Real Time systems

Bill Crum
New Mexico Institute of Mining and Technology
New Mexico

April 20, 1996

Abstract

This paper will discuss how a Real Time Operating
System can be constructed and how it can be used
in an research and development environment. The
paper will begin with a description of a Real Time
System, implementation of this system on a Linux op-
erating system, design and analysis techniques, and
its importance in data acquisition and controls. The
paper will conclude with a description of a linux real-
time for an application in a research environment.

1 Real Time System

A real time system can be an operating system, an
application with a operating system, or an applica-
tion directly on a machine. The real-time systems are
those systems in which the correctness of the system
depends not only on the logical results of computa-
tions, but also on the time at which the results are
produced[1]. These timing constraints are attached
to processes (or tasks). In order to guarantee that
these constraints can be made, predictability of the
system is a requirement.

1.1 Timing constraints

Timing constraints are timing qualities that guar-
antee execution of a task within defined time limit.
These tasks are typically controlling another system
such as a robot, or controls in a power plant. In
these situations, information about its environment

must be consistent with the actual state of the en-
vironment. Inconsistent information could otherwise
result in catastrophic results. To guarantee correct-
ness of the information requires that the task must
complete before a specified deadline. Timing con-
straints can be either aperiodic or periodic. An ape-
riodic task has a deadline by which it must start of
finish, or it may have a constraint on both. A peri-
odic task is one that is required to start at specific
intervals.

1.2 Predictability of a Real Time Sys-
tem

Predictability in a real time system has two basic
requirements:

e High performance coupled with consistent exe-
cution times of real-time operating system func-
tions

e The provision of primitives with which applica-
tion programs can run both efficiently as well as
perform their operations in a timely and consis-
tent fashion, thereby able to guarantee the ap-
plications’ timing requirements[4].

By use of task scheduling algorithms that translate
complex timing constraints into simple resource uti-
lization constraints, predictability of a real-time sys-
tem can be verified[2]. For the scheduling of tasks,
we must define the types of tasks involved. Critical
tasks, or tasks that must be executed within defined
time limits, and non-critical tasks, or tasks that are

run only when critical tasks are not. There are two
types of critical tasks, hard real-time tasks, which
cannot miss an execution deadline, and soft real-time
tasks, which have execution deadlines also, but still
have some value if the deadline is missed.

We can say that an real-time operating system is
predictable if it can be proven that all hard and soft
tasks can be scheduled to meet their execution dead-
lines. In order to determine that a task can meet its
deadline, a worst case execution time must be deter-
mined. This can be done either by direct measure-
ments or by language timing tools[5]. Much research
has been done on the use of C as a real-time pro-
gramming language[6] [7] [5]. In an operating system
such as Linux where C is the programming language
of choice, use of measurement tools and careful pro-
gramming to prevent indeterminate loops. In situa-
tions where the tasks are statistically scheduled these
measurements can be determined with the above con-
straints. When the tasks dynamically scheduled,
such as interrupts, or of different priorities where
one task of higher priority can disable another task
of lower priority, then other techniques such as rate
monatomic scheduling algorithms[2] must be used.

2 A Linux real-time system

The linux operating system is being used for research
into real-time operating systems at the New Mexico
Institute of Mining Technology. Linux was selected
because it is an open system with the source code
available. Although Linux is large and slow, and has
the inability to preempt kernel mode processes, the
solution was to make Linux run as a task under a real-
time executive. In this way Linux operating system
will not need to be rewritten. The real-time executive
runs Linux as its lowest priority task, preempting it
when needed regardless of whether Linux is in kernel
or user mode.

The real-time executive catches all hardware inter-
rupts passes them to the linux kernel by updating
a soft interrupt table in memory. Now the Linux
kernel cannot disable the clock. When an inter-
rupt is caught by the executive real-time tasks are
scheduled and Linux runs using whatever time is not

used by the real-time system. Special lock-free data
structures[8] [9] [10] may be used to exchange data
with Linux processes.

Preliminary experiments on a Pentium 120 have
found that real time processes can run on a 50 mi-
crosecond period while Linux is heavily loaded with
network and disk transactions. An alternate test of a
real time task with a compute time of approximately
40 ms and a scheduled period of 55 ms was done
while Linux was running a disk copy program and
supporting a terminal display over a network. In this
test, Linux continued to operate, although with some
decreased response times[3].

3 Real Time Operating System
in a research Environment

On the New Mexico Institute of Technology campus
a research facility, Energetic Materials Research and
Testing Facility (EMRTC) is doing research on vari-
ous aspects of energetic materials. The research re-
quires the use of a program to collect data from re-
mote sites, and requires in some instances real-time
control of instrumentation. EMRTC is currently us-
ing iX86 cpus, windows operating systems, and Lab-
view software to provide the software requirements of
their real-time control and analysis of the tests.

One test is the development of liquid rocket boost-
ers. The use of Labview software on a windows op-
erating system lacks absolute guarantees on timing
and data acquisition. This is proven as windows will
return to a dos prompt during some tests. When
this happens control of the system is lost and data
collected that was not stored to secondary memory
is also lost. A system to guarantee the collection of
data and control of the system must be assured in
order to avoid catastrophic events.

Another test is the cook-offs. This is where mu-
nitions are heated at various speeds and monitored
to evaluate the effects of temperature changes to the
munitions. Although controls during these tests are
not required, valid data collection must be made.
Communications over networks are required for these
tests as they are done remotely. Reliable communi-

cations is needed in order to change data collection
parameters during various stages of the tests, such
as higher frequency of readings when temperatures
reach various stages.

Our proposal is to continue using their current
hardware, including the iX86 architecture, but re-
place the controlling software with an operating sys-
tem with real-time constraints. We propose the use
of real-time Linux described earlier, currently in de-
velopment. This would provide a real-time program-
ming environment as well as development of tools to
insure real-time constraints. RT Linux would pro-
vide for the strict timing requirements of the real-
time tasks in the research, while also providing all
the flexibility of a UNIX type open system environ-
ment for things such as soft-real-time tasks, concur-
rent displays, post-run analysis, and networking.

3.1 The hard real-time tasks

Hard real-time tasks as shown earlier are defined to
be any task that must be performed by a specified
time or data will be lost. In the case where controls
are required to be done in real time, catastrophic
results can occur when a hard real-time task misses
a deadline. For the rocket project, the hard real-
time tasks are startup, shutdown, control, and data
acquisition. We shall use the rocket development as
an illustration of how it can be implemented on RT
Linux.

4 Rocket Test Research

During a rocket test firing three tasks are required to
run concurrently throughout the test. Two of these
tasks have hard real-time requirements for the test.
The first task is responsible for the valid sequence of
events in controlling valves to fire the rocket. This
task is also responsible for correctly aborting the test
in real time. Another task is responsible for the valid
collection of data throughout the test in real time.
This is also a strict requirement during aborts, as
data must be archived for later evaluation of the test.
A third task is required to update various displays
during the test. These displays must be updated in

a timely manner.

Two of these tasks must be done at very specific
times. The hard real-time tasks in this system will be
highest priority tasks which is guaranteed to run at a
predetermined interval and will not be blocked. Both
of these tasks are very straight forward as to their
function, and measurement techniques described ear-
lier can be used to validate predictability.

4.1 Control

The control subtask is not fully defined yet. Even-
tually, startup, shutdown, throttling, guidance, and
error handling will be done by the rocket. Cur-
rently, control will be in the form of startup, shut-
down/abort and direct user input. We envision con-
trol to make use of a priority command queue emulat-
ing a state machine. According to the specifications
given for startup the following sequence of events are
expected to happen:

e At 31 seconds prior to ignition, the Liquid Oxy-
gen(LOX) is pressurized.

e At 21 seconds, the fuel is pressurized.

e At 14 seconds, the LOX is liquid oxygen lines
are cooled. This process last two seconds, and
consists of opening and closing the LOX chill
down valve.

e At 7 seconds, the ignitor gets activated. The
ignitor must reach a specified temperature before
the fuel will ignite.

e At zero seconds, the temperature of the ignitor
must be tested. After this test is completed, the
program must either escape to the shutdown se-
quence or go to the firing sequence. The firing
sequence consists of opening the liquid oxygen
valve immediately after the test of the ignitor.

e At .1 second after opening of LOX valve (critical
for accurate data) the fuel valve must be opened.
The opening of these valves must be very exact
in respect to each other.

During rest of test, if a shutdown/abort sequence is
required, the following steps must be taken:

e Liquid oxygen valve is first closed.
e A tenth of a second later, the fuel valve is closed.

e Four seconds later the remaining liquid oxygen
is vented out of the system.

o Eight seconds later the fuel is vented out of the
system.

e Twelve seconds later, the purge valve is opened
and the remaining fuel and oxygen is vented out
of the system. The closing of the purge valve is
not specified and thus we will assume the process
is done by human control in the system currently.

This shutdown sequence is expected to be able to
run at any time from any point in the test. In the
future, part of control will be the handling of errors.
Such errors would include the temperature getting
too high, a burn through of the rocket, etc. At this
point in the project, unusual data brings up an er-
ror window giving the operator the option to either
shutdown the test or continue. Most control at this
point is done by an operator and timings can be done
is soft real-time due to human reaction time.

4.2 Data Acquisition

The second subtask that most occur is data acqui-
sition. Currently data is being collected on twenty
channels. The hardware can handle at most 512
channels. However to be practical, the number of
channels in our model is limited to 64. According to
the specifications, each channel will be read at a rate
of KHZ. The rate at which the channels are read are
programmed into the board. Each channel is twelve
bits. However, because the PC stores data in mem-
ory in 8 bit units, the twelve bit pieces of data are
treated as sixteen bits. This gives a data rate of 128K
bytes/sec. The board provides a 4k equivalent FIFO.
Thus, the buffer must be emptied at a minimum of
32 times a second before any data will be lost. By
reading at a quicker rate, error checking can be done
to see if the buffer is getting read quick enough by
looking at the amount of space left on the buffer.
If the buffer is full then the computer has not kept

up. This can be used for verification of predictability
during development.

We estimate the following timing necessities for the
DAQ portion of the process based on Intel timing
specifications:

e read from controller-FIFO assuming 16-bit data
paths

e 17 clock cycles * 4k/2 = 34,816 clock cycles

e write to in-memory-FIFO assuming 16-bit data
paths

e 1 clock cycle * 4k/2 = 2,048 clock cycles
e Data collection = 36,864 clock cycles
e 486dx 33Mhz = .00112 seconds to collect data

e Maximum 64 channels @ 1khz sampling = 64,000
samples per second

e 2k sample FIFO needs to be read once every 30
mSec (.03125 S).

e Data collection takes .03575 seconds to collect
every second.

e (32 *.00112)

Calculations for the in memory fifo based on our cal-
culations show the following:

64 channels at khz = 128,000 bytes for 1 sec (2bytes
* khz * 64 points).

This means it is not unreasonable to save data to
memory and let a soft real-time process deal with
moving it to disk. A 200 second test will take
25,600,000 bytes of memory for 64 channels at 1khz
sampling.

Data Acquisition is done from the very beginning
of the startup sequence to the end of the shutdown
sequence. This process must be ran on a periodic
basis no matter what other processes are being ran.

4.3 Soft Real-Time Tasks

The soft real time processes initially consists of data
display and writing the data to disk. The display is
used to carry out user control functions and give the

operators an idea what is happening with the rocket
test.

The display consists of a window showing the data.
This window is currently being updated at 10Hz.
However, the display is not critical because a per-
son cannot react very fast. Thus, the display is a soft
real-time process of low priority.

Currently the data is being stored to ram-disk.
But, the data needs to be put on a hard drive eventu-
ally. To help speed up this process, instead of letting
the computer be idle, use this time to write to disk.
By writing to disk, less ram would be necessary, and
the tests could last longer. However, as of yet writ-
ing all the data to the hard drive takes too long. By
treating the ram disk as a FIFO, the data then could
be sent to the hard drive when time permits. Once
the test is over, the remaining data could be trans-
ferred to the hard drive. From the hard drive, the
data could be handled in what ever way considered
necessary.

5 Cook-offs

In the cook-off experiments, the hard real-time tasks
consist of the valid collection of data from the site.
This includes the movement of the data to secondary
memory. Another would be the proper communica-
tion over a network to a remote site.

This can be done with a data collection task like
the one described in the rocket test that is scheduled
at highest priority to read in the data. This task
can then store the data at the appropriate frequency
defined by a memory location that is updated by the
communication task.

The communication task will be hard real-time to
accommodate update changes in data collection fre-
quency and move data into network queues to be
transmitted to a remote site by a soft real-time task.

This soft real-time communication task will use
whatever CPU time is left to store data to hard disk,
and move data over the network.

6 Conclusion

The overall premise is to use a Linux real time sys-
tem with two hard real-time task. Our base, worst
case platform, a 486dx 33 Mhz with 32Mbyte of ram,
1gig hard drive, AT-MIO-16E-2 DAQ card and some
Linux supported SVGA terminal. With this hard-
ware we have shown that data collection will be only
4 percent of the CPU processing time.

The Control/DAQ tasks are the only ones that is
run in hard real-time. It is not dependent on any
other tasks running so they cannot be locked out. All
the soft real-time tasks can be run as lower priority,
regular Linux tasks. Display routine will only read
from DAQ data and cannot lock out above task from
running.

We can verify this test by simulation of input data
(varying voltages on the inputs), controlling relays
to LED lamps, with feedback into inputs. A switch
can simulate an abort condition during test. A logic
analyzer can verify valve changes are made at cor-
rect intervals, and then this project can be verified
by installing linux system in parallel with system in
place. Controls can be routed to relays (LED’s) not
on rocket, but input Data can be collected in parallel
with other system without interference to rocket.

References

[1] John A. Stankovic, Krithi Ramamritham, What
is predictability for Real-Time Systems?, J. Real-
Time Systems, Vol. 2, December 1990

[2] Lui Sha, Ragunathan Rajkumar, John
Lehoczky, Drithi Ramamritham, Mode Change
Protocols for Priority-Driven Preemptive
Scheduling,J. Real-Time Systems, Vol 1, 1989

[3] Victor Yodaiken, Cheap Operating Systems Re-
search and Teaching with Linux, 1995

[4] Kaushik Ghosh, Bodhisattwa Mukherjee,
Karsten Schwan, A Survey of Real-Time Op-
erating Systems - Draft, Georgia Institute of
Technology, GIT-CC-93/18, 1994

[5]

[6]

[7]

(8]

[9]

[10]

Chang Y. Park, Alan C. Shaw, Ezperiments with
a Program Timing Tool Based on Source-Level
Timing Schema, IEEE Computer, Vol. 24, No.
5, May 1991

N. Gehani, K. Ramamritham, Real-Time Con-
current C: A Language for Programming Dy-
namic Real-Time Systems, J. Real-Time Sys-
tems, Vol. 3, No. 4, December 1991

Y. Ishikawa, H. Tokuda, and C. W. Mer-
cer, Object-Oriented Real-Time Language De-
sign: Constructs for Timing Constraints,
ECOOP/OOPSLA 90, Oct 1990

M. P. Herlihy, Wait-free synchronization,
ACM Transactions on Programming Languages,
13:124-149, 1991

H. Massalin, C. Pu, Threads and input/output in
the synthesis kernel, Proc. Twelfth ACM Symp.
on Operating Sys., Operating Systems Review,
Page 191, December 1989

H. Massalin, C. Pu, A lock-free multiproces-
sor OS kernel, Technical Report CUCS-005-91,
Columbia University, 1991

