.1.5 Running a simulation 7

3.1.6 Viewing results . 7

3.2 Launching SUMOPy . 10

3.2.1 Loading a binary scenario at start 10

3.2.2 Importing SUMO XML files at start 10

3.3 Importing and Editing networks 10

http://sumo.dlr.de/wiki/Main_Page

3.3.1 Importing nets and facilities 10

3.3.2 Editing with SUMO’s Netedit 10

3.3.3 Editing with SUMO’s Netedit on background maps 11

3.3.4 Editing with SUMOPY Neteditor 11

3.4 Demand modeling . 12

3.4.1 Zone to zone demand flows 12

3.4.2 Turn flows . 15

3.5 Simulation processes . 18

3.5.1 Simulating Sublanes 18

2 SUMOPy User manual

1 Introduction

SUMO rapidly developed into a flexible and powerful open-source micro-
simulator for multi-modal urban traffic networks [Krajzewicz (2003)].
The features and the number of tools provided are constantly increasing,
making simulations ever more realistic. However, the different functional-
ities consist at the present state of a large number of binaries and scripts
that act upon a large number of files, containing information on the net-
work, the vehicles, districts, trips routes, configurations, and many other
parameters. Scripts (mostly written in Python), binaries and data files
exist in a dispersed manner. In practice, a master script is necessary to
hold all processes and data together in order run a simulation of a specific
scenario in a controlled way. This approach is extremely flexible, but it
can become very time consuming and error prone to find the various tools,
combine their input and output and generate the various configuration
files. Furthermore, it reduces the user-base of SUMO to those familiar
with scripting and command line interfaces. Instead, SUMO has the po-
tential to become a multi-disciplinary simulation platform if it becomes
more accessible to disciplines and competences.Scripts (mostly written in
Python), binaries and data files exist in a dispersed manner.

This problem has been recognized and different graphical user interfaces
have been developed. The traffic modeller (also named traffic genera-
tor) is a tool written in Java which helps to manage files, to configure
simulations and to evaluate and visualize results.

SUMOPy is written entirely in the object-oriented script language
Python, it uses wxWindows with PyOPENGL as GUI interface and
NumPy for fast numerical array-type calculations. It is similar to the
traffic generator in that it simplifies the use of SUMO through a GUI.
But SUMOPy is more than just a GUI, it is a suite that allows to access
SUMO tools and binaries in a simple unified fashion. The distinguishing
features are:

• SUMOPy has Python instances that can make direct use of tools
already available as Python code.

• SUMOPy has a Python command line interface that allows direct
and interactive manipulation of SUMOPy instances.

• SUMOPy provides a library that greatly simplifies the scripting.

2 Installation

SUMOPy is a directory with python scripts. It is sufficient to un-
zip the latest version and copy it in a directory of your choice. Since
SUMO-0.28, SUMOPy is inside the SUMO distribution and located in
SUMOHOME/tools/contributed.

However, SUMOPy makes extensive use of Python packages which need
to be installed before. The required packages to be installed are:

1. Python 2.7

2. numpy-1.10 or newer

3. wxPython2.8 or wxPython2.9 (wxPython3.x is currently not prop-
erly working with PyOpenGL-3.0.x)

4. PyOpenGL-3.0.x

SUMOPy User manual 3

The following packages are optional:

1. matplotlib-1.4 or newer, for high quality graphical output in differ-
ent file formats.

2. PIL-1.1.7 or newer and basemap-1.0 (or pyproj) for downloading
backround maps from mapservers.

The exact choice of package-versions and installation methods depend on
the operating system. Below we give short recomandations regarding the
choice of packages for different operating systems. In general, the 32-bit
version is preferred as there are more pre-compiled packagesavaillable,
but this may change over time.

2.1 Windows

For Windows, as required packages the following are recommended:

python-2.7.12.msi (32-bit or x86 preferred)

numpy-1.10.0-win32-superpack-python2.7.exe

wxPython2.8-win32-unicode-2.8.12.1-py27.exe

PyOpenGL-3.0.2.win32.exe

Optionally, install these:

matplotlib-1.4.3-cp27-none-win32.whl

basemap-1.0.8-cp27-none-win32.whl

PIL-1.1.7.win32-py2.7.exe

2.2 Linux

Python 2.7 comes with most Linux operating systems. All required ad-
ditional packages are available in repositories:

python-numpy

python-wxgtk2.8

python-opengl

python-imaging

python-matplotlib

python-mpltoolkits.basemap

However, often Python 3.x is installed along the older version and may
be the default Python interpreter. So make sure you run the sumopy
scripts with Python 2.7

Another issue may be python-wxgtk2.8 in repositories of more recent
distributions, as for example Ubuntu-16.04. In this case, do the following
safe operation to install python-wxgtk2.8:

echo "deb http://archive.ubuntu.com/ubuntu wily main universe"\

| sudo tee /etc/apt/sources.list.d/wily-copies.list

sudo apt install python-wxgtk2.8

sudo rm /etc/apt/sources.list.d/wily-copies.list

sudo apt update

4 SUMOPy User manual

Figure 1: Main window of SUMOPy

3 The graphical user interface

3.1 Getting started!

3.1.1 Running SUMOPy

Start the script sumopy_gui.py by double-clicking on it in your browser.
If this fails, use the command-line accessory change directory to

SUMOHOME/tools/contributed/sumopy

and run sumopy with

python sumopy_gui.py

If all required packages are installed correctly, you should see the main
window as shown in Fig. 1, but initially with an empty network. The
object browser shows initially the main object of SUMOPy: the scenario,
which contains all other information.

3.1.2 Opening/creating a scenario

There is a test scenario in the SUMOPy distribution which is located in

SUMOHOME/tools/contributed/sumopy/testscenario

The quickest way to obtain results from a simulation is to import already
existing xml-files. In case the following SUMO network, poly and route
files

demo.net.xml demo.poly.xml demo.rou.xml

are located in directory

SUMOHOME/tools/contributed/sumopy/testscenario

SUMOPy User manual 5

then a new scenario can be created by importing these files into SUMOPy
at ones: from the main menu, choose Scenario>Create from xml...

and insert the scenario Shortname, and Workdir in the form as shown in
Fig. 2 The options Name and Description are free text fields. After

Figure 2: Creating a new scenario from SUMO xml files. Please note
that the scenario short-name must be identical to the root-name of the
xml files.

pressing the Run button, network, buildings and routes will be imported.
In case the trip file demo.trip.xml exists, it will also be imported.

In the same way it is possible to crate an empty scenario under menu
Scenario>New....

3.1.3 Browsing the scenario

The object browser allows to navigate through all information of a sce-
nario. To a certain extend, it is possible to modify data. The most
important information are:

• The network with edges, nodes, traffic light systems etc.

• The landuse, containing also the building information from the
.poly file as well as background maps (see later how to import

them).

• The demand holds information on available vehicles types, trips
and routes.

3.1.4 Navigating the Network

The network can be examined with the network editor. The initial editing
tool allows to click on the different network elements and retrieve the
respective information in the object browser.

With the zoom-buttons (+,-) located below the network editor, different
zoom levels can be obtained The 1:1 button zooms the network to fit
approximately the boundaries of the window. Next to the zoom button
is a button which pops up a menu when pressed. From this menu, the
network elements to be drawn can be selected or un-selected.

The following mouse-key combination allow to navigate the network:

6 SUMOPy User manual

Action Key-Mouse
Zoom in/Out Hold down <CTRL> + <Wheel>

Panning Hold down <CTRL> + <SHIFT> + <Button-Left>

3.1.5 Running a simulation

From the main menu select:

Simulation>Sumo>export routes and simulate...

With this process, the current trips and routes in demand.trips will
be automatically exported to a SUMO .rou file. Choose the desired
simulation settings from the SUMO pop-up dialog, as shown in Fig. 3.

Figure 3: SUMO simulation dialog. Here all output data options are
marked.

The simulation parameters are self-explaining, just hover with the mouse
over the parameter name. The default parameters are typically suit-
able to run a first simulation. Select one of the output options in
order to obtain specific simulation results. Regarding outputs, the
Output Sampling Time for the different outputs may be of interest. If

you observe in the simulations that vehicles get blocked at junctions for
no obvious reason, then it is possible to resolve conflicts by setting the
Teleport to a positive time (i.e. 10s).

After pressing the run button, the SUMO-GUI interface pops up, ready
for simulation, as shown in Fig. 4. Adjust delay time and press the Start
button. At the end of the simulation, confirm OK and close the SUMO-
GUI window. Simulation results are now imported into SUMOPy and
are ready to be examined, visualized and exported in various formats.

3.1.6 Viewing results

The results can be viewed in table format and graphically, see Fig. 5.

In the object browse, the results per trip and the results per edge can
be viewed. Both, trip and edge oriented result-table can be exported in

SUMOPy User manual 7

Figure 4: The SUMO-GUI. Do not forget to increase the delay time,
otherwise vehicles may become too fast to be spotted.

CSV format, see the Simulation>Results menu.

Attention: Results are not saved when saving the scenario. Instead the
results must be saved separately using

Simulation>Results>Save as ...

At any time, results can be reopened with the scenario with which they
have been produced, using:

Simulation>Results>Open ...

In case the Matplotlib package is installed you can generate plots in
various formats, choosing menu Simulation>Results>Plot with matplotlib.
The pop-up dialog helps to configure the graphical details of the plot, an
example is shown in Fig. 6.

8 SUMOPy User manual

Figure 5: The SUMOPy result viewer. Edge and trip-oriented results in
table-form can be viewed in the object browser. Edge result are visualized
on a map to the right. Select the “Edge Quantity” from the menu to be
plotted.

Figure 6: Example of a Matplotlib plot generated bu SUMOPy.

SUMOPy User manual 9

3.2 Launching SUMOPy

As explained in Sec. 3.1, networks can be created from SUMO XML files,
or a binary file can be loaded. Both operations can be performed from
the commend line.

3.2.1 Loading a binary scenario at start

A previously saved, binary scenario with filename scenario.obj can be
loaded into SUMOPy at start using the commandline

python sumopy_gui.py workdir/scenario.obj

3.2.2 Importing SUMO XML files at start

An initial import of existing SUMO XML files with rootname scenario

and located in directory workdir can be accomplished with

python sumopy_gui.py scenario workdir

3.3 Importing and Editing networks

Important notice : if needed, the network should be modified before

moving on to demand modeling (see Sec.3.4).

3.3.1 Importing nets and facilities

Networks can be import from a SUMO net.xml file with

network>import>from sumo net.xml ...

Networks can be converted and imported from a previously downloaded
OSM file, calling a wizard with:

network>import>from osm.xml ...

Note: the information on buildings (called “facilities”) are a property of
the landuse object and can be extracted and imported from an OSM file
with menu item

landuse>facilities>import from osm...

Sometimes special characters in the XML file are offending the python
XML parser, leading to errors. If this occurs, simply “clean” the OSM
file with

landuse>facilities>clean osm file...

prior to importing it.

3.3.2 Editing with SUMO’s Netedit

The recommended way to edit the network is via netedit, which is
provided with SUMO from version 0.25. SUMO’s netedit can be called
by choosing the menu

Network>Edit with netedit

netedit will be fired up with the network ready to be edited. The use
of netedit is documented here: http://sumo.dlr.de/wiki/NETEDIT.
After editing, the network must be saved within netedit be pressing
<CTRL>-s or with File>save. Then netedit can be closed and the
modified network will be reimported into SUMOPy.

10 SUMOPy User manual

http://sumo.dlr.de/wiki/NETEDIT

3.3.3 Editing with SUMO’s Netedit on background maps

There is a possibility to edit the network with netedit (as explained in
Sec. 3.3) on background maps. Currently these are Google Satellite maps.
Before editing with background maps, the maps must be downloaded for
the given network area. This is accomplished by a wizard which can be
called selecting the menu item1.

landuse>maps>download...

Figure 7: Map download wizard.

The wizard, shown in Fig. 7 helps to download the squared tiles which
cover the network area. The resolution can be defined by setting the tile
width (and height) in meters. The tile size in pixel is maximum 1280
(using the Google Map server). The resolution is then tile size/tile width
in pixel per meter.

Attention: it is highly recommended to press the Apply Button prior
to downloading the maps. This will calculate the number of tiles which
are going to be downloaded. This is important to know, because Google
maps prevent IPs from downloading too many maps of an area. Therefore
do not exceed ≈ 300 tiles! Note further that, dependent on the perfor-
mance of your computer, netedit may run into problems to handle too
large map areas.

After the maps are downloaded, netedit can be called with

Network>Edit with netedit on map

in order to edit the SUMO network on a map.

3.3.4 Editing with SUMOPY Neteditor

The SUMOPy internal net-editor provides currently some limited capa-
bility to edit the network

• The geometry of edges and buildings can be manipulated: Activate
the Move tool to move or the Stretch to change vertexes.

• With the menu Network>Clean nodes all edges entering a node
are “cut back” to a certain radius. This measure may facilitate the
verification of connections between lanes at junctions.

1 In SUMOPy Maps are managed by the landuse object

SUMOPy User manual 11

3.4 Demand modeling

In the framework of SUMO, demand generation means essentially the
generation of traffic participants (persons and/or different types of ve-
hicles) and the generation of a route for each traffic participant. It is
recommeded to start with demand generation only after the network has
been edited. In any case it is good practice to save a scenario with the
network only (without demand info).

All available vehicle types2 can be browsed and modified under:

scenario.demand.vtypes

Note that each vehicle type belongs to a vehicle class, also called modes.

The different demand generation methods, as described below, will gen-
erate trips and routes, which can be browsed in

scenario.demand.trips and scenario.demand.trips.routes

In fact, the different demand generation methods could also be used in
combination.

3.4.1 Zone to zone demand flows

We first explain the general concept of Zone to zone demand generation
before we describe how to procede with SUMOPy.

1. Zone definition: Definition of Zones, in SUMO also called “Traffic
Assignment Zones” (TAZ). A TAZ defines the area where partici-
pants depart (zone of origin) or arrive (zone of destination). A TAZ
does typically contain several network edges.

2. Zone-to-Zone flow definition: Definition the number of trips be-
tween each zone of origin and a zone of destination (= OD-flow).
This structure is widely known as the Origin-to Destination matrix
OD Matrix. OD-flows are defined.

• for different time intervals of the day.

• for different transport mode.

3. Trip generation: Each OD-flow is disaggregated into a discrete
number of individual trips, departing at different edges (and edge
positions) within the zone of origin, and at different time instances
within the specified time interval; and arriving at different edges
(and edge positions) within the zone of destination.

4. Routing : A route is computed for each individual trip, connecting
the edge within the zone of origin, with the edge within the zone of
destination.

These steps can be performed with SUMOPy as follows.

In SUMOPy, Zone definition can be accomplished manually with theZone definition:
Add zone tool of the network editor, see Fig. 8. After giving the

zone a name 3 a polygon can be drawn on the network with a se-
ries of <Button-Left> - clicks. Complete the zone with a final
<Double-Button-Left> - click. A <Double-Button-Right> - click

2 Of course in a traffic scenario we have usually more than one participant of each
type

3 zone names can added/modified later via browser

12 SUMOPy User manual

Figure 8: Traffic Assignment Zones in object browser and on network
(in green). A new zone can be added with the Add Zone tool. On the
object browser an existing zone is displayed. Note the identified zone
edges available for departure and arrival of vehicles.

will aboard the current zone drawing. Currently zones must be convex,
otherwise edge detection problems occur.

Important notice Only edges which are located entirely inside a zone

are considered part of a zone. Only edges inside a zone are considered
for departure or arrival of vehicles in the respective zone. After creating
the zones you can identify all edges in each zone by selecting menu item

Landuse>Zones>Identify zone edges

It is possible to see all zone edges and and change zone names by using
the information tool and by clicking on the green zone border. Zones
are accessible under scenario.demand.zones. Zones can also be deleted
with the Delete tool of the network editor.

Zone-to-Zone flows can be added by selecting the menu itemZone-to-Zone flow
definition:

Demand>Zone-to-zone demand>Add zone-to-zone flows

An “Add OD flow wizard” will pop up as shown in Fig. 9. On this
wizard, specify the time interval (in entire seconds) and the transport
mode. On the menu of the wizard select Edit>Add OD-flow to table.
Then a new row will appear in the table. Enter the zones of origin and
destination and the respective number of trips between them.

Instead of entering the OD flows manually, the wizard offers also the
possible to import an OD-flows from a CSV file. Select from the wizard
menu:

File>Import CSV ...

and choose a CSV file from the file-dialog window. The CSV file must
have the following format:

SUMOPy User manual 13

Figure 9: The OD flow wizard.

<zone name origin 1>, <zone name destination 1>,<trip number 1>

<zone name origin 2>, <zone name destination 2>,<trip number 2>

...

Once the OD flows are all entered, press Save flows. The scale factor
can be used to multiply the entered trips with a constant (default 1)
when saving. The demand flows are now saved to SUMOPy and can be
browsed and modified under

scenario.demand.odintervals

Generate trips from OD flows, selecting menu itemTrip generation:

Demand>Zone-to-zone demand>Generate trips from flows

The generated trips can be browsed and modified under

scenario.demand.trips

Perform a shortest path routing, for each trip by selectingRouting :

Demand>Trips and router>Routing

The generated route can be browsed under

scenario.demand.trips.routes

With this method, SUMO’s duarouter is used to perform the routing.
Note that each trip is now linked to a route (see ID route column in
trips). If there is no route means that the edge in the zone of origin is
probably not connected to the edge in the zone of destination 4. The
router does not route pedestrians. Their exact route will be determined
only during simulation.

The scenario is now ready to be simulated by selecting

Simulation>Sumo>export routes and simulate...

4 there can be several reasons for this, usually the destination edge is in access-
restricted areas, or there are one-way roads, impeding access. Actually this should
not happen too often, as the disaggregation algorithm should verify accessibility

14 SUMOPy User manual

Proceed as described in Sec. 3.1.5.

A test file for OD demand is located in

SUMOHOME/tools/contributed/sumopy/testscenario/demo_dem_od_bikes.csv

3.4.2 Turn flows

Trip generation with turnflows allows to model traffic flows in a pre-
cise way, for simple, possibly loop-free networks with few internal traffic
generation. The general idea is to generate trips and routes for individ-
ual vehicles based on road traffic counts. These traffic counts can be
performed at junctions. Ideally, the traffic counts should be performed
simultaneously at all relevant junctions. However, some edge flows can
be derived from other edge flows considering flow preservation lows at
nodes.

Basically two types of flows are needed in order to reconstruct the routes
in a predefined study area:

• The generating flows fa on all edges a that enter the study area. 5

• The turn flows fa1,a2
for all flows between links a1 and a2 at nodes

with more than one exiting edge.

The choice of traffic flows that need to be counted is illustrated with the
example network in Fig. 10. Neglecting all traffic generated within the

Figure 10: Network example to demonstrate the determination of gener-
atin flows and turnflows.

study area, the following flows need to be counted:

• The generating flows f3, f12 are entering the network.

• The turn flows f8,9, f8,2 at node 6 and f12,4, f12,7 at node 3. All
other nodes have only one exiting edge.

5 In addition, traffic flows can also be generated on edges within the study area, but
in practice it is difficult to measure those flows because one would need to spot and
count only departing vehicles along the roads of the study area. However, for some
particular edges with many departing vehicles this may be necessary to do.

SUMOPy User manual 15

Once the necessary flows are counted for all considered transport modes
and time intervals, the trips and routes of the vehicles can be generated
by a special router. Below is explained how this process can be realized
with SUMOPy.

Import flows and turnflows from a CSV file by selecting the menu itemDefining generating flows
and turn-flows:

Demand>Turnflows>Import turnflows

The import turnflows dialog will pop up, as shown in Fig. 11. This

Figure 11: The import turnflows dialog.

dialog is similar to the OD-flow wizard explained in Sec. 3.4.1 and allows
to import traffic counts, and associate them with a time interval and a
transport mode.

The Turnflow File to be imported contains the traffic counts of both
flow types, generating flows and turnflows. The turnflow file has the
following format:

<ID1>, <count 1>, <ID11>, <count 11>, <ID12>, <count 12>, ...

<ID2>, <count 2>, <ID21>, <count 21>, <ID22>, <count 22>, ...

...

This notation has the following meaning:

<IDa> means the SUMO edge ID of edge a, where edge a is the edge
entering a node.

<IDab> means the SUMO edge ID of edge ab, where edge ab is the edge
outgoing from the node which edge a enters.

<count a> means the number of vehicles leaving edge a, in case the edge
is generating flows, otherwise this count is zero.

<count ab> means the number of vehicles from edge a turning into edge b.

All counts in this file refer to the mode and time interval specified in the
dialog box.

The turnflow file for the example network in Fig. 10, could look like this:

3, 1000

12, 800, 4, 200, 7, 600

8, 0, 9, 800, 2, 400

16 SUMOPy User manual

In this case, the generating flows f3 = 1000, f12 = 800 and the turn flows
f8,9 = 800, f8,2 = 400 and f12,4 = 200, f12,7 = 500 for a specific mode
and time interval.

Hint: In order to quickly compile the turnflow file, open a text editor
and the SUMOPy window next to each other. In the SUMOPy network
editor, un-select lanes, connections and crossings by clicking on the but-
ton next to the zoom buttons below the network canvas. Then select the
info tool (if not already active) and click on the edges you consider for
the turnflow file. The respective edge will be highlighted and you can
see all edge attributes in the object browser, as shown in Fig. 12. From

Figure 12: Object browser showing an edge. You can copy the SUMO
Edge ID from the respective field.

there, copy the SOMO edge ID and paste it into your turnflow text file.

Optionally define destination zones. Within the turnflow demand modelDefining destination zones:
destination zones define edges where vehicle routes end. This may be
necessary in order to prevent vehicles of making a loop on the network
outside the study area and reentering the study area. Destination zones
for turnflows are created in the same way as Traffic assignment Zones,
see Fig. 8.

Generate directly route from flows and turn-flows information by selectingRouting flows and
turn-flows: menu item

Demand>Turnflows>Turnflows to routes

This process is using SUMO’s JTROUTER and will generate both trips
and routes. The scenario is now ready to be simulated by selecting

Simulation>Sumo>export routes and simulate...

Proceed as described in Sec. 3.1.5.

A test file for turnflows is located in

SUMOHOME/tools/contributed/sumopy/testscenario/demo_dem_tf_car

SUMOPy User manual 17

3.5 Simulation processes

This section addresses some particular simulation issues.

3.5.1 Simulating Sublanes

With sublanes is new feature of SUMO since 2015. Sublanes renders
traffic flows on roads more realistic. With sublanes, several vehicles can
share side-by-side the same lane given there is enough room. For example
a car can pass a bicycle on the same lane if the total lane width is larger
than the bike width plus car width.

For sublane simulation with SUMOPy, simply browse to

scenario.demand.vtypes

and set the lanechange model model to SL20156. Then run the simula-
tion with

Simulation>Sumo>export routes and simulate...

Note that on the SUMO dialog, the sublane width is now positive (1m
by default). This value (which can be changed) determines how many
sublanes can stay within one lane. For example a 3m wide lane can have
3 sublane of 1m but only 2 sublane of width 1.5m.

The lanechange behavior with sublanes can be tweaked for each vehicle
type with the sublane parameters in scenario.demand.vtypes.

References

[Krajzewicz (2003)] D. Krajzewicz, M. Hartinger, G. Hertkorn, P. Mieth,
C. Rössel, P. Wagner, J. Ringel. The ”Simulation of Urban MObil-
ity” package: An open source traffic simulation. In 2003 European
Simulation and Modeling Conference (2003)

6 SUMOPy applies the same lanechange model to all vehicle types

18 SUMOPy User manual

	Introduction
	Installation
	Windows
	Linux

	The graphical user interface
	Getting started!
	Running SUMOPy
	Opening/creating a scenario
	Browsing the scenario
	Navigating the Network
	Running a simulation
	Viewing results

	Launching SUMOPy
	Loading a binary scenario at start
	Importing SUMO XML files at start

	Importing and Editing networks
	Importing nets and facilities
	Editing with SUMO's Netedit
	Editing with SUMO's Netedit on background maps
	Editing with SUMOPY Neteditor

	Demand modeling
	Zone to zone demand flows
	Turn flows

	Simulation processes
	Simulating Sublanes

