‘LM Linux-PCI Support

Programming PCI-Devices under Linux

by Claus Schroeter
(clausi @hemi e. fu-berlin.de)

Abstract

This document is intended to be a short tutorial about PCI Programming under
Linux. It describes the PCI basics and its implementation under Linux.

Introduction to PCI

The Peripheral Component Interconnect -
Bus (PCI) today is present in a wide variety
of microcomputers ranging from Intel-based
PC architectures to DEC-Alpha-based work-
stations. The main difference between the
old fashioned ISA-Bus and PCI is the com-
plete separation of the Bus-subsystem from
the Memory Subsystem. The CPU communi-
PCI-Bridge cates with the PCI subsystem using a spe-
cial chipset known as PCI-Bridge. This is
an intelligent controller, that handles all nec-
> essary tasks to transfer data from or to the
CPU or the Memory Subsystem. On PCI the
adresses and data are transferred as seper-
PCI PCI PCI ate chunks over the bus because all bus-
#0 #1 #n lines can be used either as adress- or as
""""""" data-lines. In special cases only one start ad-
dress is transferred followed by a whole data
block. To determine the address for each
Figure 1: The Architecture of the PCI single da‘ta—word the‘: PCI-Bridge and the PCI-
Adapter increment internal counters, so the
address is calculated while the data words
are transmitted. This so called "burst” cy-
cle speeds up the transfer significantly (up to 266Mbyte/sec for a 64bit data-transfer).
Thanks to the intelligent handling of this tasks the programmer need not to take care
about all this stuff.
A schematic view of the PCI subsystem is depicted in Figure 1.
The PCI design forces Hardware designers to use a standardized interface for PCI-Board
access and control. Each bus device has its own 265byte space of Memory for config-
uration purposes that can be accessed through the CONFIG.ADDRESS and the CON-
FIG_DATA registers. On system startup the BIOS uses the device configuration block to
set the different board properties as IRQ line and base address for example. No jumpers
need to be placed in the right places, so IRQ or address conflicts are no longer a problem
with PCI. This feature is commonly known as Plug&Play functionality.

CPU Memory

Subsystem

The Linux Lab Project whitepapers 11/1996 (htt p: //wwv. | | p. fu-berlin. de/)

INUX

Linux-PCI Support

First Contact with the PCI subsystem

To get an impression how linux sees the PC
bus configuration from the kernel with cat /
(hopefully) see:

I bus in your computer try getting the PCI
proc/ pci . If everything works OK you will

PCl devices found:
Bus 0, device 12,
SCSI storage controller:
Medi um devsel . Fast back-to-back capabl
Mast er Capable. Latency=32. Mn Gnt=8.
I/ O at 0xd800.

function O:

Adapt ec Al C-7881U (rev 0).

e. |RQ 11.
Max Lat =8.

Non- prefetchabl e 32 bit nenory at Oxf7fff000.

0:
S3 I nc.

Bus 0, device 11, function
VGA conpati bl e controller:
Medi um devsel . | RQ 10.

Vi si on

968 (rev 0).

Non- prefetchabl e 32 bit nenory at 0xf2000000.

Bus 0, device 10,
Et hernet controller:

function O:
3Com 3C590 10bT (rev

0).

Lat ency=248. Mn Gnt=3. Max Lat =8.

Medi um devsel . | RQ 12. Master Capabl e.
I /0O at 0xe000.
Bus 0, device 7, function 2:
Unknown cl ass: Intel Unknown device (rev 0).

Vendor i d=8086. Device id=7020.

Medi um devsel . Fast back-to-back capable. |1RQ 9. Master Capable. Latency=32.
I /0O at 0xe400.
Bus 0, device 7, function 1:
IDE interface: Intel 82371SB Triton Il PIIX (rev 0).
Medi um devsel . Fast back-to-back capable. Master Capable. Latency=32.
I/0O at 0xe800.
Bus 0, device 7, function O:
| SA bridge: Intel 82371SB Triton Il PIIX (rev 0).
Medi um devsel . Fast back-to-back capable. Master Capable. No bursts.
Bus 0, device 0, function O:
Host bridge: Intel 82439HX Triton Il (rev 1).
Medi um devsel . Master Capable. Latency=32.

All devices that are known to Linux you
will see at / proc/ pci. Each device con-
figuration block is assigned to a device and
a function ID. To identify a certain device
while driver writing you will at least have
to know the vendor- and the device-id that
is statically stored in the device configura-
tion block (as discussed later on). Driver
writers normally need to know only the
base address of the device and the IRQ
line that the device is using. As shown
above all device id’s or device class fields
that cannot be resolved within the linux
PCI-subsystem are printed as plain values,
so driver writers have a simple chance to
identify their card of choice without writ-

ing a special tool to do this task.
The Device Configuration Block

As mentioned above each PCI-device
has its own assigned 256bytes PCI-
configuration memory block that is acces-
sible through PCI-BIOS routines. The first
64bytes of this reserved space are used
to identify and configure the basic proper-
ties for the PCI-Device. On system startup
some of the parameters in the configura-
tion block are replaced from the Plug&Play
BIOS that configures the 1/O or Mem-
ory base addresses and IRQ lines for the
PCI-board to operate correctly with other
cards in the PCI or ISA slots. The config-
uration blocks of the PCI subsystem can
be accessed through the CONFI G ADDRESS

The Linux Lab Project whitepapers 11/1996 (htt p: //wwv. | | p. fu-berlin. de/)

INUX

Linux-PCI Support

(O0xcf8) and the CONFI GDATA (0Oxcfc)
registers

The Linux PCI-bios support is imple-
mented on top of the Bios32 routines and
defines some useful routines to handle the
PCI configuration block and configure the
PCI subsystem. Normally no changes in
the configuration block are necessary be-
cause the BIOS sets up all parameters to
operate correctly. Because Linux is in-
tended to run on many hardware architec-
tures it is recommended to use this func-
tions instead of accessing the configura-
tion registers directly.

Before a PCI-board can be used, the driver
has to determine the board specific param-
eters from the configuration block and set
all desired options to operate the board
correctly. Normally this task is done by a
autodetect routine in the kernel driver that
performs the following tasks:

¢ Check if the PCI-Bios Support is en-

abled in the kernel and the BIOS is
present with pci bi os_present ()

e Get the configuration block
for the desired device wusing
pci bi os_find_devi ce()

e Get the desired parameters

from the configuration block us-

ing pci bi os_read_confi g_byte(),
pci bi os_read_confi g-wor d() or
pci bi os_read_confi g-dword() to
get 8,16 or 32bit parameter values.

e Set the desired parameters in
the configuration block using
pci bi os.witeconfigbyte(),
pci bi os.wite_config-word() or

pci bi os.write_config.dword()

The following example from the ne2000
clone driver shows how this task is per-
formed in a real kernel network driver.

#i f defined(CONFI G_PCl)
if (pcibios_present()) {
int pci_index;

for (pci_index = 0; pci_index < 8; pci_index++) {

unsi gned char pci _bus,
unsi gned int pci_ioaddr;

/* Currently only Realtek are naki ng PCI ne2k cl ones.

pci _devi ce_fn;

*/

if (pcibios_find_device (PCl_VENDOR | D REALTEK,
PCI _DEVI CE_| D_REALTEK_8029, pci _i ndex,

&pci _bus,

br eak; /* OK,

pci bi os_read_config_byte(pci_bus,

&pci _device_fn) 1= 0)
now try to probe for std.

I SA card */

pci _devi ce_fn,

PCl _I NTERRUPT_LI NE, &pci _irq_line);

pci bi os_read_confi g_dword(pci _bus,

pci _devi ce_fn,

PCl _BASE_ADDRESS 0, &pci _i oaddr);

/* Strip the I/0O address out of the returned val ue */
pci _i oaddr &= PCl _BASE_ADDRESS | O MASK;

/* Avoid al ready found cards from previous ne_probe() calls */

if (check_region(pci_ioaddr,

NE_| O_EXTENT))

continue;
printk("ne.c: PCl BICS reports ne2000 clone at i/o %#x, irq %.\n",
pci _ioaddr, pci_irqg_line);
if (ne_probel(dev, pci_ioaddr) !=0) { /* Shoul dn’t happen. */

print k(KERN_ERR "ne. c:
br eak;

Probe of PCl card at %ix failed.\n",
/* HHmm try to probe for |SA card...

pci _i oaddr);
*/

The Linux Lab Project whitepapers 11/1996 (htt p: //wwv. | | p. fu-berlin. de/)

INUX

Linux-PCI Support

pci _irg_line = 0;
return O;

}

#endi}f /* defined(CONFI G PCl) */

This card uses one IR@Q and one base ad-
dress in I/O space to communicate with
the driver. The lower bits of the returned
base address have different meanings de-
pending if the address is an I/O address
or a memory mapped area is returned. On
an I/O address bit O is always 1 and bit
2 is always zero. On a memory mapped
address type the lower 4 bits have the fol-
lowing meanings:

| Bit | Description |
0 always zero
1-2 | adress type:
OO=arbitrary 32 bit,
Ol=below 1M,
10=arbitrary 64-bit
3 prefetchable

To keep things simple Linux defines two
macros PCl _BASE_ADDRESS_VEMMASK and
PCl _BASE_ADDRESS_| OMASK that can be
used to strip the type bits from the re-
turned address. The prefetch bit is set
if the PCI-bridge is allowed to read the
memory block in a prefetch buffer with-
out problems, this is normally the case if
the memory block is a memory area on the
PCI-device, if the memory area maps hard-
ware registers into memory the prefetch bit
should not be set.

There are a whole bunch of other setable
and readable parameters in the configura-
tion block, that can be accessed through
the linux pci bi 0s_XXX() routines. Linux
defines some useful Mnemonics to gain
simple access to the configuration block
parameter values that are defined in
i ncl ude/ i nux/pci.h. The Tables 1,2
and 3 will describe the Macros in detail.

Reading and writing to a device

Reading and writing to a PCI device is as
easy as reading and writing to an ISA board
or reading and writing to a memory area
depending on the base address type of the

device.

If the device uses an I/O type base ad-
dress, normal I/O can be performed using
the usual i nb()/outb(), inw)/outw)
or the 32bit i nl ()/outl () routines. To
get an impression how other linux drivers
use this access modes please take a look
through the network or scsi drivers.

If the device uses a memory mapped
area it is recommended to wuse the
readb()/witeb(), readw()/witew()
or the longword readl ()/witel () rou-
tines to read or write to a single location
(see include/asm/io.h). nentpy() can also
be used to transfer a whole memory block
as this is the case on framegrabber de-
vices or whatever transfers large blocks
of data. In this case the PCI-Bridge han-
dles automatically which transfer mode is
optimal for the bus system. For this pur-
pose the PCI-bridge has internal prefetch
queues (one for the Bus side, one for the
CPU subsystem side) that are used to store
transfer data before a send or receive is ini-
tiated. If the PREF (prefetchable) bit is set
in the base address bit 3, the memory area
is non prefetchable, in other words data
and addressed are dumped directly to the
bus-subsystem. This mode is intended for
devices that maps special registers in a
memory area so the CPU can read or write
this registers without a PCI-Bridge related
delay.

Busmastering

With busmaster transfer mode a controller
can transfer its data to the memory with-
out any CPU action by driving the ap-
propriate bus-lines on a hardware basis.
This is similar to the DMA transfer on
a ISA bus with the only difference that
the busmaster-controller sits on the PCI-
adapter card and not on the motherboard.

If a device is busmaster capable the
PCl _COVWAND_MASTER bit should have

The Linux Lab Project whitepapers 11/1996 (htt p: //wwv. | | p. fu-berlin. de/)

‘LM Linux-PCI Support

been set in the PCI _COMWAND regis- PCl _STATUS register is set, on the receiving
ter. If a busmaster transfer has been end an abort can be notified by looking on
aborted by the busmaster device, the the PCl _STATUS_REC. TARGET_ABORT bit.
PCl _STATUS_REC MASTER ABCORT bit in the

| Macro | Width | Description |

PCl _VENDOR.I D 16bit | Unique Vendor ID (see pci . h) This ID is defined by
the PCI consortium

PCl _DEVI CELI D 16bit | Unique Device ID (see pci . h) this is defined by the
vendor unique for each device

PCl _COMVAND 16bit | This field is used for device specific configuration
commands (see table 2)

PCl _STATUS 16bit | This is used for board specific status results (see
table 3)

PCl _CLASS_REVI SI ON 32bit | The high 24bits are used to determine the device’s
class type the low 8bit for revision code

PClI _.CLASS_DEVI CE The device’s class code (see pci.h)

PCl _BI ST 8bit If PCl _Bl ST_CAPABLE is set the device can perform
a Build-in self test that can be started by writing
PCl Bl ST_START to this field. The result mask is
PCl _BI ST_CODE_MASK

PCl _HEADER_ TYPE 8bit Specifies the Layout type for the following 48 bytes
in PCI configuration (currently only 0x0)

PCl _LATENCY_TI MER 8bit This is the maximal time a PCI cycle may consume
(time=latency+8cycles)

PCl _CACHE_LI NE_SI ZE 8bit Specifies the Cache-Line Size in units of 32bytes,

PCl _BASE_ADDRESS [0- 5] || 32bit | This are up to 6 memory locations the device can
map its memory area(s) to. The lower 4 bits are
used to specify the type and the access mode of the
memory area.

PCl _ROM.ADDRESS 32bit | bit 11-31 is the start address of the device’s ROM
area. (write bit 1 to enable ROM)

PCl _M NLGNT 8bit minimal latency time (vendor specific)

PCl _M NLLAT 8bit maximal latency time (vendor specific)

PCl _| NTERRUPT_PI N 8bit This entry denotes the IRQ pin that should be used
1=INTA 2=INTB O=disabled

PCl _| NTERRUPT_LI NE 8bit This entry specifies the interrupt line on which the
device IRQ is mapped (usually IRQ 0-15)

Table 1: The Linux PCI-Configuration macros

The Linux Lab Project whitepapers 11/1996 (htt p: //wwv. | | p. fu-berlin. de/)

‘LM Linux-PCI Support

| Macro | Description
PCl _COMVANDLI O Enable I/0 area
PCl _COVMAND_VEMORY Enable Memory area
PCl _COVWAND_VASTER Enable Busmastering
PClI _COVMAND_SPECI AL Enable response to special cycles

PCl _COMVANDLI NVALI DATE | Use memory write and invalidate
PCl _COVMAND_VGA_PALETTE | Enable video palette access

PCl _COVMAND_PARI TY Enable parity checking
PCl _COVNANDWAI T Enable address/data stepping
PCl _COMWAND_SERR Enable SERR

PCl _COMVAND_FAST_BACK Enable back-to-back writes

Table 2: The Linux PCI-Command Bit-Settings

Macro | Description

PCl _STATUS_66MZ Support 66 Mhz PCI 2.1 bus
PCl _STATUS_UDF Support User Definable Features
PCl _STATUS_FAST_BACK Accept fast-back to back

PCl _STATUS_PARI TY Detected parity error

PCl _STATUS_DEVSEL [MASK| FAST| MEDI UM SLOW | DEVSEL timing

PCl _STATUS_SI G.TARGET_ABORT Set on target abort

PCl _STATUS_REC_TARGET_ABORT Master ack of

PCl _STATUS_REC_MASTER ABORT Set on master abort

PCl _STATUS_SI G.SYSTEMERRCOR Set when we drive SERR

PCl _STATUS_DETECTED_PARI TY Set on parity error

Table 3: The Linux PCI-Status Bit-Settings

The Linux Lab Project whitepapers 11/1996 (htt p: //wwv. | | p. fu-berlin. de/)

