Linux-EVM

Linux Embedded Virtual Machine

by Claus Schroeter
(cl ausi @hemi e. fu-berlin.de)

Abstract

This paper describes the suggestions for a multi purpose generic driver mecha-
nism. The Embedded Virtual Machine (EVM) is a virtual processor embedded in a
Linux-Driver to provide a flexible and realtime capable programming interface to the

hardware.

Why EVM ?

The design of a hardware driver is strongly
dependent on the specialized capabilities
and the complexity of the hardware. In
this matter designing UNIX-Drivers seems
to add more overhead to the driver design
since the driver writer must take care on all
the memory and process protection stuff.
The design of a realtime-capable driver re-
quires even more deep insights in the ar-
chitecture and the whole timing structure
of the kernel. This are only few reasons
why hardware developers still rely on DOS
in this case.

Linux-EVM should be one solution for this
problem, it should serve as a testing and
development environment for developers
and a powerful instrument to drive hard-
ware for the normal user. The second im-

portant advantage is that companies could
provide binary code for supporting their
hardware boards without providing the full
source code.

What is EVM?

Linux-EVM is an virtual machine embed-
ded in a normal linux device-driver that
consists of all parts that are necessary for
a full control over the hardware boards in
the bus. A microcode can be downloaded
to the EVM’s virtual RAM and it can be
executed by the virtual processor (VPU) to
perform operations on the virtual port in-
terface or any component of the EVM. The
calling process has the full control over the
VPU state registers and the virtual mem-
ory system, Data can be written or read
from the EVM, traps can be triggered and
branches can be requested from the calling
process.

The EVM architecture

The Virtual Machine in EVM consists of
four basic functional units, the VPU the
memory subsystem the virtual interrupt
controller and the virtual dma-controller.
Additionally a port interface and a access
mechanism to external memory is pro-
vided. Because the clock cycles in the em-
ulation is comparatively slow the command

set has to be as much effective as possible.
As usual microprocessors the VPU has 8
16-bit multi-purpose registers (RO-R7) and
8 Registers that can have predefined func-
tions for example a Stack pointer , PC and
one status flag register. Assigned to the
VPU there is a 64kWord memory area to
hold the microcode. Additionally there are
one DMA count and one DMA base regis-
ter for the virtual DMA controller and two
registers assigned to the virtual interrupt



[N

Linux-EVM

controller.

To keep the architecture as effective and
simple as possible, hardware port-access
and access to any hardware memory page
is implemented by special commands.

Operating Modes

The microcode can be downloaded by the
calling process by performing the VPUB-
OOT ioctl and writing the microcode to the
virtual RAM device. The microcode can be
downladed to be started immediately after
boot or holded in the memory as virtual
BIOS for later use.

In this operating mode the VPU goes into
HALT state immediately after boot and after
return from exception. The calling process
now can push some parameters in some of
the VPU-Registers and perform a VPUTRAP
ioctl to cause one of 16 software exceptions
to start the desired exception handler.

In BOOT and RUN mode the VPU starts
to process all microcode commands begin-
ning at address Oh in the virtual RAM and
runs continously until a HALT command is
performed.

Virtual Communication Interface

Data can be read or written to the vir-
tual RAM device directly or by using the
virtual communication interface (VCI). The
VCI emulates a true terminal interface
that can be used with a terminal emula-
tor or whatever to communicate with the
EVM. The difference between communicat-
ing over VCI and by poking data directly
to the virtual RAM is that the VCI must be
serviced by the VPU to send or receive data.

Exception Handling

Exceptions can be triggered by one of the
following conditions:

e a true hardware interrupt occurs

e a software interrupt (trap) has been
performed

¢ the calling process sends a trap signal
(VPUTRAP)

In case of hardware interrupt a flag will
be set in the IRQP register and a indirect
branch to a service handler (irq-vec) will
be executed. Hardware interrupts can be
enabled or disabled by setting the desired
flags in the IRQE register of the virtual in-
terrupt controller and performing the up-
date command.

In case of software interrupt the desired
trap vector will be executed. The exception
vectors are located in the first 16 words of
virtual RAM.

VPU capabilities

Internally the VPU contains a 16-bit Arith-
metic Logic Unit (ALU)!. The ALU functions
are Add or Substract with or without carry,
bitwise logical operations, shift operations
and management functions as clearing and
saving/loadin the ALU flags.

Addressing and Branching Modes

Four fundamental addressing modes are
supported by the VPU:

e register direct - refers the operation to
one of the register contents

e register indirect - takes one register
content as pointer to an address

¢ indirect indexed - an extension word
contains the displacement to one of
the register contents.

¢ indiect with post increment - same as
register indirect but the regiter is in-
cremented after the operation.

Four different modes of specifying the tar-
get address for branches are supported:

¢ Register Direct - the control is trans-
ferred to the location pointed to by one
register.

1The register layout for the VPU and the operating modes has been taken over from HECTOR 1600 Pro-

grammers guide



[N

Linux-EVM

e absolute - control is transferred to the
location pointed to the content of the
extension word

¢ relative - jump to the location calcu-
lated from the PC and one extension
word

¢ indexed - jump to the location calcu-
lated from a memory cell and one reg-
ister and one extension word

Opcode Format

The suggested 16-bit Opcode format is the

same as for the HECTOR 16002%. For some
opcodes as Branch or port accessing com-

mands _the bits 0-11 have different mean-
ings. For normal adressed commands the

Opcode word looks as follows:

[(15 ] 14 [ 18 [ 12 [ 11-10 [ 98
| OP2 | OPI [ OPO | ModeO [ Model

?See the bsve package

With
Bit 12-15 The 4 bit code is the Opcode

Bit 10-11 The source-adressing mode or
fixed bit settings for special extended
commands

Bit 9-8 The target-adressing mode or fixed
bit settings for special extended com-
mands

Bit 7-4 source descriptor

Bit 3-0 target descriptor

Acknowledgements

The idea to Linux-EVM has been inspired
by discussions about a Laboratory Hard-
ware driver API, the dosemu and the bsvc
project.



Linux-EVM
process
e l N N
VCl TRAP SGN R/W
" J
VPU
| | | RO | \ | sp
| \ | \ | pC
; } S E—
| | |
| | | 64k
; } } Word RAM
| | |
| | |
| \ |
| \ | R11
| \ | DMAC/IRQE
] \ | DMAB/IRQP
port interface memory IRQO-15

Figure 1: Architecture of Linux-EVM



