NN

Linux-LDDK

Linux-DDK a Toolkit for Driver Development

by Claus Schroeter
(clausi @hemi e. fu-berlin.de)

Abstract

This document describes the goals of the Linux Driver Development Kit (LDDK) a
comfortable development base for character device drivers. Note that some of the LDDK

may not have been implented yet.

Is LDDK just another futile utility?

In my experience hardware development
and software development are very differ-
ent from different points of view. While
the real hardware developer believes that
only some wires and NAND gatters are nec-
essary to represent a byte in a computer,
the application software developer believes
that only the right class-library makes the
world going around. This is one of the rea-
sons why so many helpful tools are availi-
able for hardware development (pspice etc)
and software development (GUI builders,
class browsers etc). But there are some
guys that play a key-role in this food-chain:
Driver Writers. Keeping all arguments in
mind, driver writing is a hard task since
the typical driver writer has to understand
both hardware and software design. The
hardware side of view needs a driver that
can handle all special capabilities of the
hardware in interaction with the Operating
System. The software side of view needs
a flexible but simple to understand driver
that hides all complex functionalities of the
hardware. Meeting all this demands takes
a lot experience, patience and -of course-
time.

Here (vplay tada.wav) LDDK comes to the
arena and wants to help all this poor guys

;)

The Linux Driver Development Kit (LDDK)
should be a set of tools and libraries that
eases the task of driver writing signifi-
cantly. The resulting drivers should be
easy to use, flexible and easy readable.
The effort necessary to port a driver from
other operating systems should be mini-
mal. The driver should be loadable and
configurable at runtime. A standarized in-
terface should be provided for configura-
tion and customization of the drivers.

The LDDK architecture.

The main part of the LLDK is the DDL to
C compiler ddl 2c. DDL stands for Driver
Definition Language. The DDL-compiler
takes a DDL module and builds a whole
source tree for a driver including user-
library stubs and Makefiles. Since the
DDL contains inlined code no additional
editing should be necessary on the gener-
ated sourcetree. The basic elements of a
driver are represented through code tem-
plates that are loaded when the code is gen-
erated, depending on the driver type and
capabilities different templates are loaded.
The DDL should hide nearly all administra-
tory stuff that is necessary to call a piece
of code a driver, including dynamic load-
ing functions, debugging code, device reg-
istry and interfacing to the user-library. A
library contains modules written in DDL
that can be re-used on demand.

The Linux Lab Project whitepapers 1996

NN

L]
Linux-LDDK
P
‘r N
r N included
Driver 4—\ Modules Py
Description - 7
i r
Masterfile < ., \
DDL
Library
“C 7

C-Templates

Source Tree

Driver-
Sources

Library-
Sources

Figure 1: The DDL to C compiler and its environment

Figure 1 shows how the C-Sourcetree will
be generated from the different source
modules. The include mechanism provides
a simple way to modularize the code, each
DDL module can contain fil e or header
statements or whole subdrivers. Each in-
cluded module can be re-used by other
DDL modules if headers used for this mod-
ule are inlined with the DDL.

The generated Code

The code generated with ddl 2c contains all
routines necessary to register and unregis-
ter the driver with all its fi | e_oper ati ons
and so on.

Each interface function, normally called
through i octl () gets its own driver-stub
and library-stub routines. The library-stub
routine and the driver-stub routine pa-
rameters are packed into a struct on the
user-level and unpacked on kernel level.
This method is similar to the RPC inter-

face code. Only pointers or structs that
contains pointers has to be unpacked by
hand. Since usually a driver does not need
to get pointers through the i oct | () inter-
face this should be sufficient for a large va-
riety of problems.

All automatic generated code contains con-
figurable debugging code, so debugging
the driver is just a matter of setting the
dbgMask variable via insmod or from one
interface function.

Sometimes it can be useful to have in-
dependent subdevices in one driver that
can be accessed through different Minor
Numbers. This is the case for multifunc-
tion measurement cards for example where
each submodule represents one function-
ality or one special chip on the board. The
DDL compiler supports this to be generated
automatically.

DDL Libraries

The Linux Lab Project whitepapers 1996

NN

Linux-LDDK

Together with the subdriver feature DDL
libraries provide a simple but comfortable
way to reuse the same code. If one wrote
a subdriver for a popular chipset (say the
8255 or 8253) it can be used just by in-
cluding the subdriver again and again. The
other purpose for DDL libraries are the im-
plementation of wrappers for often used
system requests.

Kernel Libraries

All code that is common to all LDDK-
generated drivers should be linked with the
kernel statically or dynamically as 'Kernel
Library’. This 'Kernel library’ should pro-
vide useful services as the Ressource Man-
ager (rmgr) or PCI services, ISA-Services or
whatever.

The Ressource Manager is a special driver
(written in DDL) that manages verbose
ressources (similar to the Xressource
mechanism). The ressources can be

changed or set trough a common config-
uration program. LDDK or other drivers
now can consume this ’global variables’.
Each ressource has an access protection
mechanism similar to the files in a file in
a filesystem, so accidental or unauthorized
access can be avoided. If one driver (or user
program) changes one ressource a callback
routine can be called so that drivers can
cleanup some things before the ressource
changes or deletes. The Ressource Man-
ager provides a common interface to driver
runtime-configuration without spending
too much effort in writing interface code.

A stupid DDL Example

Now its time to see how the DDL is used to
generate a very simple driver module that
does nothing else than giving out stupid
messages on each action. You should try
to run this DDL trough ddl 2¢ and see what
code tree is generated from this definition.

/*

* This is a very sinple exanple for a dummy driver nodul e that does
* nothing el se than giving out stupid nessages to the syslog file

*

*/

nmodul e " Si npl e"

/* This stupid nodul e consists of one gl obal

/* this directive sets the gl obal

nodul e nane */

driver nodul e

* you can specify a default major nunber here that can be overrided

* by loading the driver with

* [sbhin/insnod Stupid.o Stupid_mjor=<nmy_ngj or>

*/

" n.al n"
/*

driver [mjor=341]1 {

* The nmain nodule of a driver uses the core nethod whenever the nodul e

* is | oaded or unloaded to the kernel
be executed on | oad and the cl eanup method on

* the init nethod wll
* unload tine
*/
core {
init /{

printk("This is a real

}/

cl eanup /{

printk("Have a nice day!

}/

wi th insnmod

stupi d nessage\n");

\n");

The Linux Lab Project whitepapers 1996

NN

Linux-LDDK
}
/*
* This nmethod will be called whenever the driver is opened
*
/
open /{
printk("Stupid nodul e has been opened\n");
}
/*
* This nmethod will be called whenever the driver is closed
*
/
close /{
printk("Stupid nodul e has been cl osed\n");
}
/*
* This nmethod will be called on read
*
/
read /{
printk("Stupid nodul e read() called\n");
}
/*
* This nmethod will be called by calling the ioctl() function
*
* within the ioctl nethod different subnmethods can be specified
* the 'func’ nethod for exanpl e expands automatically to the
* desired library function with the sanme name and call convention
*
*/
ioctl {
/* fromthe library this nmethod is sinply called with
* Set Mode(flags);
*
/
func Set Mbde (int flags) /{
printk("Stupid Mdde flags is %", fl ags);
}
}

}

The user interface function Set Mode(i nt
fl ags) will be generated as user-library
stub routine nai n_Set Mode(int fd,int
f1 ags) while f d is the file descriptor given
by open. You should spend some time to
travel through the generated source-tree,
you will see that now there are many source
files. If you've seen enough you should cd
to the source-tree and type nake and if ev-
erything is OK nmake | oad (as root). Now
you should see at least some of the stupid

messages in / usr/adnf messages or with
dmesg and / sbi n/ | snmod should report the
module as loaded into the kernel.

Additional Tools

It would be imaginable to have additional
tools on top of the DDL2C domain. A
graphical user interface for example would
be very nice. Also imaginable would be
a language interface generator for TCL,
Python, java, lisp or whatever that extracts

The Linux Lab Project whitepapers 1996

% Linux-LDDK

the func statements from the DDL and http://ww fu-berlin.de/”clausi
builds the appropriate language interface. ftp://ftp.l|1p.fu-berlin.de/pub/linux/LI NUX-LAB/ LDDK
Getting LDDK If You want to contribute. to this project
please let me know, help will always be ap-
The LDDK' can be obtained from the Linux preciated. Additional suggestions and crit-
Lab Project’s official servers: icism are also welcome.

I Currently alpha test releases

The Linux Lab Project whitepapers 1996

