Linux-GPIB

Linux-GPIB,

an IEEE488 development environment
for Linux

1996 by Claus Schroeter
(cl ausi @hemi e. fu-berlin.de)

Abstract

This Paper describes the features of Linux-GPIB, a powerful and flexible develop-
ment environment for IEEE488 applications.

What is Linux-GPIB ?

The wide spreaded IEEE488 bus, intro-
duced 1965 by Hewlett Packard as HP-IB,
today can be found in nearly all industrial
and scientific laboratories where a flexi-
ble and scaleable instrumentation system
is needed. In comparison to usual mea-
surement hardware, as plug-in A/D D/A
boards etc, IEEE488 devices are stand-
alone ’intelligent’ devices, so no special
knowledge about the internal architecture
of measurement devices is necessary. The
second important advantage is that a min-
imal set of functions that is common to all
devices can be used for programming, to-
day this concept is called API.

Nearly all companies that are into Mea-
surement and Control business provide
IEEE488 hardware together with all the
colorful tools that enables programmers
to implement just as colorful applications.
Until now Linux-Users had to do without
IEEE488 because there was no support by
this companies for Linux. The same is for
other hardware support of course.

One consequence of this is that Linux for
long time eked out an existence as 'Hacker
Operating System’ that could be used at
best as X-terminal or for educational pur-
poses only. Since Linux has been known
as open and very stable development plat-

form in educational environments, it comes
more and more in focus of 'professional’
users in industry and commercial develop-
ment now. One essential is the avaliability
of appropriate drivers and toolsets that en-
ables developers to implement their desired
software.

The Linux-GPIB development environment
fills one gap in this field providing both,
hardware support and a basic set of de-
velopment tools that can be used for in-
stantaneous application programming and
testing.

The basic Components of Linux-GPIB
Linux-GPIB consists of three basic parts:

e The linux Kkernel driver module, that
is dynamically loadable and config-
urable at runtime.

e The user-level library that can be
used for programming IEEE488 ap-
plications in C or whatever. The li-
brary is call-compatible to the popu-
lar N1488'™" library, so porting appli-
cations from other operating systems
should be easy.

e The application suite consists of: ibsh
a tcl-interpreter extension that con-
tains a basic function set for gpib pro-
gramming and a lot of helpful graphi-
cal widgets as circular dials, plots me-

[N

Linux-GPIB

ters and so on. With ibsh powerful
applications with a graphical user in-
terface can be written within minutes.

All this componets comes with full source
code (as usual under Linux) so this envi-

ronment provides a more open architecture
than usual IEEE488 packages. The ar-
chitecture of the driver is easily extensible
to other IEEE488 boards so new hardware
support can be quickly added.

The driver module, the kernel and the
Hardware

The linux-GPIB driver is implemented as
loadable driver module that can be loaded
into the kernel at runtime without reboot-
ing linux. The basic configuration options
as base-address DMA-channel and IRQ@-
level can be specified at loading time so a
recompilation of the module is only neces-
sary if the kernel changes.

The driver supports a wide variety of pop-
ular IEEE488 hardware that is availiable
on the market, top of all the very power-
ful National Instruments chipsets followed
by the standard nec7210 based architec-
tures. The hardware architecture depen-
dent parts of the driver is isolated as much
as possible from the rest of the driver to
make porting the code to new IEEE488
hardware as easy as possible.

An set of intrinsic debugging functions en-
ables users to trace any action the driver

does inside the kernel's gear, so tracing
segmentation faults or other errors is very
easy. A debug level switch can be set either
at module-loading time or just while appli-
cations are running. The formatted debug-
ging output written to the syslog contains
all information that is necessary to exactly
locate the point where the error occurs.
Different levels provide different granulari-
ties for function tracing so that debugging
can be refined step by step.

In comparison to other IEEE488 drivers the
Linux-GPIB drivers provides a simple mul-
tiprocessing support that enables different
processes to share the bus at the same
time.

The driver provides also a VFS interface for
sending and receiving data via normal file
descriptors. This interface is planned to be
extended to a powerful HP-call-style uni-
fied language interface (ULI) that enables
users to access the bus from normal appli-
cations (as matlab, basic etc.).

The user-library and the rGPIB system

The GPIB- user-level library provides an
easy-to-use interface to usual program-
ming languages as C or FORTRAN. The call
syntax is similar to the very popular Na-
tional Instruments DOS-library to reduce
the psychological barrier for DOS-Users
porting their applications to Linux.

The library reads a configuration file at
startup that sets up the driver- and the
library characteristics. The communica-
tion to single devices is implemented us-
ing virtual device descriptors so changing a

device’s characteristic properties as GPIB-
address or EOS-Handling modes can be
done from the library configuration.

The remote GPIB (rGPIB) system can be
used to access the bus from other hosts
in the network without significant changes
to the application. The GPIB-Library con-
tains both the client and the server stubs
so both client and server applications can
be implemented using the same library.
Fig. 1 shows how the rGPIB system is im-
plemented. As soon the rGPIB-server is
started on the machine where the IEEE488
bus is located, remote access is granted for
the hosts or domains specified in the con-
figuration. Since the architecture of the

[N

Linux-GPIB

driver allows limited sharing of the bus,
more than one host can access the bus.
For the applications the only change is that

the virtual file descriptor contains the tar-
get hostname.

The application suite

John Ousterhout’s Tcl programming lan-
guage together with the Tk extension pro-
vides a powerful tool that can be used to
implement very user-friendly applications
within the minute-to-hour range. It can be
easily extended with own C-Code to import
own functions to Tcl.

i bsh that comes with the linux-GPIB pack-
age is an extended Tcl interpreter that con-
tains Tk, a basic set of linux-GPIB func-
tions and some very useful visualization ex-
tensions as plots, meters, bargraphs and
so on. With i bsh it is possible to write
own Tcl/Tk measurement and control ap-
plications completely in Tcl that have a
graphical user interface without fiddling
with all the X11 or Motif stuff. A wide va-
riety of availiable Tcl/Tk extensions, from
database management to socket program-

ming, is now availiable directly to measure-
ment and control applications without any
costs and limitation to the phantasy of ap-
plication programmers.

Together with i bsh a library configuration
and test utility i bconf that comes with the
package that can be used for easy point-
and-click configuration of the library char-
acteristics and device and bus testing pur-
poses (See Fig. 2). ibconf is only a raw
demonstration what is possible with i bsh.
The testing facility of i bconf is able to test
device functions or low-level bus control
functions just by pressing some buttons
and enter some commands, so beginners
are enabled to get familiar with their de-
vices without writing test programs in C or
whatever.

In the near future visual programming
tools will be also availiable for Tcl (e.g.
SpecTcl) that enables programming GUI via
drag-and-drop.

Additional Tools and Support

Since Linux-GPIB has so many different
configuration options there are a lot pos-
sible sources for mistakes. To provide a
quick and easy installation process, the
configuration of the source code and its
adaption to the current kernel version will
be done by a menu-driven setup utility that
eases the choice of the possible options.

i bchk is a check utility that checks the for
different "frequently done mistakes’ and as-
sists with helpful error messages if some-
thing is going wrong.

Additionally documentation material like a
user-manual, a quick reference guide and
various manual pages come with the pack-
age to help understanding the linux-GPIB
package.

Support is provided via the linux-GPIB
mailing list or the linux-lab-project!.

1For further information see ht t p: / / www. f u- berl i n. de/ ~ cl ausi

3

[N

Linux-GPIB
s N\
Application Program
- N\
Linux-GPIB Library
rGPIB Stubs
N N A J
Network

v N N

-
Host 2 rGPIB
Server-Stubs
N Y
rGPIB-
- N Server
Linux-GPIB Library
Device Driver interface
N Y Y
) r N
Linux GPIB Device Driver
Driver r S
Bus Control
N\ ‘ 2
GPIB R
4 N\ oo
Ny
\ / - A
" o ovooomo] °® FONF N oo
\) oo /Lo, N Y

Figure 1: The rGPIB System

%ﬂm Linux-GPIB

| gpib0 Device Hame |

. R ¥ [o A Primary GPIB Address

Fie Board
ll IU_ il sSecondary GPIB Address
gpibo | Al
voltmeter
Prema600 [0« Default EOS Byte |
CIL

| EOS Handling Modes |

_| Terminate read on EQOS (REOS)
_I Send EOS with EOI (XEOS)
A _I Compare EOS 8-hit (BIN)

LINUX- GPIB Configuration and Bus-Test

| Bus Master Configuration

@ Device is Bus Master
Export Bus to Host(s):
|".fu—berlin.de:lncalhust:

P~ |=
Cancel | Apply |

Figure 2: The i bconf Utility

