
GNU TLS
Transport Layer Security Library for the GNU system

for version 1.7.7, 8 February 2007

Nikos Mavroyanopoulos
Simon Josefsson (bug-gnutls@gnu.org)

mailto:bug-gnutls@gnu.org

This manual is last updated 8 February 2007 for version 1.7.7 of GNU TLS.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Preface . 1

2 The Library . 2
2.1 General Idea . 3
2.2 Error handling . 4
2.3 Memory handling . 4
2.4 Callback functions . 4

3 Introduction to TLS . 5
3.1 TLS layers . 5
3.2 The transport layer . 6
3.3 The TLS record protocol . 6

3.3.1 Encryption algorithms used in the record layer 7
3.3.2 Compression algorithms used in the record layer 7
3.3.3 Weaknesses and countermeasures . 8

3.4 The TLS Alert Protocol . 8
3.5 The TLS Handshake Protocol . 8

3.5.1 TLS cipher suites . 9
3.5.2 Client authentication . 9
3.5.3 Resuming Sessions . 10
3.5.4 Resuming internals . 10

3.6 TLS Extensions . 10
3.6.1 Maximum fragment length negotiation . 11
3.6.2 Server name indication . 11

3.7 On SSL 2 and older protocols . 11

4 Authentication methods . 12
4.1 Certificate authentication . 12

4.1.1 Authentication using X.509 certificates . 12
4.1.2 Authentication using OpenPGP keys . 12
4.1.3 Using certificate authentication . 12

4.2 Anonymous authentication . 14
4.3 Authentication using SRP . 14
4.4 Authentication using PSK . 15
4.5 Authentication and credentials . 16
4.6 Parameters stored in credentials . 16

ii

5 More on certificate authentication 18
5.1 The X.509 trust model . 18

5.1.1 X.509 certificates . 18
5.1.2 Verifying X.509 certificate paths . 20
5.1.3 PKCS #10 certificate requests . 21
5.1.4 PKCS #12 structures . 21

5.2 The OpenPGP trust model . 21
5.2.1 OpenPGP keys . 22
5.2.2 Verifying an OpenPGP key . 22

5.3 Digital signatures . 23
5.3.1 Supported algorithms . 24
5.3.2 Trading security for interoperability . 24

6 How to use TLS in application protocols 26
6.1 Separate ports . 26
6.2 Upward negotiation . 26

7 How to use GnuTLS in applications 28
7.1 Preparation . 28

7.1.1 Headers . 28
7.1.2 Version check . 28
7.1.3 Building the source . 28

7.2 Multi-threaded applications . 29
7.3 Client examples . 30

7.3.1 Simple client example with anonymous authentication 30
7.3.2 Simple client example with X.509 certificate support 32
7.3.3 Obtaining session information . 35
7.3.4 Verifying peer’s certificate . 37
7.3.5 Using a callback to select the certificate to use 44
7.3.6 Client with Resume capability example 50
7.3.7 Simple client example with SRP authentication 53
7.3.8 Simple client example with TLS/IA support 56
7.3.9 Helper function for TCP connections . 59

7.4 Server examples . 60
7.4.1 Echo Server with X.509 authentication . 61
7.4.2 Echo Server with X.509 authentication II 65
7.4.3 Echo Server with OpenPGP authentication 72
7.4.4 Echo Server with SRP authentication . 76
7.4.5 Echo Server with anonymous authentication 80

7.5 Miscellaneous examples . 84
7.5.1 Checking for an alert . 84
7.5.2 X.509 certificate parsing example . 85
7.5.3 Certificate request generation . 87
7.5.4 PKCS #12 structure generation . 89

7.6 Compatibility with the OpenSSL library . 92

iii

8 Included programs . 93
8.1 Invoking srptool . 93
8.2 Invoking gnutls-cli . 93
8.3 Invoking gnutls-cli-debug . 94
8.4 Invoking gnutls-serv . 95

8.4.1 Setting up a test HTTPS server . 96
8.5 Invoking certtool . 98

9 Function reference . 103
9.1 Core functions . 103
9.2 X.509 certificate functions . 153
9.3 GnuTLS-extra functions . 200
9.4 OpenPGP functions . 200
9.5 TLS Inner Application (TLS/IA) functions . 208
9.6 Error codes and descriptions . 215

10 Certificate to XML convertion functions . . 221
10.1 An X.509 certificate . 221
10.2 An OpenPGP key . 224

11 All the supported ciphersuites in GnuTLS
. 226

12 Internal architecture of GnuTLS 228
12.1 The TLS protocol . 228
12.2 TLS Handshake protocol . 229
12.3 TLS authentication methods . 230
12.4 TLS Extension handling . 231
12.5 Certificate handling . 232

Appendix A Copying Information 233
A.1 GNU Free Documentation License . 233
A.2 GNU Lesser General Public License . 239
A.3 GNU General Public License . 247

Concept Index . 254

Function and Data Index . 255

Bibliography . 259

Chapter 1: Preface 1

1 Preface

This document tries to demonstrate and explain the GnuTLS library API. A brief intro-
duction to the protocols and the technology involved, is also included so that an applica-
tion programmer can better understand the GnuTLS purpose and actual offerings. Even if
GnuTLS is a typical library software, it operates over several security and cryptographic pro-
tocols, which require the programmer to make careful and correct usage of them, otherwise
he risks to offer just a false sense of security. Security and the network security terms are
very general terms even for computer software thus cannot be easily restricted to a single
cryptographic library. For that reason, do not consider a program secure just because it
uses GnuTLS; there are several ways to compromise a program or a communication line and
GnuTLS only helps with some of them.
Although this document tries to be self contained, basic network programming and PKI
knowlegde is assumed in most of it. A good introduction to networking can be found in
[STEVENS] (see [Bibliography], page 259) and for Public Key Infrastructure in [GUTPKI]
(see [Bibliography], page 259).
Updated versions of the GnuTLS software and this document will be available from
http://www.gnutls.org/ and http://www.gnu.org/software/gnutls/.

http://www.gnutls.org/
http://www.gnu.org/software/gnutls/

Chapter 2: The Library 2

2 The Library

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the TLS 1.1
and SSL 3.0 protocols (See Chapter 3 [Introduction to TLS], page 5, for a more detailed
description of the protocols), accompanied with the required framework for authentication
and public key infrastructure. The library is available under the GNU Lesser GPL license1.
Important features of the GnuTLS library include:

• Support for TLS 1.0, TLS 1.1, and SSL 3.0 protocols.

• Support for both X.509 and OpenPGP certificates.

• Support for handling and verification of certificates.

• Support for SRP for TLS authentication.

• Support for PSK for TLS authentication.

• Support for TLS Extension mechanism.

• Support for TLS Compression Methods.

Additionally GnuTLS provides a limited emulation API for the widely used OpenSSL2 li-
brary, to ease integration with existing applications.

GnuTLS consists of three independent parts, namely the “TLS protocol part”, the “Certifi-
cate part”, and the “Crypto backend” part. The ‘TLS protocol part’ is the actual protocol
implementation, and is entirely implemented within the GnuTLS library. The ‘Certificate
part’ consists of the certificate parsing, and verification functions which is partially im-
plemented in the GnuTLS library. The Libtasn13, a library which offers ASN.1 parsing
capabilities, is used for the X.509 certificate parsing functions, and Opencdk4 is used for
the OpenPGP key support in GnuTLS. The “Crypto backend” is provided by the Libgcrypt5

library.

In order to ease integration in embedded systems, parts of the GnuTLS library can be
disabled at compile time. That way a small library, with the required features, can be
generated.

1 A copy of the license is included in the distribution
2 http://www.openssl.org/
3 ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/libtasn1/
4 ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/opencdk/
5 ftp://ftp.gnupg.org/gcrypt/alpha/libgcrypt/

http://www.openssl.org/
ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/libtasn1/
ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/opencdk/
ftp://ftp.gnupg.org/gcrypt/alpha/libgcrypt/

Chapter 2: The Library 3

2.1 General Idea

A brief description of how GnuTLS works internally is shown at the figure below. This section
may be easier to understand after having seen the examples (see [examples], page 28).

As shown in the figure, there is a read-only global state that is initialized once by the global
initialization function. This global structure, among others, contains the memory allocation
functions used, and some structures needed for the ASN.1 parser. This structure is never
modified by any GnuTLS function, except for the deinitialization function which frees all
memory allocated in the global structure and is called after the program has permanently
finished using GnuTLS.
The credentials structure is used by some authentication methods, such as certificate au-
thentication (see [Certificate Authentication], page 18). A credentials structure may contain
certificates, private keys, temporary parameters for diffie hellman or RSA key exchange, and
other stuff that may be shared between several TLS sessions.
This structure should be initialized using the appropriate initialization functions. For ex-
ample an application which uses certificate authentication would probably initialize the
credentials, using the appropriate functions, and put its trusted certificates in this struc-
ture. The next step is to associate the credentials structure with each TLS session.
A GnuTLS session contains all the required stuff for a session to handle one secure connection.
This session calls directly to the transport layer functions, in order to communicate with
the peer. Every session has a unique session ID shared with the peer.
Since TLS sessions can be resumed, servers would probably need a database backend to
hold the session’s parameters. Every GnuTLS session after a successful handshake calls the
appropriate backend function (See [resume], page 10, for information on initialization) to
store the newly negotiated session. The session database is examined by the server just
after having received the client hello6, and if the session ID sent by the client, matches a

6 The first message in a TLS handshake

Chapter 2: The Library 4

stored session, the stored session will be retrieved, and the new session will be a resumed
one, and will share the same session ID with the previous one.

2.2 Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.
Fatal errors terminate the connection immediately and further sends and receives will be
disallowed. An example of a fatal error code is GNUTLS_E_DECRYPTION_FAILED. Non-fatal
errors may warn about something, i.e., a warning alert was received, or indicate the some
action has to be taken. This is the case with the error code GNUTLS_E_REHANDSHAKE returned
by [gnutls record recv], page 139. This error code indicates that the server requests a re-
handshake. The client may ignore this request, or may reply with an alert. You can test if
an error code is a fatal one by using the [gnutls error is fatal], page 126.
If any non fatal errors, that require an action, are to be returned by a function, these error
codes will be documented in the function’s reference. See [Error Codes], page 215, for all
the error codes.

2.3 Memory handling

GnuTLS internally handles heap allocated objects differently, depending on the sensitivity
of the data they contain. However for performance reasons, the default memory functions
do not overwrite sensitive data from memory, nor protect such objects from being written
to the swap. In order to change the default behavior the [gnutls global set mem functions],
page 128 function is available which can be used to set other memory handlers than the
defaults.
The Libgcrypt library on which GnuTLS depends, has such secure memory allocation func-
tions available. These should be used in cases where even the system’s swap memory is not
considered secure. See the documentation of Libgcrypt for more information.

2.4 Callback functions

There are several cases where GnuTLS may need some out of band input from your program.
This is now implemented using some callback functions, which your program is expected to
register.
An example of this type of functions are the push and pull callbacks which are used to
specify the functions that will retrieve and send data to the transport layer.
• [gnutls transport set push function], page 153
• [gnutls transport set pull function], page 153

Other callback functions such as the one set by [gnutls srp set server credentials function],
page 150, may require more complicated input, including data to be allocated. These
callbacks should allocate and free memory using the functions shown below.
• [gnutls malloc], page 132
• [gnutls free], page 127

Chapter 3: Introduction to TLS 5

3 Introduction to TLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] (see [Bibliography], page 259) designed by Netscape. TLS is an
Internet protocol, defined by IETF1, described in RFC 2246 and also in [RESCOLA] (see
[Bibliography], page 259). The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, below, refers to TLS 1.0 but also applies to
TLS 1.1 [RFC4346] (see [Bibliography], page 259) and SSL 3.0, since the differences of these
protocols are minor. Older protocols such as SSL 2.0 are not discussed nor implemented in
GnuTLS since they are not considered secure today.

3.1 TLS layers

TLS is a layered protocol, and consists of the Record Protocol, the Handshake Protocol and
the Alert Protocol. The Record Protocol is to serve all other protocols and is above the
transport layer. The Record protocol offers symmetric encryption, data authenticity, and
optionally compression.

The Alert protocol offers some signaling to the other protocols. It can help informing the
peer for the cause of failures and other error conditions. See [The Alert Protocol], page 8,
for more information. The alert protocol is above the record protocol.

The Handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol], page 8, for more infor-
mation about the handshake protocol. The protocol layering in TLS is shown in the figure
below.

1 IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS 6

3.2 The transport layer

TLS is not limited to one transport layer, it can be used above any transport layer, as long
as it is a reliable one. A set of functions is provided and their purpose is to load to GnuTLS
the required callbacks to access the transport layer.
• [gnutls transport set push function], page 153
• [gnutls transport set pull function], page 153
• [gnutls transport set ptr], page 153
• [gnutls transport set lowat], page 152
• [gnutls transport set errno], page 151

These functions accept a callback function as a parameter. The callback functions should
return the number of bytes written, or -1 on error and should set errno appropriately.
In some environments, setting errno is unreliable, for example Windows have several errno
variables in different CRTs, or it may be that errno is not a thread-local variable. If this is
a concern to you, call gnutls_transport_set_errno with the intended errno value instead
of setting errno directly.
GnuTLS currently only interprets the EINTR and EAGAIN errno values and returns the
corresponding GnuTLS error codes GNUTLS_E_INTERRUPTED and GNUTLS_E_AGAIN. These
values are usually returned by interrupted system calls, or when non blocking IO is used.
All GnuTLS functions can be resumed (called again), if any of these error codes is returned.
The error codes above refer to the system call, not the GnuTLS function, since signals do
not interrupt GnuTLS’ functions.
For non blocking sockets or other custom made pull/push functions the
[gnutls transport set lowat], page 152 must be called, with a zero low water
mark value.
By default, if the transport functions are not set, GnuTLS will use the Berkeley Sockets
functions. In this case GnuTLS will use some hacks in order for select to work, thus
making it easy to add TLS support to existing TCP/IP servers.

3.3 The TLS record protocol

The Record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The following functions are available:

[gnutls record send], page 139:
To send a record packet (with application data).

[gnutls record recv], page 139:
To receive a record packet (with application data).

[gnutls record get direction], page 138:
To get the direction of the last interrupted function call.

As you may have already noticed, the functions which access the Record protocol, are quite
limited, given the importance of this protocol in TLS. This is because the Record protocol’s
parameters are all set by the Handshake protocol.
The Record protocol initially starts with NULL parameters, which means no encryption,
and no MAC is used. Encryption and authentication begin just after the handshake protocol
has finished.

Chapter 3: Introduction to TLS 7

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption algo-
rithms like 3DES, AES2, or stream algorithms like ARCFOUR_1283. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms
in TLS also provide protection against statistical analysis of the data. Thus, if you’re us-
ing the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.
Supported cipher algorithms:

3DES_CBC 3DES_CBC is the DES block cipher algorithm used with triple encryption (EDE).
Has 64 bits block size and is used in CBC mode.

ARCFOUR_128
ARCFOUR is a fast stream cipher.

ARCFOUR_40
This is the ARCFOUR cipher that is fed with a 40 bit key, which is considered
weak.

AES_CBC AES or RIJNDAEL is the block cipher algorithm that replaces the old DES
algorithm. Has 128 bits block size and is used in CBC mode. This is not
officially supported in TLS.

Supported MAC algorithms:

MAC_MD5 MD5 is a cryptographic hash algorithm designed by Ron Rivest. Outputs 128
bits of data.

MAC_SHA SHA is a cryptographic hash algorithm designed by NSA. Outputs 160 bits of
data.

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS
can be found in the table below. All the algorithms except for DEFLATE which is referenced
in [RFC3749] (see [Bibliography], page 259), should be considered as GnuTLS’ extensions4,
and should be advertised only when the peer is known to have a compliant client, to avoid
interoperability problems.
The included algorithms perform really good when text, or other compressible data are to
be transfered, but offer nothing on already compressed data, such as compressed images,
zipped archives etc. These compression algorithms, may be useful in high bandwidth TLS
tunnels, and in cases where network usage has to be minimized. As a drawback, compression
increases latency.
The record layer compression in GnuTLS is implemented based on the proposal [RFC3749]
(see [Bibliography], page 259). The supported compression algorithms are:

DEFLATE Zlib compression, using the deflate algorithm.

2 AES, or Advanced Encryption Standard, is actually the RIJNDAEL algorithm. This is the algorithm that
replaced DES.

3 ARCFOUR_128 is a compatible algorithm with RSA’s RC4 algorithm, which is considered to be a trade secret.
4 You should use [gnutls handshake set private extensions], page 129 to enable private extensions.

Chapter 3: Introduction to TLS 8

LZO LZO is a very fast compression algorithm. This algorithm is only available
if the GnuTLS-extra library has been initialized and the private extensions are
enabled.

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the Record layer have been found in TLS
1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that
1. TLS has separate alerts for “decryption failed” and “bad record mac”
2. The decryption failure reason can be detected by timing the response time.
3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 [RFC4346] (see [Bibliography], page 259) which
is implemented in GnuTLS. For a detailed discussion see the archives of the TLS Working
Group mailing list and the paper [CBCATT] (see [Bibliography], page 259).

3.4 The TLS Alert Protocol

The Alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (see GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(see GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future renegotiations using the current session ID.
The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

[gnutls alert send], page 103:
To send an alert signal.

[gnutls error to alert], page 126:
To map a gnutls error number to an alert signal.

[gnutls alert get], page 103:
Returns the last received alert.

[gnutls alert get name], page 103:
Returns the name, in a character array, of the given alert.

3.5 The TLS Handshake Protocol

The Handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. Available functions to
control the handshake protocol include:

[gnutls cipher set priority], page 119:
To set the priority of bulk cipher algorithms.

Chapter 3: Introduction to TLS 9

[gnutls mac set priority], page 132:
To set the priority of MAC algorithms.

[gnutls kx set priority], page 131:
To set the priority of key exchange algorithms.

[gnutls compression set priority], page 120:
To set the priority of compression methods.

[gnutls certificate type set priority], page 118:
To set the priority of certificate types (e.g., OpenPGP, X.509).

[gnutls protocol set priority], page 135:
To set the priority of protocol versions (e.g., SSL 3.0, TLS 1.0).

[gnutls set default priority], page 147:
To set some defaults in the current session. That way you don’t have to call
each priority function, independently, but you have to live with the defaults.

[gnutls credentials set], page 121:
To set the appropriate credentials structures.

[gnutls certificate server set request], page 112:
To set whether client certificate is required or not.

[gnutls handshake], page 130:
To initiate the handshake.

3.5.1 TLS cipher suites

The Handshake Protocol of TLS negotiates cipher suites of the form TLS_DHE_RSA_WITH_
3DES_CBC_SHA. The usual cipher suites contain these parameters:
• The key exchange algorithm. DHE_RSA in the example.
• The Symmetric encryption algorithm and mode 3DES_CBC in this example.
• The MAC5 algorithm used for authentication. MAC_SHA is used in the above example.

The cipher suite negotiated in the handshake protocol will affect the Record Protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS
to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.
The priority functions, dicussed above, allow the application layer to enable and set priorities
on the individual ciphers. It may imply that all combinations of ciphersuites are allowed, but
this is not true. For several reasons, not discussed here, some combinations were not defined
in the TLS protocol. The supported ciphersuites are shown in [ciphersuites], page 226.

3.5.2 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client — using the
[gnutls certificate server set request], page 112 function. If a certificate is to be requested
from the client during the handshake, the server will send a certificate request message

5 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS 10

that contains a list of acceptable certificate signers. In GnuTLS the certificate signers list
is constructed using the trusted Certificate Authorities by the server. That is the ones set
using
• [gnutls certificate set x509 trust file], page 116
• [gnutls certificate set x509 trust mem], page 117

Sending of the names of the CAs can be controlled using [gnutls certificate send x509 rdn sequence],
page 112. The client, then, may send a certificate, signed by one of the server’s acceptable
signers.

3.5.3 Resuming Sessions

The [gnutls handshake], page 130 function, is expensive since a lot of calculations are per-
formed. In order to support many fast connections to the same server a client may use
session resuming. Session resuming is a feature of the TLS protocol which allows a client to
connect to a server, after a successful handshake, without the expensive calculations. This
is achieved by using the previously established keys. GnuTLS supports this feature, and the
example (see [ex:resume-client], page 50) illustrates a typical use of it.
Keep in mind that sessions are expired after some time, for security reasons, thus it may be
normal for a server not to resume a session even if you requested that. Also note that you
must enable, using the priority functions, at least the algorithms used in the last session.

3.5.4 Resuming internals

The resuming capability, mostly in the server side, is one of the problems of a thread-safe
TLS implementations. The problem is that all threads must share information in order
to be able to resume sessions. The gnutls approach is, in case of a client, to leave all the
burden of resuming to the client. I.e., copy and keep the necessary parameters. See the
functions:
• [gnutls session get data], page 144
• [gnutls session get id], page 145
• [gnutls session set data], page 146

The server side is different. A server has to specify some callback functions which store,
retrieve and delete session data. These can be registered with:
• [gnutls db set remove function], page 122
• [gnutls db set store function], page 122
• [gnutls db set retrieve function], page 122
• [gnutls db set ptr], page 122

It might also be useful to be able to check for expired sessions in order to remove them, and
save space. The function [gnutls db check entry], page 121 is provided for that reason.

3.6 TLS Extensions

A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT] (see
[Bibliography], page 259). The extensions supported in GnuTLS are:
• Maximum fragment length negotiation

Chapter 3: Introduction to TLS 11

• Server name indication

and they will be discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities. See
the [gnutls record set max size], page 140 and the [gnutls record get max size], page 139
functions.

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.
This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls server name set], page 144 and [gnutls server name get], page 143 can be
used to enable this extension, or to retrieve the name sent by a client.

3.7 On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest
at that time, and was considered to be the most advanced in security properties. Later the
SSL 3.0 protocol was implemented since it is still the only protocol supported by several
servers and there are no serious security vulnerabilities known.
One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:
• Message integrity compromised. The SSLv2 message authentication uses the MD5

function, and is insecure.
• Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which

permits a man-in-the-middle attack.
• Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can

forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.
• Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used

for both message authentication and encryption, so if weak encryption schemes are
negotiated (say 40-bit keys) the message authentication code use the same weak key,
which isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

Chapter 4: Authentication methods 12

4 Authentication methods

The TLS protocol provides confidentiality and encryption, but also offers authentication,
which is a prerequisite for a secure connection. The available authentication methods in
GnuTLS are:
• Certificate authentication
• Anonymous authentication
• SRP authentication
• PSK authentication

4.1 Certificate authentication

4.1.1 Authentication using X.509 certificates

X.509 certificates contain the public parameters, of a public key algorithm, and an author-
ity’s signature, which proves the authenticity of the parameters. See Section 5.1 [The X.509
trust model], page 18, for more information on X.509 protocols.

4.1.2 Authentication using OpenPGP keys

OpenPGP keys also contain public parameters of a public key algorithm, and signatures from
several other parties. Depending on whether a signer is trusted the key is considered trusted
or not. GnuTLS’s OpenPGP authentication implementation is based on the [TLSPGP] (see
[Bibliography], page 259) proposal.
See Section 5.2 [The OpenPGP trust model], page 21, for more information about the
OpenPGP trust model. For a more detailed introduction to OpenPGP and GnuPG see
[GPGH] (see [Bibliography], page 259).

4.1.3 Using certificate authentication

In GnuTLS both the OpenPGP and X.509 certificates are part of the certificate authentication
and thus are handled using a common API.
When using certificates the server is required to have at least one certificate and pri-
vate key pair. A client may or may not have such a pair. The certificate and key pair
should be loaded, before any TLS session is initialized, in a certificate credentials struc-
ture. This should be done by using [gnutls certificate set x509 key file], page 115 or
[gnutls certificate set openpgp key file], page 200 depending on the certificate type. In
the X.509 case, the functions will also accept and use a certificate list that leads to a trusted
authority. The certificate list must be ordered in such way that every certificate certifies
the one before it. The trusted authority’s certificate need not to be included, since the peer
should possess it already.
As an alternative, a callback may be used so the server or the client specify the certificate
and the key at the handshake time. That callback can be set using the functions:
• [gnutls certificate server set retrieve function], page 112
• [gnutls certificate client set retrieve function], page 109

Certificate verification is possible by loading the trusted authorities into the
credentials structure by using [gnutls certificate set x509 trust file], page 116 or

Chapter 4: Authentication methods 13

[gnutls certificate set openpgp keyring file], page 201 for openpgp keys. Note
however that the peer’s certificate is not automatically verified, you should call
[gnutls certificate verify peers2], page 118, after a successful handshake, to verify the
signatures of the certificate. An alternative way, which reports a more detailed verification
output, is to use [gnutls certificate get peers], page 111 to obtain the raw certificate of the
peer and verify it using the functions discussed in Section 5.1 [The X.509 trust model],
page 18.
In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so not
all key exchange methods will be available with some certificates. GnuTLS will disable
ciphersuites that are not compatible with the key, or the enabled authentication methods.
For example keys marked as sign-only, will not be able to access the plain RSA ciphersuites,
but only the DHE_RSA ones. It is recommended not to use RSA keys for both signing and
encryption. If possible use the same key for the DHE_RSA and RSA_EXPORT ciphersuites,
which use signing, and a different key for the plain RSA ciphersuites, which use encryption.
All the key exchange methods shown below are available in certificate authentication.
Note that the DHE key exchange methods are generally slower1 than plain RSA and require
Diffie Hellman parameters to be generated and associated with a credentials structure, by
the server. The RSA-EXPORT method also requires 512 bit RSA parameters, that should also
be generated and associated with the credentials structure. See the functions:
• [gnutls dh params generate2], page 125
• [gnutls certificate set dh params], page 112
• [gnutls rsa params generate2], page 142
• [gnutls certificate set rsa export params], page 113

Sometimes in order to avoid bottlenecks in programs it is usefull to store and read param-
eters from formats that can be generated by external programs such as certtool. This is
possible with GnuTLS by using the following functions:
• [gnutls dh params import pkcs3], page 125
• [gnutls rsa params import pkcs1], page 142
• [gnutls dh params export pkcs3], page 124
• [gnutls rsa params export pkcs1], page 141

Key exchange algorithms for OpenPGP and X.509 certificates:

RSA: The RSA algorithm is used to encrypt a key and send it to the peer. The
certificate must allow the key to be used for encryption.

RSA_EXPORT:
The RSA algorithm is used to encrypt a key and send it to the peer. In the
EXPORT algorithm, the server signs temporary RSA parameters of 512 bits
— which are considered weak — and sends them to the client.

DHE_RSA: The RSA algorithm is used to sign Ephemeral Diffie Hellman parameters which
are sent to the peer. The key in the certificate must allow the key to be used
for signing. Note that key exchange algorithms which use Ephemeral Diffie

1 It really depends on the group used. Primes with lesser bits are always faster, but also easier to break.
Values less than 768 should not be used today

Chapter 4: Authentication methods 14

Hellman parameters, offer perfect forward secrecy. That means that even if the
private key used for signing is compromised, it cannot be used to reveal past
session data.

DHE_DSS: The DSS algorithm is used to sign Ephemeral Diffie Hellman parameters which
are sent to the peer. The certificate must contain DSA parameters to use this
key exchange algorithm. DSS stands for Digital Signature Standard.

4.2 Anonymous authentication

The anonymous key exchange performs encryption but there is no indication of the identity
of the peer. This kind of authentication is vulnerable to a man in the middle attack, but
this protocol can be used even if there is no prior communication and trusted parties with
the peer, or when full anonymity is required. Unless really required, do not use anonymous
authentication. Available key exchange methods are shown below.

Note that the key exchange methods for anonymous authentication require Diffie Hellman
parameters to be generated by the server and associated with an anonymous credentials
structure.

Supported anonymous key exchange algorithms:

ANON_DH: This algorithm exchanges Diffie Hellman parameters.

4.3 Authentication using SRP

Authentication via the Secure Remote Password protocol, SRP2, is supported. The SRP
key exchange is an extension to the TLS protocol, and it is a password based authentication
(unlike X.509 or OpenPGP that use certificates). The two peers can be identified using a
single password, or there can be combinations where the client is authenticated using SRP
and the server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP does not require the server to hold the user’s password. This kind of
protection is similar to the one used traditionally in the UNIX ‘/etc/passwd’ file, where the
contents of this file did not cause harm to the system security if they were revealed. The
SRP needs instead of the plain password something called a verifier, which is calculated
using the user’s password, and if stolen cannot be used to impersonate the user. Check
[TOMSRP] (see [Bibliography], page 259) for a detailed description of the SRP protocol and
the Stanford SRP libraries, which includes a PAM module that synchronizes the system’s
users passwords with the SRP password files. That way SRP authentication could be used
for all the system’s users.

The implementation in GnuTLS is based on paper [TLSSRP] (see [Bibliography], page 259).
The supported SRP key exchange methods are:

SRP: Authentication using the SRP protocol.

SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using a
certificate with DSA parameters.

2 SRP is described in [RFC2945] (see [Bibliography], page 259)

Chapter 4: Authentication methods 15

SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using a
certificate with RSA parameters.

If clients supporting SRP know the username and password before the connection, should
initialize the client credentials and call the function [gnutls srp set client credentials],
page 149. Alternatively they could specify a callback function by using the function
[gnutls srp set client credentials function], page 149. This has the advantage that allows
probing the server for SRP support. In that case the callback function will be called twice
per handshake. The first time is before the ciphersuite is negotiated, and if the callback
returns a negative error code, the callback will be called again if SRP has been negotiated.
This uses a special TLS-SRP handshake idiom in order to avoid, in interactive applications,
to ask the user for SRP password and username if the server does not negotiate an SRP
ciphersuite.

In server side the default behaviour of GnuTLS is to read the usernames and SRP
verifiers from password files. These password files are the ones used by the Stanford
srp libraries and can be specified using the [gnutls srp set server credentials file],
page 150. If a different password file format is to be used, then the function
[gnutls srp set server credentials function], page 150, should be called, in order to set an
appropriate callback.

Some helper functions such as

• [gnutls srp verifier], page 150
• [gnutls srp base64 encode], page 148
• [gnutls srp base64 decode], page 148

are included in GnuTLS, and can be used to generate and maintain SRP verifiers and pass-
word files. A program to manipulate the required parameters for SRP authentication is also
included. See [srptool], page 93, for more information.

4.4 Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and
binary keys. This protocol avoids making use of public key infrastructure and expensive
calculations, thus it is suitable for constraint clients.

The implementation in GnuTLS is based on paper [TLSPSK] (see [Bibliography], page 259).
The supported PSK key exchange methods are:

PSK: Authentication using the PSK protocol.

DHE-PSK: Authentication using the PSK protocol and Diffie Hellman key exchange. This
method offers perfect forward secrecy.

Clients supporting PSK should supply the username and key before the connection
to the client credentials by calling the function [gnutls psk set client credentials],
page 137. Alternatively they could specify a callback function by using the function
[gnutls psk set client credentials function], page 136. This has the advantage that the
callback will be called only if PSK has been negotiated.

In server side the default behaviour of GnuTLS is to read the usernames and PSK keys
from a password file. The password file should contain usernames and keys in hexadecimal

Chapter 4: Authentication methods 16

format. The name of the password file can be stored to the credentials structure by calling
[gnutls psk set server credentials file], page 137. If a different password file format is to
be used, then the function [gnutls psk set server credentials function], page 137, should be
used instead.
Some helper functions such as:
• [gnutls hex encode], page 130
• [gnutls hex decode], page 130

are included in GnuTLS, and may be used to generate and maintain PSK keys.

4.5 Authentication and credentials

In GnuTLS every key exchange method is associated with a credentials type. So in order to
enable to enable a specific method, the corresponding credentials type should be initialized
and set using [gnutls credentials set], page 121. A mapping is shown below.
Key exchange algorithms and the corresponding credential types:

Key exchange Client credentials Server credentials

KX_RSA
KX_DHE_RSA
KX_DHE_DSS
KX_RSA_EXPORT CRD_CERTIFICATE CRD_CERTIFICATE

KX_SRP_RSA CRD_SRP CRD_SRP
KX_SRP_DSS CRD_CERTIFICATE

KX_SRP CRD_SRP CRD_SRP

KX_ANON_DH CRD_ANON CRD_ANON

KX_PSK CRD_PSK CRD_PSK

4.6 Parameters stored in credentials

Several parameters such as the ones used for Diffie-Hellman authentication are stored within
the credentials structures, so all sessions can access them. Those parameters are stored
in structures such as gnutls_dh_params_t and gnutls_rsa_params_t, and functions like
[gnutls certificate set dh params], page 112 and [gnutls certificate set rsa export params],
page 113 can be used to associate those parameters with the given credentials structure.
Since those parameters need to be renewed from time to time and a global structure
such as the credentials, may not be easy to modify since it is accessible by all sessions,
an alternative interface is available using a callback function. This can be set using the
[gnutls certificate set params function], page 113. An example is shown below.

#include <gnutls.h>

Chapter 4: Authentication methods 17

gnutls_rsa_params_t rsa_params;
gnutls_dh_params_t dh_params;

/* This function will be called once a session requests DH
* or RSA parameters. The parameters returned (if any) will
* be used for the first handshake only.
*/
static int get_params(gnutls_session_t session,

gnutls_params_type_t type,
gnutls_params_st *st)

{
if (type == GNUTLS_PARAMS_RSA_EXPORT)

st->params.rsa_export = rsa_params;
else if (type == GNUTLS_PARAMS_DH)

st->params.dh = dh_params;
else return -1;

st->type = type;
/* do not deinitialize those parameters.
*/
st->deinit = 0;

return 0;
}

int main()
{

gnutls_certificate_credentials_t cert_cred;

initialize_params();

/* ...
*/

gnutls_certificate_set_params_function(cert_cred, get_params);
}

Chapter 5: More on certificate authentication 18

5 More on certificate authentication

5.1 The X.509 trust model

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities
exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

One needs to trust one or more CAs for his secure communications. In that case only
the certificates issued by the trusted authorities are acceptable. See the figure above for a
typical example. The API for handling X.509 certificates is described at section [sec:x509api],
page 153. Some examples are listed below.

5.1.1 X.509 certificates

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [RFC3280] (see [Bibliography],
page 259) as shown in the table below.

version: The field that indicates the version of the certificate.

serialNumber:
This field holds a unique serial number per certificate.

issuer: Holds the issuer’s distinguished name.

Chapter 5: More on certificate authentication 19

validity:
The activation and expiration dates.

subject: The subject’s distinguished name of the certificate.

extensions:
The extensions are fields only present in version 3 certificates.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished
name and in the ASN.1 notation is a sequence of several object IDs with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
‘gnutls/x509.h’.
The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.
The validity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.
Certificate extensions are there to include information about the certificate’s subject that
did not fit in the typical certificate fields. Those may be e-mail addresses, flags that indicate
whether the belongs to a CA etc. All the supported X.509 version 3 extensions are shown
in the table below.

subject key id (2.5.29.14):
An identifier of the key of the subject.

authority key id (2.5.29.35):
An identifier of the authority’s key used to sign the certificate.

subject alternative name (2.5.29.17):
Alternative names to subject’s distinguished name.

key usage (2.5.29.15):
Constraints the key’s usage of the certificate.

extended key usage (2.5.29.37):
Constraints the purpose of the certificate.

basic constraints (2.5.29.19):
Indicates whether this is a CA certificate or not, and specify the maximum path
lengths of certificate chains.

CRL distribution points (2.5.29.31):
This extension is set by the CA, in order to inform about the issued CRLs.

Proxy Certification Information (1.3.6.1.5.5.7.1.14):
Proxy Certificates includes this extension that contains the OID of the proxy
policy language used, and can specify limits on the maximum lengths of proxy
chains. Proxy Certificates are specified in [RFC3820] (see [Bibliography],
page 259).

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the avail-
able functions for X.509 certificate handling have their prototypes in ‘gnutls/x509.h’. An

Chapter 5: More on certificate authentication 20

example program to demonstrate the X.509 parsing capabilities can be found at section
[ex:x509-info], page 85.

5.1.2 Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the
function [gnutls x509 crt verify], page 193 is provided. The output of this function is
the bitwise OR of the elements of the gnutls_certificate_status_t enumeration.
A detailed description of these elements can be found in figure below. The function
[gnutls certificate verify peers2], page 118 is equivalent to the previous one, and will verify
the peer’s certificate in a TLS session.

CERT_INVALID:
The certificate is not signed by one of the known authorities, or the signature
is invalid.

CERT_REVOKED:
The certificate has been revoked by its CA.

CERT_SIGNER_NOT_FOUND:
The certificate’s issuer is not known. This is the case when the issuer is not in
the trusted certificates list.

GNUTLS_CERT_SIGNER_NOT_CA:
The certificate’s signer was not a CA. This may happen if this was a version 1
certificate, which is common with some CAs, or a version 3 certificate without
the basic constrains extension.

GNUTLS_CERT_INSECURE_ALGORITHM:
The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

There is also to possibility to pass some input to the verification functions in the form
of flags. For [gnutls x509 crt verify], page 193 the flags are passed straightforward,
but [gnutls certificate verify peers2], page 118 depends on the flags set by calling
[gnutls certificate set verify flags], page 113. All the available flags are part of the
enumeration [gnutls certificate verify flags], page 20 and are explained in the table below.

GNUTLS_VERIFY_DISABLE_CA_SIGN:
If set a signer does not have to be a certificate authority. This flag should
normaly be disabled, unless you know what this means.

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT:
Allow only trusted CA certificates that have version 1. This is safer than
GNUTLS VERIFY ALLOW ANY X509 V1 CA CRT, and should be used in-
stead. That way only signers in your trusted list will be allowed to have cer-
tificates of version 1.

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT:
Allow CA certificates that have version 1 (both root and intermediate). This
is dangerous since those haven’t the basicConstraints extension. Must be used
in combination with GNUTLS VERIFY ALLOW X509 V1 CA CRT.

Chapter 5: More on certificate authentication 21

GNUTLS_VERIFY_DO_NOT_ALLOW_SAME:
If a certificate is not signed by anyone trusted but exists in the trusted CA list
do not treat it as trusted.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2:
Allow certificates to be signed using the old MD2 algorithm.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5:
Allow certificates to be signed using the broken MD5 algorithm.

Although the verification of a certificate path indicates that the certificate is signed by
trusted authority, does not reveal anything about the peer’s identity. It is required to verify
if the certificate’s owner is the one you expect. For more information consult [RFC2818]
(see [Bibliography], page 259) and section [ex:verify], page 37 for an example.

5.1.3 PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
[RFC2986] (see [Bibliography], page 259). Other certificate request’s format such as PKIX’s
[RFC4211] (see [Bibliography], page 259) are not currently supported.

In GnuTLS the PKCS #10 structures are handled using the gnutls_x509_crq_t type. An
example of a certificate request generation can be found at section [ex:crq], page 87.

5.1.4 PKCS #12 structures

A PKCS #12 structure [PKCS12] (see [Bibliography], page 259) usually contains a user’s
private keys and certificates. It is commonly used in browsers to export and import the
user’s identities.

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The Bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
An Bag of type encrypted should be decrypted in order for its data to be accessed.

An example of a PKCS #12 structure generation can be found at section [ex:pkcs12], page 89.

5.2 The OpenPGP trust model

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are
the same as a CA. OpenPGP allows anyone to sign anyone’s else public key. When Alice

Chapter 5: More on certificate authentication 22

signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer.

For example: If David trusts Alice to be an introducer, and Alice signed Bob’s key, Dave
also trusts Bob’s key to be the real one.
There are some key points that are important in that model. In the example Alice has to
sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.
Just see how Charlie behaves in the previous example. Although he has signed Bob’s key
- because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

5.2.1 OpenPGP keys

In GnuTLS the OpenPGP key structures [RFC2440] (see [Bibliography], page 259) are han-
dled using the gnutls_openpgp_key_t type and the corresponding private keys with the
gnutls_openpgp_privkey_t type. All the prototypes for the key handling functions can
be found at ‘gnutls/openpgp.h’.

5.2.2 Verifying an OpenPGP key

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones,
and do not use the features of the “web of trust”. For that reason, if the verifica-
tion needs are complex, the assistance of external tools like GnuPG and GPGME
(http://www.gnupg.org/related_software/gpgme/) is recommended.

http://www.gnupg.org/related_software/gpgme/

Chapter 5: More on certificate authentication 23

There are two verification functions in GnuTLS, The [gnutls openpgp key verify ring],
page 205 and the [gnutls openpgp key verify trustdb], page 205. The first one checks an
OpenPGP key against a given set of public keys (keyring) and returns the key status.
The key verification status is the same as in X.509 certificates, although the meaning
and interpretation are different. For example an OpenPGP key may be valid, if the self
signature is ok, even if no signers were found. The meaning of verification status is shown
in the figure below. The latter function checks a GnuPG trust database for the given key.
This function does not check the key signatures, only checks for disabled and revoked keys.

CERT_INVALID:
A signature on the key is invalid. That means that the key was modified by
somebody, or corrupted during transport.

CERT_REVOKED:
The key has been revoked by its owner.

CERT_SIGNER_NOT_FOUND:
The key was not signed by a known signer.

GNUTLS_CERT_INSECURE_ALGORITHM:
The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

5.3 Digital signatures

In this section we will provide some information about digital signatures, how they work,
and give the rationale for disabling some of the algorithms used.
Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess
the input to the signature algorithm. This works as long as it is difficult enough to generate
two different messages with the same hash algorithm output. In that case the same signature
could be used as a proof for both messages. Nobody wants to sign an innocent message of
donating 1 e to Greenpeace and find out that he donated 1.000.000 e to Bad Inc.
For a hash algorithm to be called cryptographic the following three requirements must hold
1. Preimage resistance. That means the algorithm must be one way and given the output

of the hash function H(x), it is impossible to calculate x.
2. 2nd preimage resistance. That means that given a pair x, y with y = H(x) it is

impossible to calculate an x′ such that y = H(x′).
3. Collision resistance. That means that it is impossible to calculate random x and x′

such H(x′) = H(x).

The last two requirements in the list are the most important in digital signatures. These
protect against somebody who would like to generate two messages with the same hash out-
put. When an algorithm is considered broken usually it means that the Collision resistance
of the algorithm is less than brute force. Using the birthday paradox the brute force attack
takes 2(hash size)/2 operations. Today colliding certificates using the MD5 hash algorithm
have been generated as shown in [WEGER] (see [Bibliography], page 259).

Chapter 5: More on certificate authentication 24

There has been cryptographic results for the SHA-1 hash algorithms as well, although they
are not yet critical. Before 2004, MD5 had a presumed collision strength of 264, but it
has been showed to have a collision strength well under 250. As of November 2005, it is
believed that SHA-1’s collision strength is around 263. We consider this sufficiently hard so
that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-
distributed certificates in the future. When 263 can be considered too weak compared to
the computer power available sometime in the future, SHA-1 will be disabled as well. The
collision attacks on SHA-1 may also get better, given the new interest in tools for creating
them.

5.3.1 Supported algorithms

The available digital signature algorithms in GnuTLS are listed below:

RSA RSA is public key cryptosystem designed by Ronald Rivest, Adi Shamir and
Leonard Adleman. It can be used with any hash functions.

DSA DSA is the USA’s Digital Signature Standard. It uses only the SHA-1 hash
algorithm.

The supported cryptographic hash algorithms are:

MD2 MD2 is a cryptographic hash algorithm designed by Ron Rivest. It is optimized
for 8-bit processors. Outputs 128 bits of data. There are no known weaknesses
of this algorithm but since this algorithm is rarely used and not really studied
it should not be used today.

MD5 MD5 is a cryptographic hash algorithm designed by Ron Rivest. Outputs 128
bits of data. It is considered to be broken.

SHA-1 SHA is a cryptographic hash algorithm designed by NSA. Outputs 160 bits of
data. It is also considered to be broken, though no practical attacks have been
found.

RMD160 RIPEMD is a cryptographic hash algorithm developed in the framework of the
EU project RIPE. Outputs 160 bits of data.

5.3.2 Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and get a
[GNUTLS CERT INSECURE ALGORITHM], page 20 validation error (see Section 5.1.2
[Verifying X.509 certificate paths], page 20), it means that somewhere in the certificate
chain there is a certificate signed using RSA-MD2 or RSA-MD5. These two digital signature
algorithms are considered broken, so GnuTLS fail when attempting to verify the certificate.
In some situations, it may be useful to be able to verify the certificate chain anyway,
assuming an attacker did not utilize the fact that these signatures algorithms are broken.
This section will give help on how to achieve that.
First, it is important to know that you do not have to enable any of the flags discussed here
to be able to use trusted root CA certificates signed using RSA-MD2 or RSA-MD5. The only
attack today is that it is possible to generate certificates with colliding signatures (collision
resistance); you cannot generate a certificate that has the same signature as an already
existing signature (2nd preimage resistance).

Chapter 5: More on certificate authentication 25

If you are using [gnutls certificate verify peers2], page 118 to verify the certificate chain,
you can call [gnutls certificate set verify flags], page 113 with the GNUTLS_VERIFY_ALLOW_
SIGN_RSA_MD2 or GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 flag, as in:

gnutls_certificate_set_verify_flags (x509cred,
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);

This will tell the verifier algorithm to enable RSA-MD5 when verifying the certificates.
If you are using [gnutls x509 crt verify], page 193 or [gnutls x509 crt list verify], page 185,
you can pass the GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags
parameter.
If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall back
to using them after warning the user. If you wish to inspect the certificate chain yourself, you
can use [gnutls certificate get peers], page 111 to extract the raw server’s certificate chain,
then use [gnutls x509 crt import], page 184 to parse each of the certificates, and then use
[gnutls x509 crt get signature algorithm], page 182 to find out the signing algorithm used
for each certificate. If any of the intermediary certificates are using GNUTLS_SIGN_RSA_MD2
or GNUTLS_SIGN_RSA_MD5, you could present a warning.

Chapter 6: How to use TLS in application protocols 26

6 How to use TLS in application protocols

This chapter is intended to provide some hints on how to use the TLS over simple custom
made application protocols. The discussion below mainly refers to the TCP/IP transport
layer but may be extended to other ones too.

6.1 Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for
the secure services. That way two separate ports were assigned, one for the non secure
sessions, and one for the secured ones. This has the benefit that if a user requests a secure
session then the client will try to connect to the secure port and fail otherwise. The only
possible attack with this method is a denial of service one. The most famous example of this
method is the famous “HTTP over TLS” or HTTPS protocol [RFC2818] (see [Bibliography],
page 259).
Despite its wide use, this method is not as good as it seems. This approach starts the
TLS Handshake procedure just after the client connects on the —so called— secure port.
That way the TLS protocol does not know anything about the client, and popular methods
like the host advertising in HTTP do not work1. There is no way for the client to say “I
connected to YYY server” before the Handshake starts, so the server cannot possibly know
which certificate to use.
Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon obsoleted.

6.2 Upward negotiation

Other application protocols2 use a different approach to enable the secure layer. They use
something called the “TLS upgrade” method. This method is quite tricky but it is more
flexible. The idea is to extend the application protocol to have a “STARTTLS” request,
whose purpose it to start the TLS protocols just after the client requests it. This is a really
neat idea and does not require an extra port.
This method is used by almost all modern protocols and there is even the [RFC2817] (see
[Bibliography], page 259) paper which proposes extensions to HTTP to support it.
The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See
a typical conversation of a hypothetical protocol:

(client connects to the server)
CLIENT: HELLO I’M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS
SERVER: OK

1 See also the Server Name Indication extension on [serverind], page 11.
2 See LDAP, IMAP etc.

Chapter 6: How to use TLS in application protocols 27

*** TLS STARTS
CLIENT: HERE ARE SOME CONFIDENTIAL DATA

And see an example of a conversation where someone is acting in between:
(client connects to the server)
CLIENT: HELLO I’M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS
(here someone inserts this message)
SERVER: SORRY I DON’T HAVE THIS CAPABILITY
CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was dummy enough to send the confidential
data in the clear.
How to avoid the above attack? As you may have already thought this one is easy to avoid.
The client has to ask the user before it connects whether the user requests TLS or not. If
the user answered that he certainly wants the secure layer the last conversation should be:

(client connects to the server)
CLIENT: HELLO I’M MR. XXX
SERVER: NICE TO MEET YOU XXX
CLIENT: PLEASE START TLS
(here someone inserts this message)
SERVER: SORRY I DON’T HAVE THIS CAPABILITY
CLIENT: BYE
(the client notifies the user that the secure connection was not possible)

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is
that the server may request additional data before the TLS Handshake protocol starts, in
order to send the correct certificate, use the correct password file3, or anything else!

3 in SRP authentication

Chapter 7: How to use GnuTLS in applications 28

7 How to use GnuTLS in applications

7.1 Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

7.1.1 Headers

All the data types and functions of the GnuTLS library are defined in the header file
‘gnutls/gnutls.h’. This must be included in all programs that make use of the GnuTLS
library.
The extra functionality of the GnuTLS-extra library is available by including the header file
‘gnutls/extra.h’ in your programs.

7.1.2 Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits all re-
quirements. Even with binary compatibility new features may have been introduced but due
to problem with the dynamic linker an old version is actually used. So you may want to check
that the version is okay right after program startup. See the function [gnutls check version],
page 119.

7.1.3 Building the source

If you want to compile a source file including the ‘gnutls/gnutls.h’ header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the -I option).
However, the path to the include file is determined at the time the source is configured.
To solve this problem, GnuTLS ships with two small helper programs libgnutls-config
and libgnutls-extra-config that knows about the path to the include file and other
configuration options. The options that need to be added to the compiler invocation at
compile time are output by the --cflags option to libgnutls-config. The following
example shows how it can be used at the command line:

gcc -c foo.c ‘libgnutls-config --cflags‘

Adding the output of libgnutls-config --cflags to the compilers command line will
ensure that the compiler can find the GnuTLS header file.
A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added
to the library search path (via the -L option). For this, the option --libs to libgnutls-
config can be used. For convenience, this option also outputs all other options that are
required to link the program with the GnuTLS libararies. The example shows how to link
‘foo.o’ with the GnuTLS libraries to a program foo.

gcc -o foo foo.o ‘libgnutls-config --libs‘

Of course you can also combine both examples to a single command by specifying both
options to ‘libgnutls-config’:

gcc -o foo foo.c ‘libgnutls-config --cflags --libs‘

Chapter 7: How to use GnuTLS in applications 29

7.2 Multi-threaded applications

Although the GnuTLS library is thread safe by design, some parts of the crypto backend,
such as the random generator, are not. Since libgcrypt 1.1.92 there was an automatic
detection of the thread library used by the application, so most applications wouldn’t need
to do any changes to ensure thread-safety. Due to the unportability of the automatic
thread detection, this was removed from later releases of libgcrypt, so applications have now
to register callback functions to ensure proper locking in sensitive parts of libgcrypt.
There are helper macros to help you properly initialize the libraries. Examples are shown
below.
• POSIX threads

#include <gnutls.h>
#include <gcrypt.h>
#include <errno.h>
#include <pthread.h>
GCRY_THREAD_OPTION_PTHREAD_IMPL;

int main()
{

/* The order matters.
*/
gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_pthread);
gnutls_global_init();

}

• GNU PTH threads
#include <gnutls.h>
#include <gcrypt.h>
#include <errno.h>
#include <pth.h>
GCRY_THREAD_OPTION_PTH_IMPL;

int main()
{

gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_pth);
gnutls_global_init();

}

• Other thread packages
/* The gcry_thread_cbs structure must have been
* initialized.
*/
static struct gcry_thread_cbs gcry_threads_other = { ... };

int main()
{

gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_other);
}

Chapter 7: How to use GnuTLS in applications 30

7.3 Client examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that these exam-
ples contain little or no error checking. Some of the examples require functions implemented
by another example.

7.3.1 Simple client example with anonymous authentication

The simplest client using TLS is the one that doesn’t do any authentication. This means
no external certificates or passwords are needed to set up the connection. As could be
expected, the connection is vulnerable to man-in-the-middle (active or redirection) attacks.
However, the data is integrity and privacy protected.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

/* A very basic TLS client, with anonymous authentication.
*/

#define MAX_BUF 1024
#define SA struct sockaddr
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);
extern void tcp_close (int sd);

int
main (void)
{
int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_anon_client_credentials_t anoncred;
/* Need to enable anonymous KX specifically. */
const int kx_prio[] = { GNUTLS_KX_ANON_DH, 0 };

gnutls_global_init ();

gnutls_anon_allocate_client_credentials (&anoncred);

Chapter 7: How to use GnuTLS in applications 31

/* Initialize TLS session
*/
gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_set_default_priority (session);
gnutls_kx_set_priority (session, kx_prio);

/* put the anonymous credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);

/* connect to the peer
*/
sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake
*/
ret = gnutls_handshake (session);

if (ret < 0)
{
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror (ret);
goto end;

}
else
{
printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)
{
printf ("- Peer has closed the TLS connection\n");
goto end;

}
else if (ret < 0)
{
fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));
goto end;

}

Chapter 7: How to use GnuTLS in applications 32

printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);

}
fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_anon_free_client_credentials (anoncred);

gnutls_global_deinit ();

return 0;
}

7.3.2 Simple client example with X.509 certificate support

Let’s assume now that we want to create a TCP client which communicates with servers
that use X.509 or OpenPGP certificate authentication. The following client is a very simple
TLS client, it does not support session resuming, not even certificate verification. The TCP
functions defined in this example are used in most of the other examples below, without
redefining them.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

/* A very basic TLS client, with X.509 authentication.
*/

#define MAX_BUF 1024

Chapter 7: How to use GnuTLS in applications 33

#define CAFILE "ca.pem"
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);
extern void tcp_close (int sd);

int
main (void)
{
int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;
/* Allow connections to servers that have OpenPGP keys as well.
*/
const int cert_type_priority[3] = { GNUTLS_CRT_X509,
GNUTLS_CRT_OPENPGP, 0

};

gnutls_global_init ();

/* X509 stuff */
gnutls_certificate_allocate_credentials (&xcred);

/* sets the trusted cas file
*/
gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

/* Initialize TLS session
*/
gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_set_default_priority (session);
gnutls_certificate_type_set_priority (session, cert_type_priority);

/* put the x509 credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/
sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

Chapter 7: How to use GnuTLS in applications 34

*/
ret = gnutls_handshake (session);

if (ret < 0)
{
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror (ret);
goto end;

}
else
{
printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)
{
printf ("- Peer has closed the TLS connection\n");
goto end;

}
else if (ret < 0)
{
fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));
goto end;

}

printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);

}
fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

Chapter 7: How to use GnuTLS in applications 35

return 0;
}

7.3.3 Obtaining session information

Most of the times it is desirable to know the security properties of the current established
session. This includes the underlying ciphers and the protocols involved. That is the
purpose of the following function. Note that this function will print meaningful values only
if called after a successful [gnutls handshake], page 130.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

extern void print_x509_certificate_info (gnutls_session_t);

/* This function will print some details of the
* given session.
*/
int
print_info (gnutls_session_t session)
{
const char *tmp;
gnutls_credentials_type_t cred;
gnutls_kx_algorithm_t kx;

/* print the key exchange’s algorithm name
*/
kx = gnutls_kx_get (session);
tmp = gnutls_kx_get_name (kx);
printf ("- Key Exchange: %s\n", tmp);

/* Check the authentication type used and switch
* to the appropriate.
*/
cred = gnutls_auth_get_type (session);
switch (cred)
{
case GNUTLS_CRD_SRP:
printf ("- SRP session with username %s\n",

gnutls_srp_server_get_username (session));
break;

Chapter 7: How to use GnuTLS in applications 36

case GNUTLS_CRD_ANON: /* anonymous authentication */

printf ("- Anonymous DH using prime of %d bits\n",
gnutls_dh_get_prime_bits (session));

break;

case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

/* Check if we have been using ephemeral Diffie Hellman.
*/
if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS)
{
printf ("\n- Ephemeral DH using prime of %d bits\n",

gnutls_dh_get_prime_bits (session));
}

/* if the certificate list is available, then
* print some information about it.
*/
print_x509_certificate_info (session);

} /* switch */

/* print the protocol’s name (ie TLS 1.0)
*/
tmp = gnutls_protocol_get_name (gnutls_protocol_get_version (session));
printf ("- Protocol: %s\n", tmp);

/* print the certificate type of the peer.
* ie X.509
*/
tmp =
gnutls_certificate_type_get_name (gnutls_certificate_type_get (session));

printf ("- Certificate Type: %s\n", tmp);

/* print the compression algorithm (if any)
*/
tmp = gnutls_compression_get_name (gnutls_compression_get (session));
printf ("- Compression: %s\n", tmp);

/* print the name of the cipher used.
* ie 3DES.
*/
tmp = gnutls_cipher_get_name (gnutls_cipher_get (session));
printf ("- Cipher: %s\n", tmp);

Chapter 7: How to use GnuTLS in applications 37

/* Print the MAC algorithms name.
* ie SHA1
*/
tmp = gnutls_mac_get_name (gnutls_mac_get (session));
printf ("- MAC: %s\n", tmp);

return 0;
}

7.3.4 Verifying peer’s certificate

A TLS session is not secure just after the handshake procedure has finished. It must be
considered secure, only after the peer’s certificate and identity have been verified. That is,
you have to verify the signature in peer’s certificate, the hostname in the certificate, and
expiration dates. Just after this step you should treat the connection as being a secure one.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

/* This function will try to verify the peer’s certificate, and
* also check if the hostname matches, and the activation, expiration dates.
*/
void
verify_certificate (gnutls_session_t session, const char *hostname)
{
unsigned int status;
const gnutls_datum_t *cert_list;
int cert_list_size, ret;
gnutls_x509_crt_t cert;

/* This verification function uses the trusted CAs in the credentials
* structure. So you must have installed one or more CA certificates.
*/
ret = gnutls_certificate_verify_peers2 (session, &status);

if (ret < 0)
{
printf ("Error\n");
return;

}

if (status & GNUTLS_CERT_INVALID)

Chapter 7: How to use GnuTLS in applications 38

printf ("The certificate is not trusted.\n");

if (status & GNUTLS_CERT_SIGNER_NOT_FOUND)
printf ("The certificate hasn’t got a known issuer.\n");

if (status & GNUTLS_CERT_REVOKED)
printf ("The certificate has been revoked.\n");

/* Up to here the process is the same for X.509 certificates and
* OpenPGP keys. From now on X.509 certificates are assumed. This can
* be easily extended to work with openpgp keys as well.
*/
if (gnutls_certificate_type_get (session) != GNUTLS_CRT_X509)
return;

if (gnutls_x509_crt_init (&cert) < 0)
{
printf ("error in initialization\n");
return;

}

cert_list = gnutls_certificate_get_peers (session, &cert_list_size);
if (cert_list == NULL)
{
printf ("No certificate was found!\n");
return;

}

/* This is not a real world example, since we only check the first
* certificate in the given chain.
*/
if (gnutls_x509_crt_import (cert, &cert_list[0], GNUTLS_X509_FMT_DER) < 0)
{
printf ("error parsing certificate\n");
return;

}

/* Beware here we do not check for errors.
*/
if (gnutls_x509_crt_get_expiration_time (cert) < time (0))
{
printf ("The certificate has expired\n");
return;

}

if (gnutls_x509_crt_get_activation_time (cert) > time (0))

Chapter 7: How to use GnuTLS in applications 39

{
printf ("The certificate is not yet activated\n");
return;

}

if (!gnutls_x509_crt_check_hostname (cert, hostname))
{
printf ("The certificate’s owner does not match hostname ’%s’\n",

hostname);
return;

}

gnutls_x509_crt_deinit (cert);

return;
}

An other example is listed below which provides a more detailed verification output.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

/* All the available CRLs
*/
gnutls_x509_crl_t *crl_list;
int crl_list_size;

/* All the available trusted CAs
*/
gnutls_x509_crt_t *ca_list;
int ca_list_size;

static void verify_cert2 (gnutls_x509_crt_t crt,
gnutls_x509_crt_t issuer,
gnutls_x509_crl_t * crl_list, int crl_list_size);

static void verify_last_cert (gnutls_x509_crt_t crt,
gnutls_x509_crt_t * ca_list, int ca_list_size,
gnutls_x509_crl_t * crl_list,
int crl_list_size);

/* This function will try to verify the peer’s certificate chain, and

Chapter 7: How to use GnuTLS in applications 40

* also check if the hostname matches, and the activation, expiration dates.
*/
void
verify_certificate_chain (gnutls_session_t session,

const char *hostname,
const gnutls_datum_t * cert_chain,
int cert_chain_length)

{
int i;
gnutls_x509_crt_t *cert;

cert = malloc (sizeof (*cert) * cert_chain_length);

/* Import all the certificates in the chain to
* native certificate format.
*/
for (i = 0; i < cert_chain_length; i++)
{
gnutls_x509_crt_init (&cert[i]);
gnutls_x509_crt_import (cert[i], &cert_chain[i], GNUTLS_X509_FMT_DER);

}

/* If the last certificate in the chain is self signed ignore it.
* That is because we want to check against our trusted certificate
* list.
*/
if (gnutls_x509_crt_check_issuer (cert[cert_chain_length - 1],

cert[cert_chain_length - 1]) > 0
&& cert_chain_length > 0)

{
cert_chain_length--;

}

/* Now verify the certificates against their issuers
* in the chain.
*/
for (i = 1; i < cert_chain_length; i++)
{
verify_cert2 (cert[i - 1], cert[i], crl_list, crl_list_size);

}

/* Here we must verify the last certificate in the chain against
* our trusted CA list.
*/
verify_last_cert (cert[cert_chain_length - 1],

ca_list, ca_list_size, crl_list, crl_list_size);

Chapter 7: How to use GnuTLS in applications 41

/* Check if the name in the first certificate matches our destination!
*/
if (!gnutls_x509_crt_check_hostname (cert[0], hostname))
{
printf ("The certificate’s owner does not match hostname ’%s’\n",

hostname);
}

for (i = 0; i < cert_chain_length; i++)
gnutls_x509_crt_deinit (cert[i]);

return;
}

/* Verifies a certificate against an other certificate
* which is supposed to be it’s issuer. Also checks the
* crl_list if the certificate is revoked.
*/
static void
verify_cert2 (gnutls_x509_crt_t crt, gnutls_x509_crt_t issuer,

gnutls_x509_crl_t * crl_list, int crl_list_size)
{
unsigned int output;
int ret;
time_t now = time (0);
size_t name_size;
char name[64];

/* Print information about the certificates to
* be checked.
*/
name_size = sizeof (name);
gnutls_x509_crt_get_dn (crt, name, &name_size);

fprintf (stderr, "\nCertificate: %s\n", name);

name_size = sizeof (name);
gnutls_x509_crt_get_issuer_dn (crt, name, &name_size);

fprintf (stderr, "Issued by: %s\n", name);

/* Get the DN of the issuer cert.
*/
name_size = sizeof (name);
gnutls_x509_crt_get_dn (issuer, name, &name_size);

Chapter 7: How to use GnuTLS in applications 42

fprintf (stderr, "Checking against: %s\n", name);

/* Do the actual verification.
*/
gnutls_x509_crt_verify (crt, &issuer, 1, 0, &output);

if (output & GNUTLS_CERT_INVALID)
{
fprintf (stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)
fprintf (stderr, ": no issuer was found");

if (output & GNUTLS_CERT_SIGNER_NOT_CA)
fprintf (stderr, ": issuer is not a CA");

fprintf (stderr, "\n");
}

else
fprintf (stderr, "Trusted\n");

/* Now check the expiration dates.
*/
if (gnutls_x509_crt_get_activation_time (crt) > now)
fprintf (stderr, "Not yet activated\n");

if (gnutls_x509_crt_get_expiration_time (crt) < now)
fprintf (stderr, "Expired\n");

/* Check if the certificate is revoked.
*/
ret = gnutls_x509_crt_check_revocation (crt, crl_list, crl_list_size);
if (ret == 1)
{ /* revoked */
fprintf (stderr, "Revoked\n");

}
}

/* Verifies a certificate against our trusted CA list.
* Also checks the crl_list if the certificate is revoked.
*/
static void
verify_last_cert (gnutls_x509_crt_t crt,

gnutls_x509_crt_t * ca_list, int ca_list_size,
gnutls_x509_crl_t * crl_list, int crl_list_size)

{

Chapter 7: How to use GnuTLS in applications 43

unsigned int output;
int ret;
time_t now = time (0);
size_t name_size;
char name[64];

/* Print information about the certificates to
* be checked.
*/
name_size = sizeof (name);
gnutls_x509_crt_get_dn (crt, name, &name_size);

fprintf (stderr, "\nCertificate: %s\n", name);

name_size = sizeof (name);
gnutls_x509_crt_get_issuer_dn (crt, name, &name_size);

fprintf (stderr, "Issued by: %s\n", name);

/* Do the actual verification.
*/
gnutls_x509_crt_verify (crt, ca_list, ca_list_size,

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT, &output);

if (output & GNUTLS_CERT_INVALID)
{
fprintf (stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_CA)
fprintf (stderr, ": Issuer is not a CA\n");

else
fprintf (stderr, "\n");

}
else
fprintf (stderr, "Trusted\n");

/* Now check the expiration dates.
*/
if (gnutls_x509_crt_get_activation_time (crt) > now)
fprintf (stderr, "Not yet activated\n");

if (gnutls_x509_crt_get_expiration_time (crt) < now)
fprintf (stderr, "Expired\n");

/* Check if the certificate is revoked.
*/

Chapter 7: How to use GnuTLS in applications 44

ret = gnutls_x509_crt_check_revocation (crt, crl_list, crl_list_size);
if (ret == 1)
{ /* revoked */
fprintf (stderr, "Revoked\n");

}
}

7.3.5 Using a callback to select the certificate to use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use
of the certificate selection callback.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

/* A TLS client that loads the certificate and key.
*/

#define MAX_BUF 1024
#define MSG "GET / HTTP/1.0\r\n\r\n"

#define CERT_FILE "cert.pem"
#define KEY_FILE "key.pem"
#define CAFILE "ca.pem"

extern int tcp_connect (void);
extern void tcp_close (int sd);

static int cert_callback (gnutls_session_t session,
const gnutls_datum_t * req_ca_rdn, int nreqs,
const gnutls_pk_algorithm_t * sign_algos,
int sign_algos_length, gnutls_retr_st * st);

Chapter 7: How to use GnuTLS in applications 45

gnutls_x509_crt_t crt;
gnutls_x509_privkey_t key;

/* Helper functions to load a certificate and key
* files into memory.
*/
static gnutls_datum
load_file (const char *file)
{
FILE *f;
gnutls_datum loaded_file = { NULL, 0 };
long filelen;
void *ptr;

if (!(f = fopen(file, "r"))
|| fseek(f, 0, SEEK_END) != 0
|| (filelen = ftell(f)) < 0
|| fseek(f, 0, SEEK_SET) != 0
|| !(ptr = malloc((size_t)filelen))
|| fread(ptr, 1, (size_t)filelen, f) < (size_t)filelen)

{
return loaded_file;

}

loaded_file.data = ptr;
loaded_file.size = (unsigned int)filelen;
return loaded_file;

}

static void unload_file(gnutls_datum data)
{
free(data.data);

}

/* Load the certificate and the private key.
*/
static void
load_keys (void)
{
int ret;
gnutls_datum_t data;

data = load_file (CERT_FILE);
if (data.data == NULL)
{
fprintf (stderr, "*** Error loading cert file.\n");
exit (1);

Chapter 7: How to use GnuTLS in applications 46

}
gnutls_x509_crt_init (&crt);

ret = gnutls_x509_crt_import (crt, &data, GNUTLS_X509_FMT_PEM);
if (ret < 0)
{
fprintf (stderr, "*** Error loading key file: %s\n",

gnutls_strerror (ret));
exit (1);

}

unload_file (data);

data = load_file (KEY_FILE);
if (data.data == NULL)
{
fprintf (stderr, "*** Error loading key file.\n");
exit (1);

}

gnutls_x509_privkey_init (&key);

ret = gnutls_x509_privkey_import (key, &data, GNUTLS_X509_FMT_PEM);
if (ret < 0)
{
fprintf (stderr, "*** Error loading key file: %s\n",

gnutls_strerror (ret));
exit (1);

}

unload_file (data);

}

int
main (void)
{
int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;
/* Allow connections to servers that have OpenPGP keys as well.
*/

gnutls_global_init ();

load_keys ();

Chapter 7: How to use GnuTLS in applications 47

/* X509 stuff */
gnutls_certificate_allocate_credentials (&xcred);

/* sets the trusted cas file
*/
gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_client_set_retrieve_function (xcred, cert_callback);

/* Initialize TLS session
*/
gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_set_default_priority (session);

/* put the x509 credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/
sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake
*/
ret = gnutls_handshake (session);

if (ret < 0)
{
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror (ret);
goto end;

}
else
{
printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)
{

Chapter 7: How to use GnuTLS in applications 48

printf ("- Peer has closed the TLS connection\n");
goto end;

}
else if (ret < 0)
{
fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));
goto end;

}

printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);

}
fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return 0;
}

/* This callback should be associated with a session by calling
* gnutls_certificate_client_set_retrieve_function(session, cert_callback),
* before a handshake.
*/

static int
cert_callback (gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,
const gnutls_pk_algorithm_t * sign_algos,
int sign_algos_length, gnutls_retr_st * st)

{
char issuer_dn[256];
int i, ret;
size_t len;

Chapter 7: How to use GnuTLS in applications 49

gnutls_certificate_type_t type;

/* Print the server’s trusted CAs
*/
if (nreqs > 0)
printf ("- Server’s trusted authorities:\n");

else
printf ("- Server did not send us any trusted authorities names.\n");

/* print the names (if any) */
for (i = 0; i < nreqs; i++)
{
len = sizeof (issuer_dn);
ret = gnutls_x509_rdn_get (&req_ca_rdn[i], issuer_dn, &len);
if (ret >= 0)
{
printf (" [%d]: ", i);
printf ("%s\n", issuer_dn);

}
}

/* Select a certificate and return it.
* The certificate must be of any of the "sign algorithms"
* supported by the server.
*/

type = gnutls_certificate_type_get (session);
if (type == GNUTLS_CRT_X509)
{
st->type = type;
st->ncerts = 1;

st->cert.x509 = &crt;
st->key.x509 = key;

st->deinit_all = 0;
}

else
{
return -1;

}

return 0;

}

Chapter 7: How to use GnuTLS in applications 50

7.3.6 Client with Resume capability example

This is a modification of the simple client example. Here we demonstrate the use of session
resumption. The client tries to connect once using TLS, close the connection and then try
to establish a new connection using the previously negotiated data.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.
*/
extern void check_alert (gnutls_session_t session, int ret);
extern int tcp_connect (void);
extern void tcp_close (int sd);

#define MAX_BUF 1024
#define CRLFILE "crl.pem"
#define CAFILE "ca.pem"
#define MSG "GET / HTTP/1.0\r\n\r\n"

int
main (void)
{
int ret;
int sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;

/* variables used in session resuming
*/
int t;
char *session_data;
size_t session_data_size;

gnutls_global_init ();

/* X509 stuff */
gnutls_certificate_allocate_credentials (&xcred);

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

Chapter 7: How to use GnuTLS in applications 51

for (t = 0; t < 2; t++)
{ /* connect 2 times to the server */

sd = tcp_connect ();

gnutls_init (&session, GNUTLS_CLIENT);

gnutls_set_default_priority (session);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

if (t > 0)
{
/* if this is not the first time we connect */
gnutls_session_set_data (session, session_data, session_data_size);
free (session_data);

}

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake
*/
ret = gnutls_handshake (session);

if (ret < 0)
{
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror (ret);
goto end;

}
else
{
printf ("- Handshake was completed\n");

}

if (t == 0)
{ /* the first time we connect */
/* get the session data size */
gnutls_session_get_data (session, NULL, &session_data_size);
session_data = malloc (session_data_size);

/* put session data to the session variable */
gnutls_session_get_data (session, session_data, &session_data_size);

}
else
{ /* the second time we connect */

Chapter 7: How to use GnuTLS in applications 52

/* check if we actually resumed the previous session */
if (gnutls_session_is_resumed (session) != 0)
{
printf ("- Previous session was resumed\n");

}
else
{
fprintf (stderr, "*** Previous session was NOT resumed\n");

}
}

/* This function was defined in a previous example
*/
/* print_info(session); */

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)
{
printf ("- Peer has closed the TLS connection\n");
goto end;

}
else if (ret < 0)
{
fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));
goto end;

}

printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);

}
fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

} /* for() */

Chapter 7: How to use GnuTLS in applications 53

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return 0;
}

7.3.7 Simple client example with SRP authentication

The following client is a very simple SRP TLS client which connects to a server and au-
thenticates using a username and a password. The server may authenticate itself using a
certificate, and in that case it has to be verified.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/extra.h>

/* Those functions are defined in other examples.
*/
extern void check_alert (gnutls_session_t session, int ret);
extern int tcp_connect (void);
extern void tcp_close (int sd);

#define MAX_BUF 1024
#define USERNAME "user"
#define PASSWORD "pass"
#define CAFILE "ca.pem"
#define SA struct sockaddr
#define MSG "GET / HTTP/1.0\r\n\r\n"

const int kx_priority[] = { GNUTLS_KX_SRP, GNUTLS_KX_SRP_DSS,
GNUTLS_KX_SRP_RSA, 0

};

int
main (void)
{
int ret;
int sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_srp_client_credentials_t srp_cred;

Chapter 7: How to use GnuTLS in applications 54

gnutls_certificate_credentials_t cert_cred;

gnutls_global_init ();

/* now enable the gnutls-extra library which contains the
* SRP stuff.
*/
gnutls_global_init_extra ();

gnutls_srp_allocate_client_credentials (&srp_cred);
gnutls_certificate_allocate_credentials (&cert_cred);

gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,
GNUTLS_X509_FMT_PEM);

gnutls_srp_set_client_credentials (srp_cred, USERNAME, PASSWORD);

/* connects to server
*/
sd = tcp_connect ();

/* Initialize TLS session
*/
gnutls_init (&session, GNUTLS_CLIENT);

/* Set the priorities.
*/
gnutls_set_default_priority (session);
gnutls_kx_set_priority (session, kx_priority);

/* put the SRP credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_SRP, srp_cred);
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake
*/
ret = gnutls_handshake (session);

if (ret < 0)
{
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror (ret);
goto end;

Chapter 7: How to use GnuTLS in applications 55

}
else
{
printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (gnutls_error_is_fatal (ret) == 1 || ret == 0)
{
if (ret == 0)
{
printf ("- Peer has closed the GNUTLS connection\n");
goto end;

}
else
{
fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));
goto end;

}
}

else
check_alert (session, ret);

if (ret > 0)
{
printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);

}
fputs ("\n", stdout);

}
gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_srp_free_client_credentials (srp_cred);
gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

Chapter 7: How to use GnuTLS in applications 56

return 0;
}

7.3.8 Simple client example with TLS/IA support

The following client is a simple client which uses the TLS/IA extension to authenticate with
the server.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/extra.h>

/* A basic TLS client, with anonymous authentication and TLS/IA handshake.
*/

#define MAX_BUF 1024
#define SA struct sockaddr
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);
extern void tcp_close (int sd);

int
client_avp (gnutls_session_t session, void *ptr,

const char *last, size_t lastlen,
char **new, size_t *newlen)

{

if (last)
printf ("- received %d bytes AVP: ‘%.*s’\n",

lastlen, lastlen, last);
else
printf ("- new application phase\n");

*new = gnutls_strdup ("client avp");
if (!*new)
return -1;

*newlen = strlen (*new);

Chapter 7: How to use GnuTLS in applications 57

printf ("- sending %d bytes AVP: ‘%s’\n", *newlen, *new);

gnutls_ia_permute_inner_secret (session, 3, "foo");

return 0;

}

int
main (void)
{
int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_anon_client_credentials_t anoncred;
gnutls_ia_client_credentials_t iacred;
/* Need to enable anonymous KX specifically. */
const int kx_prio[] = { GNUTLS_KX_ANON_DH, 0 };

gnutls_global_init ();

gnutls_anon_allocate_client_credentials (&anoncred);
gnutls_ia_allocate_client_credentials (&iacred);

/* Set TLS/IA stuff
*/
gnutls_ia_set_client_avp_function (iacred, client_avp);

/* Initialize TLS session
*/
gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_set_default_priority (session);
gnutls_kx_set_priority (session, kx_prio);

/* put the anonymous and TLS/IA credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);
gnutls_credentials_set (session, GNUTLS_CRD_IA, iacred);

/* connect to the peer
*/
sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

Chapter 7: How to use GnuTLS in applications 58

/* Perform the TLS handshake
*/
ret = gnutls_handshake (session);

if (ret < 0)
{
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror (ret);
goto end;

}
else
{
printf ("- Handshake was completed\n");

}

if (!gnutls_ia_handshake_p (session))
{
fprintf (stderr, "*** TLS/IA not negotiated...\n");
goto end;

}
else
{
printf ("- Starting TLS/IA handshake...\n");

ret = gnutls_ia_handshake (session);

if (ret < 0)
{
fprintf (stderr, "*** TLS/IA handshake failed\n");
gnutls_perror (ret);
goto end;

}
else
{
printf ("- TLS/IA Handshake was completed\n");

}
}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)
{
printf ("- Peer has closed the TLS connection\n");
goto end;

Chapter 7: How to use GnuTLS in applications 59

}
else if (ret < 0)
{
fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));
goto end;

}

printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);

}
fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_ia_free_client_credentials (iacred);
gnutls_anon_free_client_credentials (anoncred);

gnutls_global_deinit ();

return 0;
}

7.3.9 Helper function for TCP connections

This helper function abstracts away TCP connection handling from the other examples. It
is required to build some examples.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <unistd.h>

Chapter 7: How to use GnuTLS in applications 60

#define SA struct sockaddr

/* Connects to the peer and returns a socket
* descriptor.
*/
extern int
tcp_connect (void)
{
const char *PORT = "5556";
const char *SERVER = "127.0.0.1";
int err, sd;
struct sockaddr_in sa;

/* connects to server
*/
sd = socket (AF_INET, SOCK_STREAM, 0);

memset (&sa, ’\0’, sizeof (sa));
sa.sin_family = AF_INET;
sa.sin_port = htons (atoi (PORT));
inet_pton (AF_INET, SERVER, &sa.sin_addr);

err = connect (sd, (SA *) & sa, sizeof (sa));
if (err < 0)
{
fprintf (stderr, "Connect error\n");
exit (1);

}

return sd;
}

/* closes the given socket descriptor.
*/
extern void
tcp_close (int sd)
{
shutdown (sd, SHUT_RDWR); /* no more receptions */
close (sd);

}

7.4 Server examples

This section contains examples of TLS and SSL servers, using GnuTLS.

Chapter 7: How to use GnuTLS in applications 61

7.4.1 Echo Server with X.509 authentication

This example is a very simple echo server which supports X.509 authentication, using the
RSA ciphersuites.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

#define KEYFILE "key.pem"
#define CERTFILE "cert.pem"
#define CAFILE "ca.pem"
#define CRLFILE "crl.pem"

/* This is a sample TLS 1.0 echo server, using X.509 authentication.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */
#define DH_BITS 1024

/* These are global */
gnutls_certificate_credentials_t x509_cred;

gnutls_session_t
initialize_tls_session (void)
{
gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

/* avoid calling all the priority functions, since the defaults
* are adequate.
*/

Chapter 7: How to use GnuTLS in applications 62

gnutls_set_default_priority (session);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, x509_cred);

/* request client certificate if any.
*/
gnutls_certificate_server_set_request (session, GNUTLS_CERT_REQUEST);

gnutls_dh_set_prime_bits (session, DH_BITS);

return session;
}

static gnutls_dh_params_t dh_params;

static int
generate_dh_params (void)
{

/* Generate Diffie Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated
* once a day, once a week or once a month. Depending on the
* security requirements.
*/
gnutls_dh_params_init (&dh_params);
gnutls_dh_params_generate2 (dh_params, DH_BITS);

return 0;
}

int
main (void)
{
int err, listen_sd, i;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;

/* this must be called once in the program
*/
gnutls_global_init ();

Chapter 7: How to use GnuTLS in applications 63

gnutls_certificate_allocate_credentials (&x509_cred);
gnutls_certificate_set_x509_trust_file (x509_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file (x509_cred, CRLFILE,
GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file (x509_cred, CERTFILE, KEYFILE,
GNUTLS_X509_FMT_PEM);

generate_dh_params ();

gnutls_certificate_set_dh_params (x509_cred, dh_params);

/* Socket operations
*/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);
SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));
SOCKET_ERR (err, "bind");
err = listen (listen_sd, 1024);
SOCKET_ERR (err, "listen");

printf ("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof (sa_cli);
for (;;)
{
session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",
inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);
ret = gnutls_handshake (session);
if (ret < 0)

Chapter 7: How to use GnuTLS in applications 64

{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));
continue;

}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

i = 0;
for (;;)
{
memset (buffer, 0, MAX_BUF + 1);
ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)
{
printf ("\n- Peer has closed the GNUTLS connection\n");
break;

}
else if (ret < 0)
{
fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);
break;

}
else if (ret > 0)
{
/* echo data back to the client
*/
gnutls_record_send (session, buffer, strlen (buffer));

}
}

printf ("\n");
/* do not wait for the peer to close the connection.
*/
gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);
gnutls_deinit (session);

}
close (listen_sd);

Chapter 7: How to use GnuTLS in applications 65

gnutls_certificate_free_credentials (x509_cred);

gnutls_global_deinit ();

return 0;

}

7.4.2 Echo Server with X.509 authentication II

The following example is a server which supports X.509 authentication. This server supports
the export-grade cipher suites, the DHE ciphersuites and session resuming.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

#define KEYFILE "key.pem"
#define CERTFILE "cert.pem"
#define CAFILE "ca.pem"
#define CRLFILE "crl.pem"

/* This is a sample TLS 1.0 echo server.
* Export-grade ciphersuites and session resuming are supported.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */
#define DH_BITS 1024

/* These are global */
gnutls_certificate_credentials_t cert_cred;

static void wrap_db_init (void);
static void wrap_db_deinit (void);

Chapter 7: How to use GnuTLS in applications 66

static int wrap_db_store (void *dbf, gnutls_datum_t key, gnutls_datum_t data);
static gnutls_datum_t wrap_db_fetch (void *dbf, gnutls_datum_t key);
static int wrap_db_delete (void *dbf, gnutls_datum_t key);

#define TLS_SESSION_CACHE 50

gnutls_session_t
initialize_tls_session (void)
{
gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

/* Use the default priorities, plus, export cipher suites.
*/
gnutls_set_default_export_priority (session);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

/* request client certificate if any.
*/
gnutls_certificate_server_set_request (session, GNUTLS_CERT_REQUEST);

gnutls_dh_set_prime_bits (session, DH_BITS);

if (TLS_SESSION_CACHE != 0)
{
gnutls_db_set_retrieve_function (session, wrap_db_fetch);
gnutls_db_set_remove_function (session, wrap_db_delete);
gnutls_db_set_store_function (session, wrap_db_store);
gnutls_db_set_ptr (session, NULL);

}

return session;
}

gnutls_dh_params_t dh_params;
/* Export-grade cipher suites require temporary RSA
* keys.
*/
gnutls_rsa_params_t rsa_params;

int
generate_dh_params (void)
{
/* Generate Diffie Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated

Chapter 7: How to use GnuTLS in applications 67

* once a day, once a week or once a month. Depends on the
* security requirements.
*/
gnutls_dh_params_init (&dh_params);
gnutls_dh_params_generate2 (dh_params, DH_BITS);

return 0;
}

static int
generate_rsa_params (void)
{
gnutls_rsa_params_init (&rsa_params);

/* Generate RSA parameters - for use with RSA-export
* cipher suites. These should be discarded and regenerated
* once a day, once every 500 transactions etc. Depends on the
* security requirements.
*/

gnutls_rsa_params_generate2 (rsa_params, 512);

return 0;
}

int
main (void)
{
int err, listen_sd, i;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;
char name[256];

strcpy (name, "Echo Server");

/* this must be called once in the program
*/
gnutls_global_init ();

gnutls_certificate_allocate_credentials (&cert_cred);

Chapter 7: How to use GnuTLS in applications 68

gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,
GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file (cert_cred, CRLFILE,
GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file (cert_cred, CERTFILE, KEYFILE,
GNUTLS_X509_FMT_PEM);

generate_dh_params ();
generate_rsa_params ();

if (TLS_SESSION_CACHE != 0)
{
wrap_db_init ();

}

gnutls_certificate_set_dh_params (cert_cred, dh_params);
gnutls_certificate_set_rsa_export_params (cert_cred, rsa_params);

/* Socket operations
*/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);
SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));
SOCKET_ERR (err, "bind");
err = listen (listen_sd, 1024);
SOCKET_ERR (err, "listen");

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);
for (;;)
{
session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

Chapter 7: How to use GnuTLS in applications 69

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,
sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);
ret = gnutls_handshake (session);
if (ret < 0)
{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));
continue;

}
printf ("- Handshake was completed\n");

/* print_info(session); */

i = 0;
for (;;)
{
memset (buffer, 0, MAX_BUF + 1);
ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)
{
printf ("\n- Peer has closed the TLS connection\n");
break;

}
else if (ret < 0)
{
fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);
break;

}
else if (ret > 0)
{
/* echo data back to the client
*/
gnutls_record_send (session, buffer, strlen (buffer));

}
}

printf ("\n");
/* do not wait for the peer to close the connection.
*/
gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

Chapter 7: How to use GnuTLS in applications 70

gnutls_deinit (session);

}
close (listen_sd);

gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

return 0;

}

/* Functions and other stuff needed for session resuming.
* This is done using a very simple list which holds session ids
* and session data.
*/

#define MAX_SESSION_ID_SIZE 32
#define MAX_SESSION_DATA_SIZE 512

typedef struct
{
char session_id[MAX_SESSION_ID_SIZE];
int session_id_size;

char session_data[MAX_SESSION_DATA_SIZE];
int session_data_size;

} CACHE;

static CACHE *cache_db;
static int cache_db_ptr = 0;

static void
wrap_db_init (void)
{

/* allocate cache_db */
cache_db = calloc (1, TLS_SESSION_CACHE * sizeof (CACHE));

}

static void
wrap_db_deinit (void)
{
return;

}

Chapter 7: How to use GnuTLS in applications 71

static int
wrap_db_store (void *dbf, gnutls_datum_t key, gnutls_datum_t data)
{

if (cache_db == NULL)
return -1;

if (key.size > MAX_SESSION_ID_SIZE)
return -1;

if (data.size > MAX_SESSION_DATA_SIZE)
return -1;

memcpy (cache_db[cache_db_ptr].session_id, key.data, key.size);
cache_db[cache_db_ptr].session_id_size = key.size;

memcpy (cache_db[cache_db_ptr].session_data, data.data, data.size);
cache_db[cache_db_ptr].session_data_size = data.size;

cache_db_ptr++;
cache_db_ptr %= TLS_SESSION_CACHE;

return 0;
}

static gnutls_datum_t
wrap_db_fetch (void *dbf, gnutls_datum_t key)
{
gnutls_datum_t res = { NULL, 0 };
int i;

if (cache_db == NULL)
return res;

for (i = 0; i < TLS_SESSION_CACHE; i++)
{
if (key.size == cache_db[i].session_id_size &&

memcmp (key.data, cache_db[i].session_id, key.size) == 0)
{

res.size = cache_db[i].session_data_size;

res.data = gnutls_malloc (res.size);
if (res.data == NULL)
return res;

Chapter 7: How to use GnuTLS in applications 72

memcpy (res.data, cache_db[i].session_data, res.size);

return res;
}

}
return res;

}

static int
wrap_db_delete (void *dbf, gnutls_datum_t key)
{
int i;

if (cache_db == NULL)
return -1;

for (i = 0; i < TLS_SESSION_CACHE; i++)
{
if (key.size == cache_db[i].session_id_size &&

memcmp (key.data, cache_db[i].session_id, key.size) == 0)
{

cache_db[i].session_id_size = 0;
cache_db[i].session_data_size = 0;

return 0;
}

}

return -1;

}

7.4.3 Echo Server with OpenPGP authentication

The following example is an echo server which supports OpenPGP key authentication. You
can easily combine this functionality —that is have a server that supports both X.509 and
OpenPGP certificates— but we separated them to keep these examples as simple as possible.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>

Chapter 7: How to use GnuTLS in applications 73

#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
/* Must be linked against gnutls-extra.
*/
#include <gnutls/extra.h>

#define KEYFILE "secret.asc"
#define CERTFILE "public.asc"
#define RINGFILE "ring.gpg"

/* This is a sample TLS 1.0-OpenPGP echo server.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */
#define DH_BITS 1024

/* These are global */
gnutls_certificate_credentials_t cred;
const int cert_type_priority[2] = { GNUTLS_CRT_OPENPGP, 0 };
gnutls_dh_params_t dh_params;

static int
generate_dh_params (void)
{

/* Generate Diffie Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated
* once a day, once a week or once a month. Depending on the
* security requirements.
*/
gnutls_dh_params_init (&dh_params);
gnutls_dh_params_generate2 (dh_params, DH_BITS);

return 0;
}

gnutls_session_t
initialize_tls_session (void)
{
gnutls_session_t session;

Chapter 7: How to use GnuTLS in applications 74

gnutls_init (&session, GNUTLS_SERVER);

/* avoid calling all the priority functions, since the defaults
* are adequate.
*/
gnutls_set_default_priority (session);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cred);

/* request client certificate if any.
*/
gnutls_certificate_server_set_request (session, GNUTLS_CERT_REQUEST);

gnutls_dh_set_prime_bits (session, DH_BITS);

return session;
}

int
main (void)
{
int err, listen_sd, i;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;
char name[256];

strcpy (name, "Echo Server");

/* this must be called once in the program
*/
gnutls_global_init ();

gnutls_certificate_allocate_credentials (&cred);
gnutls_certificate_set_openpgp_keyring_file (cred, RINGFILE);

gnutls_certificate_set_openpgp_key_file (cred, CERTFILE, KEYFILE);

generate_dh_params ();

gnutls_certificate_set_dh_params (cred, dh_params);

Chapter 7: How to use GnuTLS in applications 75

/* Socket operations
*/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);
SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));
SOCKET_ERR (err, "bind");
err = listen (listen_sd, 1024);
SOCKET_ERR (err, "listen");

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);
for (;;)
{
session = initialize_tls_session ();
gnutls_certificate_type_set_priority (session, cert_type_priority);

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",
inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);
ret = gnutls_handshake (session);
if (ret < 0)
{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));
continue;

}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

Chapter 7: How to use GnuTLS in applications 76

i = 0;
for (;;)
{
memset (buffer, 0, MAX_BUF + 1);
ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)
{
printf ("\n- Peer has closed the GNUTLS connection\n");
break;

}
else if (ret < 0)
{
fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);
break;

}
else if (ret > 0)
{
/* echo data back to the client
*/
gnutls_record_send (session, buffer, strlen (buffer));

}
}

printf ("\n");
/* do not wait for the peer to close the connection.
*/
gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);
gnutls_deinit (session);

}
close (listen_sd);

gnutls_certificate_free_credentials (cred);

gnutls_global_deinit ();

return 0;

}

7.4.4 Echo Server with SRP authentication

This is a server which supports SRP authentication. It is also possible to combine this
functionality with a certificate server. Here it is separate for simplicity.

Chapter 7: How to use GnuTLS in applications 77

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/extra.h>

#define SRP_PASSWD "tpasswd"
#define SRP_PASSWD_CONF "tpasswd.conf"

#define KEYFILE "key.pem"
#define CERTFILE "cert.pem"
#define CAFILE "ca.pem"

/* This is a sample TLS-SRP echo server.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */

/* These are global */
gnutls_srp_server_credentials_t srp_cred;
gnutls_certificate_credentials_t cert_cred;

gnutls_session_t
initialize_tls_session (void)
{
gnutls_session_t session;
const int kx_priority[] = { GNUTLS_KX_SRP, GNUTLS_KX_SRP_DSS,
GNUTLS_KX_SRP_RSA, 0

};

gnutls_init (&session, GNUTLS_SERVER);

gnutls_set_default_priority (session);
gnutls_kx_set_priority (session, kx_priority);

Chapter 7: How to use GnuTLS in applications 78

gnutls_credentials_set (session, GNUTLS_CRD_SRP, srp_cred);
/* for the certificate authenticated ciphersuites.
*/
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

/* request client certificate if any.
*/
gnutls_certificate_server_set_request (session, GNUTLS_CERT_IGNORE);

return session;
}

int
main (void)
{
int err, listen_sd, i;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;
char name[256];

strcpy (name, "Echo Server");

/* these must be called once in the program
*/
gnutls_global_init ();
gnutls_global_init_extra (); /* for SRP */

/* SRP_PASSWD a password file (created with the included srptool utility)
*/
gnutls_srp_allocate_server_credentials (&srp_cred);
gnutls_srp_set_server_credentials_file (srp_cred, SRP_PASSWD,

SRP_PASSWD_CONF);

gnutls_certificate_allocate_credentials (&cert_cred);
gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,

GNUTLS_X509_FMT_PEM);
gnutls_certificate_set_x509_key_file (cert_cred, CERTFILE, KEYFILE,

GNUTLS_X509_FMT_PEM);

/* TCP socket operations

Chapter 7: How to use GnuTLS in applications 79

*/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);
SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));
SOCKET_ERR (err, "bind");
err = listen (listen_sd, 1024);
SOCKET_ERR (err, "listen");

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);
for (;;)
{
session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",
inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);
ret = gnutls_handshake (session);
if (ret < 0)
{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));
continue;

}
printf ("- Handshake was completed\n");

/* print_info(session); */

i = 0;
for (;;)
{
memset (buffer, 0, MAX_BUF + 1);

Chapter 7: How to use GnuTLS in applications 80

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)
{
printf ("\n- Peer has closed the GNUTLS connection\n");
break;

}
else if (ret < 0)
{
fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);
break;

}
else if (ret > 0)
{
/* echo data back to the client
*/
gnutls_record_send (session, buffer, strlen (buffer));

}
}

printf ("\n");
/* do not wait for the peer to close the connection. */
gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);
gnutls_deinit (session);

}
close (listen_sd);

gnutls_srp_free_server_credentials (srp_cred);
gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

return 0;

}

7.4.5 Echo Server with anonymous authentication

This example server support anonymous authentication, and could be used to serve the
example client for anonymous authentication.

#if HAVE_CONFIG_H
include <config.h>
#endif

Chapter 7: How to use GnuTLS in applications 81

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

/* This is a sample TLS 1.0 echo server, for anonymous authentication only.
*/

#define SA struct sockaddr
#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */
#define DH_BITS 1024

/* These are global */
gnutls_anon_server_credentials_t anoncred;

gnutls_session_t
initialize_tls_session (void)
{
gnutls_session_t session;
const int kx_prio[] = { GNUTLS_KX_ANON_DH, 0 };

gnutls_init (&session, GNUTLS_SERVER);

/* avoid calling all the priority functions, since the defaults
* are adequate.
*/
gnutls_set_default_priority (session);
gnutls_kx_set_priority (session, kx_prio);

gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);

gnutls_dh_set_prime_bits (session, DH_BITS);

return session;
}

static gnutls_dh_params_t dh_params;

Chapter 7: How to use GnuTLS in applications 82

static int
generate_dh_params (void)
{

/* Generate Diffie Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated
* once a day, once a week or once a month. Depending on the
* security requirements.
*/
gnutls_dh_params_init (&dh_params);
gnutls_dh_params_generate2 (dh_params, DH_BITS);

return 0;
}

int
main (void)
{
int err, listen_sd, i;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
int client_len;
char topbuf[512];
gnutls_session_t session;
char buffer[MAX_BUF + 1];
int optval = 1;

/* this must be called once in the program
*/
gnutls_global_init ();

gnutls_anon_allocate_server_credentials (&anoncred);

generate_dh_params ();

gnutls_anon_set_server_dh_params (anoncred, dh_params);

/* Socket operations
*/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);
SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (PORT); /* Server Port number */

Chapter 7: How to use GnuTLS in applications 83

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));
SOCKET_ERR (err, "bind");
err = listen (listen_sd, 1024);
SOCKET_ERR (err, "listen");

printf ("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof (sa_cli);
for (;;)
{
session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",
inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);
ret = gnutls_handshake (session);
if (ret < 0)
{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));
continue;

}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

i = 0;
for (;;)
{
memset (buffer, 0, MAX_BUF + 1);
ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)
{
printf ("\n- Peer has closed the GNUTLS connection\n");
break;

}

Chapter 7: How to use GnuTLS in applications 84

else if (ret < 0)
{
fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);
break;

}
else if (ret > 0)
{
/* echo data back to the client
*/
gnutls_record_send (session, buffer, strlen (buffer));

}
}

printf ("\n");
/* do not wait for the peer to close the connection.
*/
gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);
gnutls_deinit (session);

}
close (listen_sd);

gnutls_anon_free_server_credentials (anoncred);

gnutls_global_deinit ();

return 0;

}

7.5 Miscellaneous examples

7.5.1 Checking for an alert

This is a function that checks if an alert has been received in the current session.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>

/* This function will check whether the given return code from
* a gnutls function (recv/send), is an alert, and will print

Chapter 7: How to use GnuTLS in applications 85

* that alert.
*/
void
check_alert (gnutls_session_t session, int ret)
{
int last_alert;

if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED
|| ret == GNUTLS_E_FATAL_ALERT_RECEIVED)

{
last_alert = gnutls_alert_get (session);

/* The check for renegotiation is only useful if we are
* a server, and we had requested a rehandshake.
*/
if (last_alert == GNUTLS_A_NO_RENEGOTIATION &&

ret == GNUTLS_E_WARNING_ALERT_RECEIVED)
printf ("* Received NO_RENEGOTIATION alert. "

"Client Does not support renegotiation.\n");
else
printf ("* Received alert ’%d’: %s.\n", last_alert,

gnutls_alert_get_name (last_alert));
}

}

7.5.2 X.509 certificate parsing example

To demonstrate the X.509 parsing capabilities an example program is listed below. That
program reads the peer’s certificate, and prints information about it.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

static const char *
bin2hex (const void *bin, size_t bin_size)
{
static char printable[110];
const unsigned char *_bin = bin;
char *print;
size_t i;

if (bin_size > 50)

Chapter 7: How to use GnuTLS in applications 86

bin_size = 50;

print = printable;
for (i = 0; i < bin_size; i++)
{
sprintf (print, "%.2x ", _bin[i]);
print += 2;

}

return printable;
}

/* This function will print information about this session’s peer
* certificate.
*/
void
print_x509_certificate_info (gnutls_session_t session)
{
char serial[40];
char dn[128];
size_t size;
unsigned int algo, bits;
time_t expiration_time, activation_time;
const gnutls_datum_t *cert_list;
unsigned int cert_list_size = 0;
gnutls_x509_crt_t cert;

/* This function only works for X.509 certificates.
*/
if (gnutls_certificate_type_get (session) != GNUTLS_CRT_X509)
return;

cert_list = gnutls_certificate_get_peers (session, &cert_list_size);

printf ("Peer provided %d certificates.\n", cert_list_size);

if (cert_list_size > 0)
{

/* we only print information about the first certificate.
*/
gnutls_x509_crt_init (&cert);

gnutls_x509_crt_import (cert, &cert_list[0], GNUTLS_X509_FMT_DER);

printf ("Certificate info:\n");

Chapter 7: How to use GnuTLS in applications 87

expiration_time = gnutls_x509_crt_get_expiration_time (cert);
activation_time = gnutls_x509_crt_get_activation_time (cert);

printf ("\tCertificate is valid since: %s", ctime (&activation_time));
printf ("\tCertificate expires: %s", ctime (&expiration_time));

/* Print the serial number of the certificate.
*/
size = sizeof (serial);
gnutls_x509_crt_get_serial (cert, serial, &size);

size = sizeof (serial);
printf ("\tCertificate serial number: %s\n", bin2hex (serial, size));

/* Extract some of the public key algorithm’s parameters
*/
algo = gnutls_x509_crt_get_pk_algorithm (cert, &bits);

printf ("Certificate public key: %s",
gnutls_pk_algorithm_get_name (algo));

/* Print the version of the X.509
* certificate.
*/
printf ("\tCertificate version: #%d\n",

gnutls_x509_crt_get_version (cert));

size = sizeof (dn);
gnutls_x509_crt_get_dn (cert, dn, &size);
printf ("\tDN: %s\n", dn);

size = sizeof (dn);
gnutls_x509_crt_get_issuer_dn (cert, dn, &size);
printf ("\tIssuer’s DN: %s\n", dn);

gnutls_x509_crt_deinit (cert);

}
}

7.5.3 Certificate request generation

The following example is about generating a certificate request, and a private key. A cer-
tificate request can be later be processed by a CA, which should return a signed certificate.

#if HAVE_CONFIG_H
include <config.h>
#endif

Chapter 7: How to use GnuTLS in applications 88

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <time.h>

/* This example will generate a private key and a certificate
* request.
*/

int
main (void)
{
gnutls_x509_crq_t crq;
gnutls_x509_privkey_t key;
unsigned char buffer[10 * 1024];
int buffer_size = sizeof (buffer);

gnutls_global_init ();

/* Initialize an empty certificate request, and
* an empty private key.
*/
gnutls_x509_crq_init (&crq);

gnutls_x509_privkey_init (&key);

/* Generate a 1024 bit RSA private key.
*/
gnutls_x509_privkey_generate (key, GNUTLS_PK_RSA, 1024, 0);

/* Add stuff to the distinguished name
*/
gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COUNTRY_NAME,

0, "GR", 2);

gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COMMON_NAME,
0, "Nikos", strlen ("Nikos"));

/* Set the request version.
*/
gnutls_x509_crq_set_version (crq, 1);

/* Set a challenge password.
*/

Chapter 7: How to use GnuTLS in applications 89

gnutls_x509_crq_set_challenge_password (crq, "something to remember here");

/* Associate the request with the private key
*/
gnutls_x509_crq_set_key (crq, key);

/* Self sign the certificate request.
*/
gnutls_x509_crq_sign (crq, key);

/* Export the PEM encoded certificate request, and
* display it.
*/
gnutls_x509_crq_export (crq, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("Certificate Request: \n%s", buffer);

/* Export the PEM encoded private key, and
* display it.
*/
buffer_size = sizeof (buffer);
gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("\n\nPrivate key: \n%s", buffer);

gnutls_x509_crq_deinit (crq);
gnutls_x509_privkey_deinit (key);

return 0;

}

7.5.4 PKCS #12 structure generation

The following example is about generating a PKCS #12 structure.

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/pkcs12.h>

#define OUTFILE "out.p12"

Chapter 7: How to use GnuTLS in applications 90

/* This function will write a pkcs12 structure into a file.
* cert: is a DER encoded certificate
* pkcs8_key: is a PKCS #8 encrypted key (note that this must be
* encrypted using a PKCS #12 cipher, or some browsers will crash)
* password: is the password used to encrypt the PKCS #12 packet.
*/
int
write_pkcs12 (const gnutls_datum_t * cert,

const gnutls_datum_t * pkcs8_key, const char *password)
{
gnutls_pkcs12_t pkcs12;
int ret, bag_index;
gnutls_pkcs12_bag_t bag, key_bag;
char pkcs12_struct[10 * 1024];
int pkcs12_struct_size;
FILE *fd;

/* A good idea might be to use gnutls_x509_privkey_get_key_id()
* to obtain a unique ID.
*/
gnutls_datum_t key_id = { "\x00\x00\x07", 3 };

gnutls_global_init ();

/* Firstly we create two helper bags, which hold the certificate,
* and the (encrypted) key.
*/

gnutls_pkcs12_bag_init (&bag);
gnutls_pkcs12_bag_init (&key_bag);

ret = gnutls_pkcs12_bag_set_data (bag, GNUTLS_BAG_CERTIFICATE, cert);
if (ret < 0)
{
fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));
return 1;

}

/* ret now holds the bag’s index.
*/
bag_index = ret;

/* Associate a friendly name with the given certificate. Used
* by browsers.
*/
gnutls_pkcs12_bag_set_friendly_name (bag, bag_index, "My name");

Chapter 7: How to use GnuTLS in applications 91

/* Associate the certificate with the key using a unique key
* ID.
*/
gnutls_pkcs12_bag_set_key_id (bag, bag_index, &key_id);

/* use weak encryption for the certificate.
*/
gnutls_pkcs12_bag_encrypt (bag, password, GNUTLS_PKCS_USE_PKCS12_RC2_40);

/* Now the key.
*/

ret = gnutls_pkcs12_bag_set_data (key_bag,
GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,
pkcs8_key);

if (ret < 0)
{
fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));
return 1;

}

/* Note that since the PKCS #8 key is already encrypted we don’t
* bother encrypting that bag.
*/
bag_index = ret;

gnutls_pkcs12_bag_set_friendly_name (key_bag, bag_index, "My name");

gnutls_pkcs12_bag_set_key_id (key_bag, bag_index, &key_id);

/* The bags were filled. Now create the PKCS #12 structure.
*/
gnutls_pkcs12_init (&pkcs12);

/* Insert the two bags in the PKCS #12 structure.
*/

gnutls_pkcs12_set_bag (pkcs12, bag);
gnutls_pkcs12_set_bag (pkcs12, key_bag);

/* Generate a message authentication code for the PKCS #12
* structure.
*/
gnutls_pkcs12_generate_mac (pkcs12, password);

Chapter 7: How to use GnuTLS in applications 92

pkcs12_struct_size = sizeof (pkcs12_struct);
ret =
gnutls_pkcs12_export (pkcs12, GNUTLS_X509_FMT_DER, pkcs12_struct,

&pkcs12_struct_size);
if (ret < 0)
{
fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));
return 1;

}

fd = fopen (OUTFILE, "w");
if (fd == NULL)
{
fprintf (stderr, "cannot open file\n");
return 1;

}
fwrite (pkcs12_struct, 1, pkcs12_struct_size, fd);
fclose (fd);

gnutls_pkcs12_bag_deinit (bag);
gnutls_pkcs12_bag_deinit (key_bag);
gnutls_pkcs12_deinit (pkcs12);

return 0;
}

7.6 Compatibility with the OpenSSL library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the widely
used OpenSSL library is included in the gnutls-openssl library. This compatibility layer
is not complete and it is not intended to completely reimplement the OpenSSL API with
GnuTLS. It only provides source-level compatibility. There is currently no attempt to make
it binary-compatible with OpenSSL.
The prototypes for the compatibility functions are in the ‘gnutls/openssl.h’ header file.
Current limitations imposed by the compatibility layer include:
• Error handling is not thread safe.

Chapter 8: Included programs 93

8 Included programs

Included with GnuTLS are also a few command line tools that let you use the library
for common tasks without writing an application. The applications are discussed in this
chapter.

8.1 Invoking srptool

The ‘srptool’ is a very simple program that emulates the programs in the Stanford SRP
libraries. It is intended for use in places where you don’t expect SRP authentication to be
the used for system users. Traditionally libsrp used two files. One called ’tpasswd’ which
holds usernames and verifiers, and ’tpasswd.conf’ which holds generators and primes.
How to use srptool:
• To create tpasswd.conf which holds the g and n values for SRP protocol (generator and

a large prime), run:
$ srptool --create-conf /etc/tpasswd.conf

• This command will create /etc/tpasswd and will add user ’test’ (you will also be
prompted for a password). Verifiers are stored by default in the way libsrp expects.

$ srptool --passwd /etc/tpasswd \
--passwd-conf /etc/tpasswd.conf -u test

• This command will check against a password. If the password matches the one in
/etc/tpasswd you will get an ok.

$ srptool --passwd /etc/tpasswd \
--passwd-conf /etc/tpasswd.conf --verify -u test

8.2 Invoking gnutls-cli

Simple client program to set up a TLS connection to some other computer. It sets up a
TLS connection and forwards data from the standard input to the secured socket and vice
versa.
GNU TLS test client
Usage: gnutls-cli [options] hostname

-d, --debug integer Enable debugging
-r, --resume Connect, establish a session. Connect

again and resume this session.
-s, --starttls Connect, establish a plain session and

start TLS when EOF or a SIGALRM is
received.

--crlf Send CR LF instead of LF.
--x509fmtder Use DER format for certificates to read

from.
-f, --fingerprint Send the openpgp fingerprint, instead

of the key.
--disable-extensions Disable all the TLS extensions.
--xml Print the certificate information in

Chapter 8: Included programs 94

XML format.
--print-cert Print the certificate in PEM format.
-p, --port integer The port to connect to.
--recordsize integer The maximum record size to advertize.
-V, --verbose More verbose output.
--ciphers cipher1 cipher2...

Ciphers to enable.
--protocols protocol1 protocol2...

Protocols to enable.
--comp comp1 comp2... Compression methods to enable.
--macs mac1 mac2... MACs to enable.
--kx kx1 kx2... Key exchange methods to enable.
--ctypes certType1 certType2...

Certificate types to enable.
--x509cafile FILE Certificate file to use.
--x509crlfile FILE CRL file to use.
--pgpkeyfile FILE PGP Key file to use.
--pgpkeyring FILE PGP Key ring file to use.
--pgptrustdb FILE PGP trustdb file to use.
--pgpcertfile FILE PGP Public Key (certificate) file to

use.
--x509keyfile FILE X.509 key file to use.
--x509certfile FILE X.509 Certificate file to use.
--srpusername NAME SRP username to use.
--srppasswd PASSWD SRP password to use.
--insecure Don’t abort program if server

certificate can’t be validated.
-l, --list Print a list of the supported

algorithms and modes.
-h, --help prints this help
-v, --version prints the program’s version number
--copyright prints the program’s license

8.3 Invoking gnutls-cli-debug

This program was created to assist in debugging GnuTLS, but it might be useful to extract
a TLS server’s capabilities. It’s purpose is to connect onto a TLS server, perform some tests
and print the server’s capabilities. If called with the ‘-v’ parameter a more checks will be
performed. An example output is:

crystal:/cvs/gnutls/src$./gnutls-cli-debug localhost -p 5556

Resolving ’localhost’...

Connecting to ’127.0.0.1:5556’...

Checking for TLS 1.1 support... yes

Checking fallback from TLS 1.1 to... N/A

Checking for TLS 1.0 support... yes

Checking for SSL 3.0 support... yes

Checking for version rollback bug in RSA PMS... no

Checking for version rollback bug in Client Hello... no

Checking whether we need to disable TLS 1.0... N/A

Chapter 8: Included programs 95

Checking whether the server ignores the RSA PMS version... no

Checking whether the server can accept Hello Extensions... yes

Checking whether the server can accept cipher suites not in SSL 3.0 spec... yes

Checking whether the server can accept a bogus TLS record version in the client hello... yes

Checking for certificate information... N/A

Checking for trusted CAs... N/A

Checking whether the server understands TLS closure alerts... yes

Checking whether the server supports session resumption... yes

Checking for export-grade ciphersuite support... no

Checking RSA-export ciphersuite info... N/A

Checking for anonymous authentication support... no

Checking anonymous Diffie Hellman group info... N/A

Checking for ephemeral Diffie Hellman support... no

Checking ephemeral Diffie Hellman group info... N/A

Checking for AES cipher support (TLS extension)... yes

Checking for 3DES cipher support... yes

Checking for ARCFOUR 128 cipher support... yes

Checking for ARCFOUR 40 cipher support... no

Checking for MD5 MAC support... yes

Checking for SHA1 MAC support... yes

Checking for ZLIB compression support (TLS extension)... yes

Checking for LZO compression support (GnuTLS extension)... yes

Checking for max record size (TLS extension)... yes

Checking for SRP authentication support (TLS extension)... yes

Checking for OpenPGP authentication support (TLS extension)... no

8.4 Invoking gnutls-serv

Simple server program that listens to incoming TLS connections.

GNU TLS test server
Usage: gnutls-serv [options]

-d, --debug integer Enable debugging
-g, --generate Generate Diffie Hellman Parameters.
-p, --port integer The port to connect to.
-q, --quiet Suppress some messages.
--nodb Does not use the resume database.
--http Act as an HTTP Server.
--echo Act as an Echo Server.
--dhparams FILE DH params file to use.
--x509fmtder Use DER format for certificates
--x509cafile FILE Certificate file to use.
--x509crlfile FILE CRL file to use.
--pgpkeyring FILE PGP Key ring file to use.
--pgptrustdb FILE PGP trustdb file to use.
--pgpkeyfile FILE PGP Key file to use.
--pgpcertfile FILE PGP Public Key (certificate) file to

use.
--x509keyfile FILE X.509 key file to use.
--x509certfile FILE X.509 Certificate file to use.
--x509dsakeyfile FILE Alternative X.509 key file to use.
--x509dsacertfile FILE Alternative X.509 certificate file to

Chapter 8: Included programs 96

use.
--srppasswd FILE SRP password file to use.
--srppasswdconf FILE SRP password conf file to use.
--ciphers cipher1 cipher2...

Ciphers to enable.
--protocols protocol1 protocol2...

Protocols to enable.
--comp comp1 comp2... Compression methods to enable.
--macs mac1 mac2... MACs to enable.
--kx kx1 kx2... Key exchange methods to enable.
--ctypes certType1 certType2...

Certificate types to enable.
-l, --list Print a list of the supported

algorithms and modes.
-h, --help prints this help
-v, --version prints the program’s version number
--copyright prints the program’s license

8.4.1 Setting up a test HTTPS server

Running your own TLS server based on GnuTLS can be useful when debugging clients
and/or GnuTLS itself. This section describes how to use gnutls-serv as a simple HTTPS
server.
The most basic server can be started as:

gnutls-serv --http

It will only support anonymous ciphersuites, which many TLS clients refuse to use.
The next step is to add support for X.509. First we generate a CA:

certtool --generate-privkey > x509-ca-key.pem
echo ’cn = GnuTLS test CA’ > ca.tmpl
echo ’ca’ >> ca.tmpl
echo ’cert_signing_key’ >> ca.tmpl
certtool --generate-self-signed --load-privkey x509-ca-key.pem \
--template ca.tmpl --outfile x509-ca.pem

...

Then generate a server certificate. Remember to change the dns name value to the name
of your server host, or skip that command to avoid the field.

certtool --generate-privkey > x509-server-key.pem
echo ’organization = GnuTLS test server’ > server.tmpl
echo ’cn = test.gnutls.org’ >> server.tmpl
echo ’tls_www_server’ >> server.tmpl
echo ’encryption_key’ >> server.tmpl
echo ’signing_key’ >> server.tmpl
echo ’dns_name = test.gnutls.org’ >> server.tmpl
certtool --generate-certificate --load-privkey x509-server-key.pem \
--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \
--template server.tmpl --outfile x509-server.pem

Chapter 8: Included programs 97

...

For use in the client, you may want to generate a client certificate as well.

certtool --generate-privkey > x509-client-key.pem
echo ’cn = GnuTLS test client’ > client.tmpl
echo ’tls_www_client’ >> client.tmpl
echo ’encryption_key’ >> client.tmpl
echo ’signing_key’ >> client.tmpl
certtool --generate-certificate --load-privkey x509-client-key.pem \
--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \
--template client.tmpl --outfile x509-client.pem

...

For icing, we’ll create a proxy certificate for the client too.

certtool --generate-privkey > x509-proxy-key.pem
echo ’cn = GnuTLS test client proxy’ > proxy.tmpl
certtool --generate-proxy --load-privkey x509-proxy-key.pem \
--load-ca-certificate x509-client.pem --load-ca-privkey x509-client-key.pem \
--load-certificate x509-client.pem --template proxy.tmpl \
--outfile x509-proxy.pem

...

Then start the server again:

gnutls-serv --http \
--x509cafile x509-ca.pem \
--x509keyfile x509-server-key.pem \
--x509certfile x509-server.pem

Try connecting to the server using your web browser. Note that the server listens to port
5556 by default.

While you are at it, to allow connections using DSA, you can also create a DSA key and
certificate for the server. These credentials will be used in the final example below.

certtool --generate-privkey --dsa > x509-server-key-dsa.pem
certtool --generate-certificate --load-privkey x509-server-key-dsa.pem \
--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \
--template server.tmpl --outfile x509-server-dsa.pem

...

The next step is to create OpenPGP credentials for the server.

gpg --gen-key
...enter whatever details you want, use ’test.gnutls.org’ as name...

Make a note of the OpenPGP key identifier of the newly generated key, here it was 5D1D14D8.
You will need to export the key for GnuTLS to be able to use it.

gpg -a --export 5D1D14D8 > openpgp-server.txt
gpg --export 5D1D14D8 > openpgp-server.bin
gpg --export-secret-keys 5D1D14D8 > openpgp-server-key.bin
gpg -a --export-secret-keys 5D1D14D8 > openpgp-server-key.txt

Let’s start the server with support for OpenPGP credentials:

Chapter 8: Included programs 98

gnutls-serv --http \
--pgpkeyfile openpgp-server-key.txt \
--pgpcertfile openpgp-server.txt

The next step is to add support for SRP authentication.
srptool --create-conf srp-tpasswd.conf
srptool --passwd-conf srp-tpasswd.conf --username jas --passwd srp-passwd.txt
Enter password: [TYPE "foo"]

Start the server with SRP support:
gnutls-serv --http \

--srppasswdconf srp-tpasswd.conf \
--srppasswd srp-passwd.txt

Let’s also add support for PSK.
$ psktool --passwd psk-passwd.txt

Start the server with PSK support:
gnutls-serv --http \

--pskpasswd psk-passwd.txt

Finally, we start the server with all the earlier parameters and you get this command:
gnutls-serv --http \

--x509cafile x509-ca.pem \
--x509keyfile x509-server-key.pem \
--x509certfile x509-server.pem \
--x509dsakeyfile x509-server-key-dsa.pem \
--x509dsacertfile x509-server-dsa.pem \
--pgpkeyfile openpgp-server-key.txt \
--pgpcertfile openpgp-server.txt \
--srppasswdconf srp-tpasswd.conf \
--srppasswd srp-passwd.txt \
--pskpasswd psk-passwd.txt

8.5 Invoking certtool

This is a program to generate X.509 certificates, certificate requests, CRLs and private keys.
Certtool help
Usage: certtool [options]

-s, --generate-self-signed
Generate a self-signed certificate.

-c, --generate-certificate
Generate a signed certificate.

--generate-proxy Generate a proxy certificate.
--generate-crl Generate a CRL.
-u, --update-certificate

Update a signed certificate.
-p, --generate-privkey Generate a private key.
-q, --generate-request Generate a PKCS #10 certificate

request.

Chapter 8: Included programs 99

-e, --verify-chain Verify a PEM encoded certificate chain.
The last certificate in the chain must
be a self signed one.

--verify-crl Verify a CRL.
--generate-dh-params Generate PKCS #3 encoded Diffie Hellman

parameters.
--get-dh-params Get the included PKCS #3 encoded Diffie

Hellman parameters.
--load-privkey FILE Private key file to use.
--load-request FILE Certificate request file to use.
--load-certificate FILE

Certificate file to use.
--load-ca-privkey FILE Certificate authority’s private key

file to use.
--load-ca-certificate FILE

Certificate authority’s certificate
file to use.

--password PASSWORD Password to use.
-i, --certificate-info Print information on a certificate.
-l, --crl-info Print information on a CRL.
--p12-info Print information on a PKCS #12

structure.
--p7-info Print information on a PKCS #7

structure.
--smime-to-p7 Convert S/MIME to PKCS #7 structure.
-k, --key-info Print information on a private key.
--fix-key Regenerate the parameters in a private

key.
--to-p12 Generate a PKCS #12 structure.
-8, --pkcs8 Use PKCS #8 format for private keys.
--dsa Use DSA keys.
--hash STR Hash algorithm to use for signing

(MD5,SHA1,RMD160).
--export-ciphers Use weak encryption algorithms.
--inder Use DER format for input certificates

and private keys.
--xml Use XML format for output certificates.
--outder Use DER format for output certificates

and private keys.
--bits BITS specify the number of bits for key

generation.
--outfile FILE Output file.
--infile FILE Input file.
--template FILE Template file to use for non

interactive operation.
-d, --debug LEVEL specify the debug level. Default is 1.
-h, --help shows this help text

Chapter 8: Included programs 100

-v, --version shows the program’s version
--copyright shows the program’s license

The program can be used interactively or non interactively by specifying the --template
command line option. See below for an example of a template file.
How to use certtool interactively:
• To generate parameters for Diffie Hellman key exchange, use the command:

$ certtool --generate-dh-params --outfile dh.pem

• To generate parameters for the RSA-EXPORT key exchange, use the command:
$ certtool --generate-privkey --bits 512 --outfile rsa.pem

• To create a self signed certificate, use the command:
$ certtool --generate-privkey --outfile ca-key.pem
$ certtool --generate-self-signed --load-privkey ca-key.pem \

--outfile ca-cert.pem

Note that a self-signed certificate usually belongs to a certificate authority, that signs
other certificates.

• To create a private key, run:
$ certtool --generate-privkey --outfile key.pem

• To create a certificate request, run:
$ certtool --generate-request --load-privkey key.pem \
--outfile request.pem

• To generate a certificate using the previous request, use the command:
$ certtool --generate-certificate --load-request request.pem \

--outfile cert.pem \
--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

• To view the certificate information, use:
$ certtool --certificate-info --infile cert.pem

• To generate a PKCS #12 structure using the previous key and certificate, use the
command:

$ certtool --load-certificate cert.pem --load-privkey key.pem \
--to-p12 --outder --outfile key.p12

• Proxy certificate can be used to delegate your credential to a temporary, typically short-
lived, certificate. To create one from the previously created certificate, first create a
temporary key and then generate a proxy certificate for it, using the commands:

$ certtool --generate-privkey > proxy-key.pem
$ certtool --generate-proxy --load-ca-privkey key.pem \
--load-privkey proxy-key.pem --load-certificate cert.pem \
--outfile proxy-cert.pem

Certtool’s template file format:
• Firstly create a file named ’cert.cfg’ that contains the information about the certificate.

An example file is listed below.
• Then execute:

Chapter 8: Included programs 101

$ certtool --generate-certificate cert.pem --load-privkey key.pem \
--template cert.cfg \
--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

An example certtool template file:

X.509 Certificate options
#
DN options

The organization of the subject.
organization = "Koko inc."

The organizational unit of the subject.
unit = "sleeping dept."

The locality of the subject.
locality =

The state of the certificate owner.
state = "Attiki"

The country of the subject. Two letter code.
country = GR

The common name of the certificate owner.
cn = "Cindy Lauper"

A user id of the certificate owner.
#uid = "clauper"

If the supported DN OIDs are not adequate you can set
any OID here.
For example set the X.520 Title and the X.520 Pseudonym
by using OID and string pairs.
#dn_oid = "2.5.4.12" "Dr." "2.5.4.65" "jackal"

This is deprecated and should not be used in new
certificates.
pkcs9_email = "none@none.org"

The serial number of the certificate
serial = 007

In how many days, counting from today, this certificate will expire.
expiration_days = 700

X.509 v3 extensions

Chapter 8: Included programs 102

A dnsname in case of a WWW server.
#dns_name = "www.none.org"

An IP address in case of a server.
#ip_address = "192.168.1.1"

An email in case of a person
email = "none@none.org"

An URL that has CRLs (certificate revocation lists)
available. Needed in CA certificates.
#crl_dist_points = "http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not
#ca

Whether this certificate will be used for a TLS client
#tls_www_client

Whether this certificate will be used for a TLS server
#tls_www_server

Whether this certificate will be used to sign data (needed
in TLS DHE ciphersuites).
signing_key

Whether this certificate will be used to encrypt data (needed
in TLS RSA ciphersuites). Note that it is prefered to use different
keys for encryption and signing.
#encryption_key

Whether this key will be used to sign other certificates.
#cert_signing_key

Whether this key will be used to sign CRLs.
#crl_signing_key

Whether this key will be used to sign code.
#code_signing_key

Whether this key will be used to sign OCSP data.
#ocsp_signing_key

Whether this key will be used for time stamping.
#time_stamping_key

Chapter 9: Function reference 103

9 Function reference

9.1 Core functions

The prototypes for the following functions lie in ‘gnutls/gnutls.h’.

gnutls alert get name

[Function]const char * gnutls_alert_get_name (gnutls alert description t
alert)

alert: is an alert number gnutls_session_t structure.
This function will return a string that describes the given alert number or NULL. See
gnutls_alert_get().

gnutls alert get

[Function]gnutls_alert_description_t gnutls_alert_get (gnutls session t
session)

session: is a gnutls_session_t structure.
This function will return the last alert number received. This func-
tion should be called if GNUTLS E WARNING ALERT RECEIVED or
GNUTLS E FATAL ALERT RECEIVED has been returned by a gnutls function.
The peer may send alerts if he thinks some things were not right. Check gnutls.h for
the available alert descriptions.
If no alert has been received the returned value is undefined.

gnutls alert send appropriate

[Function]int gnutls_alert_send_appropriate (gnutls session t session, int
err)

session: is a gnutls_session_t structure.
err: is an integer
Sends an alert to the peer depending on the error code returned by a gnutls function.
This function will call gnutls_error_to_alert() to determine the appropriate alert
to send.
This function may also return GNUTLS E AGAIN, or GNUTLS E INTERRUPTED.
If the return value is GNUTLS E INVALID REQUEST, then no alert has been sent
to the peer.
Returns zero on success.

gnutls alert send

[Function]int gnutls_alert_send (gnutls session t session, gnutls alert level t
level, gnutls alert description t desc)

session: is a gnutls_session_t structure.
level: is the level of the alert

Chapter 9: Function reference 104

desc: is the alert description

This function will send an alert to the peer in order to inform him of something
important (eg. his Certificate could not be verified). If the alert level is Fatal then
the peer is expected to close the connection, otherwise he may ignore the alert and
continue.

The error code of the underlying record send function will be returned, so you may
also receive GNUTLS E INTERRUPTED or GNUTLS E AGAIN as well.

Returns 0 on success.

gnutls anon allocate client credentials

[Function]int gnutls_anon_allocate_client_credentials
(gnutls anon client credentials t * sc)

sc: is a pointer to an gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns a negative value in case of an error.

gnutls anon allocate server credentials

[Function]int gnutls_anon_allocate_server_credentials
(gnutls anon server credentials t * sc)

sc: is a pointer to an gnutls_anon_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns a negative value in case of an error.

gnutls anon free client credentials

[Function]void gnutls_anon_free_client_credentials
(gnutls anon client credentials t sc)

sc: is an gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls anon free server credentials

[Function]void gnutls_anon_free_server_credentials
(gnutls anon server credentials t sc)

sc: is an gnutls_anon_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

Chapter 9: Function reference 105

gnutls anon set params function

[Function]void gnutls_anon_set_params_function
(gnutls anon server credentials t res, gnutls params function * func)

res: is a gnutls anon server credentials t structure
func: is the function to be called
This function will set a callback in order for the server to get the diffie hellman or
RSA parameters for anonymous authentication. The callback should return zero on
success.

gnutls anon set server dh params

[Function]void gnutls_anon_set_server_dh_params
(gnutls anon server credentials t res, gnutls dh params t dh_params)

res: is a gnutls anon server credentials t structure
dh params: is a structure that holds diffie hellman parameters.
This function will set the diffie hellman parameters for an anonymous server to use.
These parameters will be used in Anonymous Diffie Hellman cipher suites.

gnutls anon set server params function

[Function]void gnutls_anon_set_server_params_function
(gnutls anon server credentials t res, gnutls params function * func)

res: is a gnutls certificate credentials t structure
func: is the function to be called
This function will set a callback in order for the server to get the diffie hellman
parameters for anonymous authentication. The callback should return zero on success.

gnutls auth client get type

[Function]gnutls_credentials_type_t gnutls_auth_client_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns the type of credentials that were used for client authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

gnutls auth get type

[Function]gnutls_credentials_type_t gnutls_auth_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns type of credentials for the current authentication schema. The returned
information is to be used to distinguish the function used to access authentication
data.
Eg. for CERTIFICATE ciphersuites (key exchange algorithms: KX RSA,
KX DHE RSA), the same function are to be used to access the authentication data.

Chapter 9: Function reference 106

gnutls auth server get type

[Function]gnutls_credentials_type_t gnutls_auth_server_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the type of credentials that were used for server authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

gnutls authz enable

[Function]void gnutls_authz_enable (gnutls session t session, const int *
client_formats, const int * server_formats,
gnutls authz recv callback func recv_callback,
gnutls authz send callback func send_callback)

session: is a gnutls_session_t structure.

client formats: zero-terminated list of gnutls_authz_data_format_type_t elements
with authorization data formats.

server formats: zero-terminated list of gnutls_authz_data_format_type_t
elements with authorization data formats.

recv callback: your callback function which will receive authz information when it is
received.

send callback: your callback function which is responsible for generating authoriza-
tion data to send.

Indicate willingness to send and receive authorization data, and which formats.

For clients, client_formats indicate which formats the client is willing to send, and
server_formats indicate which formats the client can receive.

For servers, client_formats indicate which formats the server is willing to accept
from the client, and server_formats indicate which formats the server is willing to
send. Before the list is sent to the client, the formats which the client do not support
are removed. If no supported formats remains, either or both of the extensions will
not be sent.

The send_callback is invoked during the handshake if negotiation of the authoriza-
tion extension was successful. The function prototype is:

int (*gnutls authz send callback func) (gnutls session t session, const int *client_
formats, const int *server_formats);

The client_format contains a list of successfully negotiated formats which the client
may send data for to the server. The server_formats contains a list of success-
fully neogitated formats which the server may send data for to the client. The call-
back is supposed to invoke gnutls_authz_send_x509_attr_cert(), gnutls_authz_
send_saml_assertion(), gnutls_authz_send_x509_attr_cert_url(), or gnutls_
authz_send_saml_assertion_url() for the data it wishes to send, passing along the
session parameter, and the data. The client_format function should return 0 on
success, or an error code, which may be used to abort the handshake on failures.

Chapter 9: Function reference 107

The recv_callback is invoked during the handshake when authorization data is
received. The prototype of the callback should be:

int (*gnutls authz recv callback func) (gnutls session t session, const char
*authz formats, gnutls datum t *datums);

The authz_formats contains a list of formats for which data where received. The
data for each format is stored in the datums array, where the data associated with
the authz_formats[0] format is stored in datums[0]. The function should return 0 on
success, but may return an error, which may cause the handshake to abort.

Note that there is no guarantee that send_callback or recv_callback is invoked
just because gnutls authz enable was invoked. Whether the callbacks are invoked
depend on whether negotiation of the extension succeeds. Therefor, if verification
of authorization data is done by the recv_callback, care should be made that if
the callback is never invoked, it is not interpretetd as successful authorization ver-
ification. It is suggested to add some logic check whether authorization data was
successfully verified after the call to gnutls_handshake(). That logic could shut
down the connection if the authorization data is insufficient.

This function have no effect if it is called during a handshake.

gnutls authz send saml assertion url

[Function]int gnutls_authz_send_saml_assertion_url (gnutls session t
session, const char * url, size t urllen, gnutls mac algorithm t
hash_type, const char * hash)

session: is a gnutls_session_t structure.

url: buffer with a URL pointing to a SAML assertion.

urllen: length of buffer.

hash type: type of hash in hash.

hash: buffer with hash of URL target.

Send a URL to a SAML assertion as authorization data, including a hash used to
make sure the retrieved data was the intended data. This function may only be called
inside a send_callback set by gnutls_authz_enable().

Returns: Returns 0 on success, or an error code on failures. If the supplied data
was too long (the authorization extension only support 64kb large URLs), GNUTLS_
E_INVALID_REQUEST is returned.

gnutls authz send saml assertion

[Function]int gnutls_authz_send_saml_assertion (gnutls session t session,
const char * data, size t len)

session: is a gnutls_session_t structure.

data: buffer with a SAML assertion.

len: length of buffer.

Send a SAML assertion as authorization data. This function may only be called inside
a send_callback set by gnutls_authz_enable().

Chapter 9: Function reference 108

Returns: Returns 0 on success, or an error code on failures. If the supplied data
was too long (the authorization extension only support 64kb large SAML assertions),
GNUTLS_E_INVALID_REQUEST is returned.

gnutls authz send x509 attr cert url

[Function]int gnutls_authz_send_x509_attr_cert_url (gnutls session t
session, const char * url, size t urllen, gnutls mac algorithm t
hash_type, const char * hash)

session: is a gnutls_session_t structure.
url: buffer with a URL pointing to X.509 attribute certificate.
urllen: length of buffer.
hash type: type of hash in hash.
hash: buffer with hash of URL target.
Send a URL to an X.509 attribute certificate as authorization data, including a hash
used to make sure the retrieved data was the intended data. This function may only
be called inside a send_callback set by gnutls_authz_enable().
Returns: Returns 0 on success, or an error code on failures. If the supplied data
was too long (the authorization extension only support 64kb large URLs), GNUTLS_
E_INVALID_REQUEST is returned.

gnutls authz send x509 attr cert

[Function]int gnutls_authz_send_x509_attr_cert (gnutls session t session,
const char * data, size t len)

session: is a gnutls_session_t structure.
data: buffer with a X.509 attribute certificate.
len: length of buffer.
Send a X.509 attribute certificate as authorization data. This function may only be
called inside a send_callback set by gnutls_authz_enable().
Returns: Returns 0 on success, or an error code on failures. If the supplied data was
too long (the authorization extension only support 64kb large attribute certificates),
GNUTLS_E_INVALID_REQUEST is returned.

gnutls bye

[Function]int gnutls_bye (gnutls session t session, gnutls close request t how)
session: is a gnutls_session_t structure.
how : is an integer
Terminates the current TLS/SSL connection. The connection should have been ini-
tiated using gnutls_handshake(). how should be one of GNUTLS SHUT RDWR,
GNUTLS SHUT WR.
In case of GNUTLS SHUT RDWR then the TLS connection gets terminated and fur-
ther receives and sends will be disallowed. If the return value is zero you may continue
using the connection. GNUTLS SHUT RDWR actually sends an alert containing a
close request and waits for the peer to reply with the same message.

Chapter 9: Function reference 109

In case of GNUTLS SHUT WR then the TLS connection gets terminated and further
sends will be disallowed. In order to reuse the connection you should wait for an EOF
from the peer. GNUTLS SHUT WR sends an alert containing a close request.
Note that not all implementations will properly terminate a TLS connection. Some of
them, usually for performance reasons, will terminate only the underlying transport
layer, thus causing a transmission error to the peer. This error cannot be distinguished
from a malicious party prematurely terminating the session, thus this behavior is not
recommended.
This function may also return GNUTLS E AGAIN or GNUTLS E INTERRUPTED;
cf. gnutls_record_get_direction().

gnutls certificate activation time peers

[Function]time_t gnutls_certificate_activation_time_peers
(gnutls session t session)

session: is a gnutls session
This function will return the peer’s certificate activation time. This is the creation
time for openpgp keys.
Returns (time t) -1 on error.

gnutls certificate allocate credentials

[Function]int gnutls_certificate_allocate_credentials
(gnutls certificate credentials t * res)

res: is a pointer to an gnutls_certificate_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.
Returns 0 on success.

gnutls certificate client get request status

[Function]int gnutls_certificate_client_get_request_status
(gnutls session t session)

session: is a gnutls session
This function will return 0 if the peer (server) did not request client authentication
or 1 otherwise. Returns a negative value in case of an error.

gnutls certificate client set retrieve function

[Function]void gnutls_certificate_client_set_retrieve_function
(gnutls certificate credentials t cred, gnutls certificate client retrieve function
* func)

cred: is a gnutls_certificate_credentials_t structure.
func: is the callback function
This function sets a callback to be called in order to retrieve the certificate
to be used in the handshake. The callback’s function prototype is: int

Chapter 9: Function reference 110

(*callback)(gnutls session t, const gnutls datum t* req ca dn, int nreqs,
gnutls pk algorithm t* pk algos, int pk algos length, gnutls retr st* st);
st should contain the certificates and private keys.
req_ca_cert, is only used in X.509 certificates. Contains a list with the CA names
that the server considers trusted. Normally we should send a certificate that is signed
by one of these CAs. These names are DER encoded. To get a more meaningful value
use the function gnutls_x509_rdn_get().
pk_algos, contains a list with server’s acceptable signature algorithms. The certifi-
cate returned should support the server’s given algorithms.
If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.
The callback function should set the certificate list to be sent, and return 0 on success.
If no certificate was selected then the number of certificates should be set to zero.
The value (-1) indicates error and the handshake will be terminated.

gnutls certificate expiration time peers

[Function]time_t gnutls_certificate_expiration_time_peers
(gnutls session t session)

session: is a gnutls session
This function will return the peer’s certificate expiration time.
Returns (time t) -1 on error.

gnutls certificate free ca names

[Function]void gnutls_certificate_free_ca_names
(gnutls certificate credentials t sc)

sc: is an gnutls_certificate_credentials_t structure.
This function will delete all the CA name in the given credentials. Clients may call
this to save some memory since in client side the CA names are not used.
CA names are used by servers to advertize the CAs they support to clients.

gnutls certificate free cas

[Function]void gnutls_certificate_free_cas (gnutls certificate credentials t
sc)

sc: is an gnutls_certificate_credentials_t structure.
This function will delete all the CAs associated with the given credentials. Servers
that do not use gnutls_certificate_verify_peers2() may call this to save some
memory.

gnutls certificate free credentials

[Function]void gnutls_certificate_free_credentials
(gnutls certificate credentials t sc)

sc: is an gnutls_certificate_credentials_t structure.

Chapter 9: Function reference 111

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

This function does not free any temporary parameters associated with this structure
(ie RSA and DH parameters are not freed by this function).

gnutls certificate free crls

[Function]void gnutls_certificate_free_crls (gnutls certificate credentials t
sc)

sc: is an gnutls_certificate_credentials_t structure.

This function will delete all the CRLs associated with the given credentials.

gnutls certificate free keys

[Function]void gnutls_certificate_free_keys (gnutls certificate credentials t
sc)

sc: is an gnutls_certificate_credentials_t structure.

This function will delete all the keys and the certificates associated with the given
credentials. This function must not be called when a TLS negotiation that uses the
credentials is in progress.

gnutls certificate get ours

[Function]const gnutls_datum_t * gnutls_certificate_get_ours
(gnutls session t session)

session: is a gnutls session

This function will return the certificate as sent to the peer, in the last handshake.
These certificates are in raw format. In X.509 this is a certificate list. In OpenPGP
this is a single certificate. Returns NULL in case of an error, or if no certificate was
used.

gnutls certificate get peers

[Function]const gnutls_datum_t * gnutls_certificate_get_peers
(gnutls session t session, unsigned int * list_size)

session: is a gnutls session

list size: is the length of the certificate list

This function will return the peer’s raw certificate (chain) as sent by the peer. These
certificates are in raw format (DER encoded for X.509). In case of a X.509 then a
certificate list may be present. The first certificate in the list is the peer’s certificate,
following the issuer’s certificate, then the issuer’s issuer etc.

In case of OpenPGP keys a single key will be returned in raw format.

Returns NULL in case of an error, or if no certificate was sent.

Chapter 9: Function reference 112

gnutls certificate send x509 rdn sequence

[Function]void gnutls_certificate_send_x509_rdn_sequence
(gnutls session t session, int status)

session: is a pointer to a gnutls_session_t structure.
status: is 0 or 1
If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertize it’s trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertize the server’s trusted CAs.
This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

gnutls certificate server set request

[Function]void gnutls_certificate_server_set_request (gnutls session t
session, gnutls certificate request t req)

session: is an gnutls_session_t structure.
req: is one of GNUTLS CERT REQUEST, GNUTLS CERT REQUIRE
This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If req is GNUTLS CERT REQUIRE then the server will
return an error if the peer does not provide a certificate. If you do not call this
function then the client will not be asked to send a certificate.

gnutls certificate server set retrieve function

[Function]void gnutls_certificate_server_set_retrieve_function
(gnutls certificate credentials t cred, gnutls certificate server retrieve function
* func)

cred: is a gnutls_certificate_credentials_t structure.
func: is the callback function
This function sets a callback to be called in order to retrieve the certificate
to be used in the handshake. The callback’s function prototype is: int
(*callback)(gnutls session t, gnutls retr st* st);
st should contain the certificates and private keys.
If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.
The callback function should set the certificate list to be sent, and return 0 on success.
The value (-1) indicates error and the handshake will be terminated.

gnutls certificate set dh params

[Function]void gnutls_certificate_set_dh_params
(gnutls certificate credentials t res, gnutls dh params t dh_params)

res: is a gnutls certificate credentials t structure
dh params: is a structure that holds diffie hellman parameters.

Chapter 9: Function reference 113

This function will set the diffie hellman parameters for a certificate server to use.
These parameters will be used in Ephemeral Diffie Hellman cipher suites. Note that
only a pointer to the parameters are stored in the certificate handle, so if you deal-
locate the parameters before the certificate is deallocated, you must change the pa-
rameters stored in the certificate first.

gnutls certificate set params function

[Function]void gnutls_certificate_set_params_function
(gnutls certificate credentials t res, gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the diffie hellman or
RSA parameters for certificate authentication. The callback should return zero on
success.

gnutls certificate set rsa export params

[Function]void gnutls_certificate_set_rsa_export_params
(gnutls certificate credentials t res, gnutls rsa params t rsa_params)

res: is a gnutls certificate credentials t structure

rsa params: is a structure that holds temporary RSA parameters.

This function will set the temporary RSA parameters for a certificate server to use.
These parameters will be used in RSA-EXPORT cipher suites.

gnutls certificate set verify flags

[Function]void gnutls_certificate_set_verify_flags
(gnutls certificate credentials t res, unsigned int flags)

res: is a gnutls certificate credentials t structure

flags: are the flags

This function will set the flags to be used at verification of the certificates. Flags
must be OR of the gnutls_certificate_verify_flags enumerations.

gnutls certificate set verify limits

[Function]void gnutls_certificate_set_verify_limits
(gnutls certificate credentials t res, unsigned int max_bits, unsigned int
max_depth)

res: is a gnutls certificate credentials structure

max bits: is the number of bits of an acceptable certificate (default 8200)

max depth: is maximum depth of the verification of a certificate chain (default 5)

This function will set some upper limits for the default verification function, gnutls_
certificate_verify_peers2(), to avoid denial of service attacks.

Chapter 9: Function reference 114

gnutls certificate set x509 crl file

[Function]int gnutls_certificate_set_x509_crl_file
(gnutls certificate credentials t res, const char * crlfile,
gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.

crlfile: is a file containing the list of verified CRLs (DER or PEM list)

type: is PEM or DER

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Returns the number of CRLs processed or a negative value on error.

gnutls certificate set x509 crl mem

[Function]int gnutls_certificate_set_x509_crl_mem
(gnutls certificate credentials t res, const gnutls datum t * CRL,
gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.

CRL: is a list of trusted CRLs. They should have been verified before.

type: is DER or PEM

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Returns the number of CRLs processed or a negative value on error.

gnutls certificate set x509 crl

[Function]int gnutls_certificate_set_x509_crl
(gnutls certificate credentials t res, gnutls x509 crl t * crl_list, int
crl_list_size)

res: is an gnutls_certificate_credentials_t structure.

crl list: is a list of trusted CRLs. They should have been verified before.

crl list size: holds the size of the crl list

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Returns 0 on success.

Chapter 9: Function reference 115

gnutls certificate set x509 key file

[Function]int gnutls_certificate_set_x509_key_file
(gnutls certificate credentials t res, const char * CERTFILE, const char *
KEYFILE, gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.
CERTFILE: is a file that containing the certificate list (path) for the specified private
key, in PKCS7 format, or a list of certificates
KEYFILE: is a file that contains the private key
type: is PEM or DER
This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).
Currently only PKCS-1 encoded RSA and DSA private keys are accepted by this
function.

gnutls certificate set x509 key mem

[Function]int gnutls_certificate_set_x509_key_mem
(gnutls certificate credentials t res, const gnutls datum t * cert, const
gnutls datum t * key, gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.
cert: contains a certificate list (path) for the specified private key
key : is the private key
type: is PEM or DER
This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).
Currently are supported: RSA PKCS-1 encoded private keys, DSA private keys.
DSA private keys are encoded the OpenSSL way, which is an ASN.1 DER sequence
of 6 INTEGERs - version, p, q, g, pub, priv.
Note that the keyUsage (2.5.29.15) PKIX extension in X.509 certificates is supported.
This means that certificates intended for signing cannot be used for ciphersuites that
require encryption.
If the certificate and the private key are given in PEM encoding then the strings that
hold their values must be null terminated.

gnutls certificate set x509 key

[Function]int gnutls_certificate_set_x509_key
(gnutls certificate credentials t res, gnutls x509 crt t * cert_list, int
cert_list_size, gnutls x509 privkey t key)

res: is an gnutls_certificate_credentials_t structure.
cert list: contains a certificate list (path) for the specified private key
cert list size: holds the size of the certificate list

Chapter 9: Function reference 116

key : is a gnutls x509 privkey t key
This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).

gnutls certificate set x509 simple pkcs12 file

[Function]int gnutls_certificate_set_x509_simple_pkcs12_file
(gnutls certificate credentials t res, const char * pkcs12file,
gnutls x509 crt fmt t type, const char * password)

res: is an gnutls_certificate_credentials_t structure.
pkcs12file: filename of file containing PKCS12 blob.
type: is PEM or DER of the pkcs12file.
password: optional password used to decrypt PKCS12 file, bags and keys.
This function sets a certificate/private key pair and/or a CRL in the
gnutls certificate credentials t structure. This function may be called more than
once (in case multiple keys/certificates exist for the server).
MAC: ed PKCS12 files are supported. Encrypted PKCS12 bags are supported. En-
crypted PKCS8 private keys are supported. However, only password based security,
and the same password for all operations, are supported.
The private keys may be RSA PKCS1 or DSA private keys encoded in the OpenSSL
way.
PKCS12 file may contain many keys and/or certificates, and there is no way to
identify which key/certificate pair you want. You should make sure the PKCS12 file
only contain one key/certificate pair and/or one CRL.
It is believed that the limitations of this function is acceptable for most usage, and
that any more flexibility would introduce complexity that would make it harder to
use this functionality at all.
Return value: Returns 0 on success, or an error code.

gnutls certificate set x509 trust file

[Function]int gnutls_certificate_set_x509_trust_file
(gnutls certificate credentials t res, const char * cafile,
gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.
cafile: is a file containing the list of trusted CAs (DER or PEM list)
type: is PEM or DER
This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.
In case of a server the names of the CAs set here will be sent to the client if a certificate
request is sent. This can be disabled using gnutls_certificate_send_x509_rdn_
sequence().
Returns the number of certificates processed or a negative value on error.

Chapter 9: Function reference 117

gnutls certificate set x509 trust mem

[Function]int gnutls_certificate_set_x509_trust_mem
(gnutls certificate credentials t res, const gnutls datum t * ca,
gnutls x509 crt fmt t type)

res: is an gnutls_certificate_credentials_t structure.
ca: is a list of trusted CAs or a DER certificate
type: is DER or PEM
This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.
In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().
Returns the number of certificates processed or a negative value on error.

gnutls certificate set x509 trust

[Function]int gnutls_certificate_set_x509_trust
(gnutls certificate credentials t res, gnutls x509 crt t * ca_list, int
ca_list_size)

res: is an gnutls_certificate_credentials_t structure.
ca list: is a list of trusted CAs
ca list size: holds the size of the CA list
This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.
In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().
Returns 0 on success.

gnutls certificate type get name

[Function]const char * gnutls_certificate_type_get_name
(gnutls certificate type t type)

type: is a certificate type
Returns a string (or NULL) that contains the name of the specified certificate type.

gnutls certificate type get

[Function]gnutls_certificate_type_t gnutls_certificate_type_get
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns the currently used certificate type. The certificate type is by default X.509,
unless it is negotiated as a TLS extension.

Chapter 9: Function reference 118

gnutls certificate type set priority

[Function]int gnutls_certificate_type_set_priority (gnutls session t
session, const int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls certificate type t elements.

Sets the priority on the certificate types supported by gnutls. Priority is higher for
types specified before others. After specifying the types you want, you must append
a 0. Note that the certificate type priority is set on the client. The server does not
use the cert type priority except for disabling types that were not specified.

Returns 0 on success.

gnutls certificate verify peers2

[Function]int gnutls_certificate_verify_peers2 (gnutls session t session,
unsigned int * status)

session: is a gnutls session

status: is the output of the verification

This function will try to verify the peer’s certificate and return its status
(trusted, invalid etc.). The value of status should be one or more of the
gnutls certificate status t enumerated elements bitwise or’d. To avoid denial of
service attacks some default upper limits regarding the certificate key size and chain
size are set. To override them use gnutls_certificate_set_verify_limits().

Note that you must also check the peer’s name in order to check if the verified cer-
tificate belongs to the actual peer.

Returns a negative error code on error and zero on success.

This is the same as gnutls_x509_verify_certificate() and uses the loaded CAs
in the credentials as trusted CAs.

Note that some commonly used X.509 Certificate Authorities are still using Version 1
certificates. If you want to accept them, you need to call gnutls_certificate_set_
verify_flags() with, e.g., GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT parameter.

gnutls certificate verify peers

[Function]int gnutls_certificate_verify_peers (gnutls session t session)
session: is a gnutls session

This function will try to verify the peer’s certificate and return its status (trusted,
invalid etc.). However you must also check the peer’s name in order to check if the
verified certificate belongs to the actual peer.

The return value should be one or more of the gnutls certificate status t enumerated
elements bitwise or’d, or a negative value on error.

This is the same as gnutls_x509_verify_certificate().

Deprecated: Use gnutls_certificate_verify_peers2() instead.

Chapter 9: Function reference 119

gnutls check version

[Function]const char * gnutls_check_version (const char * req_version)
req version: the version to check

Check that the version of the library is at minimum the requested one and return the
version string; return NULL if the condition is not satisfied. If a NULL is passed to
this function, no check is done, but the version string is simply returned.

See LIBGNUTLS_VERSION for a suitable req_version string.

Return value: Version string of run-time library, or NULL if the run-time library does
not meet the required version number. If NULL is passed to this function no check is
done and only the version string is returned.

gnutls cipher get key size

[Function]size_t gnutls_cipher_get_key_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Returns the length (in bytes) of the given cipher’s key size. Returns 0 if the given
cipher is invalid.

gnutls cipher get name

[Function]const char * gnutls_cipher_get_name (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Returns a pointer to a string that contains the name of the specified cipher or NULL.

gnutls cipher get

[Function]gnutls_cipher_algorithm_t gnutls_cipher_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Returns the currently used cipher.

gnutls cipher set priority

[Function]int gnutls_cipher_set_priority (gnutls session t session, const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls cipher algorithm t elements.

Sets the priority on the ciphers supported by gnutls. Priority is higher for ciphers
specified before others. After specifying the ciphers you want, you must append a 0.
Note that the priority is set on the client. The server does not use the algorithm’s
priority except for disabling algorithms that were not specified.

Returns 0 on success.

Chapter 9: Function reference 120

gnutls cipher suite get name

[Function]const char * gnutls_cipher_suite_get_name
(gnutls kx algorithm t kx_algorithm, gnutls cipher algorithm t
cipher_algorithm, gnutls mac algorithm t mac_algorithm)

kx algorithm: is a Key exchange algorithm
cipher algorithm: is a cipher algorithm
mac algorithm: is a MAC algorithm
Returns a string that contains the name of a TLS cipher suite, specified by the given
algorithms, or NULL.
Note that the full cipher suite name must be prepended by TLS or SSL depending of
the protocol in use.

gnutls compression get name

[Function]const char * gnutls_compression_get_name
(gnutls compression method t algorithm)

algorithm: is a Compression algorithm
Returns a pointer to a string that contains the name of the specified compression
algorithm or NULL.

gnutls compression get

[Function]gnutls_compression_method_t gnutls_compression_get
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns the currently used compression method.

gnutls compression set priority

[Function]int gnutls_compression_set_priority (gnutls session t session,
const int * list)

session: is a gnutls_session_t structure.
list: is a 0 terminated list of gnutls compression method t elements.
Sets the priority on the compression algorithms supported by gnutls. Priority is higher
for algorithms specified before others. After specifying the algorithms you want, you
must append a 0. Note that the priority is set on the client. The server does not use
the algorithm’s priority except for disabling algorithms that were not specified.
TLS 1.0 does not define any compression algorithms except NULL. Other compression
algorithms are to be considered as gnutls extensions.
Returns 0 on success.

gnutls credentials clear

[Function]void gnutls_credentials_clear (gnutls session t session)
session: is a gnutls_session_t structure.
Clears all the credentials previously set in this session.

Chapter 9: Function reference 121

gnutls credentials set

[Function]int gnutls_credentials_set (gnutls session t session,
gnutls credentials type t type, void * cred)

session: is a gnutls_session_t structure.

type: is the type of the credentials

cred: is a pointer to a structure.

Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The (void* cred) parameter is a structure that depends on the
specified type and on the current session (client or server). [In order to minimize
memory usage, and share credentials between several threads gnutls keeps a pointer
to cred, and not the whole cred structure. Thus you will have to keep the structure
allocated until you call gnutls_deinit().]

For GNUTLS CRD ANON cred should be gnutls anon client credentials t in case
of a client. In case of a server it should be gnutls anon server credentials t.

For GNUTLS CRD SRP cred should be gnutls srp client credentials t in case of a
client, and gnutls srp server credentials t, in case of a server.

For GNUTLS CRD CERTIFICATE cred should be gnutls certificate credentials t.

gnutls db check entry

[Function]int gnutls_db_check_entry (gnutls session t session,
gnutls datum t session_entry)

session: is a gnutls_session_t structure.

session entry : is the session data (not key)

This function returns GNUTLS E EXPIRED, if the database entry has expired or
0 otherwise. This function is to be used when you want to clear unnesessary session
which occupy space in your backend.

gnutls db get ptr

[Function]void * gnutls_db_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

Returns the pointer that will be sent to db store, retrieve and delete functions, as the
first argument.

gnutls db remove session

[Function]void gnutls_db_remove_session (gnutls session t session)
session: is a gnutls_session_t structure.

This function will remove the current session data from the session database. This
will prevent future handshakes reusing these session data. This function should be
called if a session was terminated abnormally, and before gnutls_deinit() is called.

Normally gnutls_deinit() will remove abnormally terminated sessions.

Chapter 9: Function reference 122

gnutls db set cache expiration

[Function]void gnutls_db_set_cache_expiration (gnutls session t session,
int seconds)

session: is a gnutls_session_t structure.
seconds: is the number of seconds.
Sets the expiration time for resumed sessions. The default is 3600 (one hour) at the
time writing this.

gnutls db set ptr

[Function]void gnutls_db_set_ptr (gnutls session t session, void * ptr)
session: is a gnutls_session_t structure.
ptr: is the pointer
Sets the pointer that will be provided to db store, retrieve and delete functions, as
the first argument.

gnutls db set remove function

[Function]void gnutls_db_set_remove_function (gnutls session t session,
gnutls db remove func rem_func)

session: is a gnutls_session_t structure.
rem func: is the function.
Sets the function that will be used to remove data from the resumed sessions database.
This function must return 0 on success.
The first argument to rem_func() will be null unless gnutls_db_set_ptr() has been
called.

gnutls db set retrieve function

[Function]void gnutls_db_set_retrieve_function (gnutls session t session,
gnutls db retr func retr_func)

session: is a gnutls_session_t structure.
retr func: is the function.
Sets the function that will be used to retrieve data from the resumed sessions database.
This function must return a gnutls datum t containing the data on success, or a
gnutls datum t containing null and 0 on failure.
The datum’s data must be allocated using the function gnutls_malloc().
The first argument to retr_func() will be null unless gnutls_db_set_ptr() has
been called.

gnutls db set store function

[Function]void gnutls_db_set_store_function (gnutls session t session,
gnutls db store func store_func)

session: is a gnutls_session_t structure.

Chapter 9: Function reference 123

store func: is the function

Sets the function that will be used to store data from the resumed sessions database.
This function must remove 0 on success.

The first argument to store_func() will be null unless gnutls_db_set_ptr() has
been called.

gnutls deinit

[Function]void gnutls_deinit (gnutls session t session)
session: is a gnutls_session_t structure.

This function clears all buffers associated with the session. This function will also
remove session data from the session database if the session was terminated abnor-
mally.

gnutls dh get group

[Function]int gnutls_dh_get_group (gnutls session t session, gnutls datum t *
raw_gen, gnutls datum t * raw_prime)

session: is a gnutls session

raw gen: will hold the generator.

raw prime: will hold the prime.

This function will return the group parameters used in the last Diffie Hellman authen-
tication with the peer. These are the prime and the generator used. This function
should be used for both anonymous and ephemeral diffie Hellman. The output pa-
rameters must be freed with gnutls_free().

Returns a negative value in case of an error.

gnutls dh get peers public bits

[Function]int gnutls_dh_get_peers_public_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits used in the last Diffie Hellman authentication with
the peer. Should be used for both anonymous and ephemeral diffie Hellman. Returns
a negative value in case of an error.

gnutls dh get prime bits

[Function]int gnutls_dh_get_prime_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits of the prime used in the last Diffie Hellman au-
thentication with the peer. Should be used for both anonymous and ephemeral diffie
Hellman. Returns a negative value in case of an error.

Chapter 9: Function reference 124

gnutls dh get pubkey

[Function]int gnutls_dh_get_pubkey (gnutls session t session, gnutls datum t
* raw_key)

session: is a gnutls session
raw key : will hold the public key.
This function will return the peer’s public key used in the last Diffie Hellman au-
thentication. This function should be used for both anonymous and ephemeral diffie
Hellman. The output parameters must be freed with gnutls_free().
Returns a negative value in case of an error.

gnutls dh get secret bits

[Function]int gnutls_dh_get_secret_bits (gnutls session t session)
session: is a gnutls session
This function will return the bits used in the last Diffie Hellman authentication with
the peer. Should be used for both anonymous and ephemeral diffie Hellman. Returns
a negative value in case of an error.

gnutls dh params cpy

[Function]int gnutls_dh_params_cpy (gnutls dh params t dst,
gnutls dh params t src)

dst: Is the destination structure, which should be initialized.
src: Is the source structure
This function will copy the DH parameters structure from source to destination.

gnutls dh params deinit

[Function]void gnutls_dh_params_deinit (gnutls dh params t dh_params)
dh params: Is a structure that holds the prime numbers
This function will deinitialize the DH parameters structure.

gnutls dh params export pkcs3

[Function]int gnutls_dh_params_export_pkcs3 (gnutls dh params t params,
gnutls x509 crt fmt t format, unsigned char * params_data, size t *
params_data_size)

params: Holds the DH parameters
format: the format of output params. One of PEM or DER.
params data: will contain a PKCS3 DHParams structure PEM or DER encoded
params data size: holds the size of params data (and will be replaced by the actual
size of parameters)
This function will export the given dh parameters to a PKCS3 DHParams structure.
This is the format generated by "openssl dhparam" tool. If the buffer provided is
not long enough to hold the output, then GNUTLS E SHORT MEMORY BUFFER
will be returned.

Chapter 9: Function reference 125

If the structure is PEM encoded, it will have a header of "BEGIN DH PARAME-
TERS".

In case of failure a negative value will be returned, and 0 on success.

gnutls dh params export raw

[Function]int gnutls_dh_params_export_raw (gnutls dh params t params,
gnutls datum t * prime, gnutls datum t * generator, unsigned int * bits)

params: Holds the DH parameters

prime: will hold the new prime

generator: will hold the new generator

bits: if non null will hold is the prime’s number of bits

This function will export the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters will be allocated using gnutls_malloc() and will
be stored in the appropriate datum.

gnutls dh params generate2

[Function]int gnutls_dh_params_generate2 (gnutls dh params t params,
unsigned int bits)

params: Is the structure that the DH parameters will be stored

bits: is the prime’s number of bits

This function will generate a new pair of prime and generator for use in the Diffie-
Hellman key exchange. The new parameters will be allocated using gnutls_malloc()
and will be stored in the appropriate datum. This function is normally slow.

Note that the bits value should be one of 768, 1024, 2048, 3072 or 4096. Also note
that the DH parameters are only useful to servers. Since clients use the parameters
sent by the server, it’s of no use to call this in client side.

gnutls dh params import pkcs3

[Function]int gnutls_dh_params_import_pkcs3 (gnutls dh params t params,
const gnutls datum t * pkcs3_params, gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to

pkcs3 params: should contain a PKCS3 DHParams structure PEM or DER encoded

format: the format of params. PEM or DER.

This function will extract the DHParams found in a PKCS3 formatted structure.
This is the format generated by "openssl dhparam" tool.

If the structure is PEM encoded, it should have a header of "BEGIN DH PARAME-
TERS".

In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 126

gnutls dh params import raw

[Function]int gnutls_dh_params_import_raw (gnutls dh params t dh_params,
const gnutls datum t * prime, const gnutls datum t * generator)

dh params: Is a structure that will hold the prime numbers
prime: holds the new prime
generator: holds the new generator
This function will replace the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters should be stored in the appropriate gnutls datum.

gnutls dh params init

[Function]int gnutls_dh_params_init (gnutls dh params t * dh_params)
dh params: Is a structure that will hold the prime numbers
This function will initialize the DH parameters structure.

gnutls dh set prime bits

[Function]void gnutls_dh_set_prime_bits (gnutls session t session, unsigned
int bits)

session: is a gnutls_session_t structure.
bits: is the number of bits
This function sets the number of bits, for use in an Diffie Hellman key exchange. This
is used both in DH ephemeral and DH anonymous cipher suites. This will set the
minimum size of the prime that will be used for the handshake.
In the client side it sets the minimum accepted number of bits. If a server sends a
prime with less bits than that GNUTLS E DH PRIME UNACCEPTABLE will be
returned by the handshake.

gnutls error is fatal

[Function]int gnutls_error_is_fatal (int error)
error: is an error returned by a gnutls function. Error should be a negative value.
If a function returns a negative value you may feed that value to this function to see
if it is fatal. Returns 1 for a fatal error 0 otherwise. However you may want to check
the error code manually, since some non-fatal errors to the protocol may be fatal for
you (your program).
This is only useful if you are dealing with errors from the record layer or the handshake
layer.

gnutls error to alert

[Function]int gnutls_error_to_alert (int err, int * level)
err: is a negative integer
level: the alert level will be stored there
Returns an alert depending on the error code returned by a gnutls function. All
alerts sent by this function should be considered fatal. The only exception is when

Chapter 9: Function reference 127

err == GNUTLS E REHANDSHAKE, where a warning alert should be sent to the
peer indicating that no renegotiation will be performed.
If the return value is GNUTLS E INVALID REQUEST, then there was no mapping
to an alert.

gnutls fingerprint

[Function]int gnutls_fingerprint (gnutls digest algorithm t algo, const
gnutls datum t * data, void * result, size t * result_size)

algo: is a digest algorithm
data: is the data
result: is the place where the result will be copied (may be null).
result size: should hold the size of the result. The actual size of the returned result
will also be copied there.
This function will calculate a fingerprint (actually a hash), of the given data. The
result is not printable data. You should convert it to hex, or to something else
printable.
This is the usual way to calculate a fingerprint of an X.509 DER encoded certificate.
Note however that the fingerprint of an OpenPGP is not just a hash and cannot be
calculated with this function.
Returns a negative value in case of an error.

gnutls free

[Function]void gnutls_free (void * ptr)
This function will free data pointed by ptr.
The deallocation function used is the one set by gnutls_global_set_mem_
functions().

gnutls global deinit

[Function]void gnutls_global_deinit (void)
This function deinitializes the global data, that were initialized using gnutls_global_
init().
Note! This function is not thread safe. See the discussion for gnutls_global_init()
for more information.

gnutls global init

[Function]int gnutls_global_init (void)
This function initializes the global data to defaults. Every gnutls application has a
global data which holds common parameters shared by gnutls session structures. You
must call gnutls_global_deinit() when gnutls usage is no longer needed Returns
zero on success.
Note that this function will also initialize libgcrypt, if it has not been initialized
before. Thus if you want to manually initialize libgcrypt you must do it before calling

Chapter 9: Function reference 128

this function. This is useful in cases you want to disable libgcrypt’s internal lockings
etc.
This function increment a global counter, so that gnutls_global_deinit() only
releases resources when it has been called as many times as gnutls_global_init().
This is useful when GnuTLS is used by more than one library in an application. This
function can be called many times, but will only do something the first time.
Note! This function is not thread safe. If two threads call this function simultaneously,
they can cause a race between checking the global counter and incrementing it, causing
both threads to execute the library initialization code. That would lead to a memory
leak. To handle this, your application could invoke this function after aquiring a
thread mutex. To ignore the potential memory leak is also an option.

gnutls global set log function

[Function]void gnutls_global_set_log_function (gnutls log func log_func)
log func: it’s a log function
This is the function where you set the logging function gnutls is going to use. This
function only accepts a character array. Normally you may not use this function since
it is only used for debugging purposes.
gnutls log func is of the form, void (*gnutls log func)(int level, const char*);

gnutls global set log level

[Function]void gnutls_global_set_log_level (int level)
level: it’s an integer from 0 to 9.
This is the function that allows you to set the log level. The level is an integer between
0 and 9. Higher values mean more verbosity. The default value is 0. Larger values
should only be used with care, since they may reveal sensitive information.
Use a log level over 10 to enable all debugging options.

gnutls global set mem functions

[Function]void gnutls_global_set_mem_functions (gnutls alloc function
alloc_func, gnutls alloc function secure_alloc_func,
gnutls is secure function is_secure_func, gnutls realloc function
realloc_func, gnutls free function free_func)

alloc func: it’s the default memory allocation function. Like malloc().
secure alloc func: This is the memory allocation function that will be used for sensi-
tive data.
is secure func: a function that returns 0 if the memory given is not secure. May be
NULL.
realloc func: A realloc function
free func: The function that frees allocated data. Must accept a NULL pointer.
This is the function were you set the memory allocation functions gnutls is going
to use. By default the libc’s allocation functions (malloc(), free()), are used by
gnutls, to allocate both sensitive and not sensitive data. This function is provided

Chapter 9: Function reference 129

to set the memory allocation functions to something other than the defaults (ie the
gcrypt allocation functions).
This function must be called before gnutls_global_init() is called.

gnutls handshake get last in

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_in (gnutls session t session)

session: is a gnutls_session_t structure.
Returns the last handshake message received. This function is only useful to check
where the last performed handshake failed. If the previous handshake succeed or was
not performed at all then no meaningful value will be returned.
Check gnutls.h for the available handshake descriptions.

gnutls handshake get last out

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_out (gnutls session t session)

session: is a gnutls_session_t structure.
Returns the last handshake message sent. This function is only useful to check where
the last performed handshake failed. If the previous handshake succeed or was not
performed at all then no meaningful value will be returned.
Check gnutls.h for the available handshake descriptions.

gnutls handshake set max packet length

[Function]void gnutls_handshake_set_max_packet_length (gnutls session t
session, size t max)

session: is a gnutls_session_t structure.
max: is the maximum number.
This function will set the maximum size of a handshake message. Handshake messages
over this size are rejected. The default value is 16kb which is large enough. Set this
to 0 if you do not want to set an upper limit.

gnutls handshake set private extensions

[Function]void gnutls_handshake_set_private_extensions (gnutls session t
session, int allow)

session: is a gnutls_session_t structure.
allow : is an integer (0 or 1)
This function will enable or disable the use of private cipher suites (the ones that start
with 0xFF). By default or if allow is 0 then these cipher suites will not be advertized
nor used.
Unless this function is called with the option to allow (1), then no compression algo-
rithms, like LZO. That is because these algorithms are not yet defined in any RFC
or even internet draft.
Enabling the private ciphersuites when talking to other than gnutls servers and clients
may cause interoperability problems.

Chapter 9: Function reference 130

gnutls handshake

[Function]int gnutls_handshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function does the handshake of the TLS/SSL protocol, and initializes the TLS
connection.

This function will fail if any problem is encountered, and will return a negative error
code. In case of a client, if the client has asked to resume a session, but the server
couldn’t, then a full handshake will be performed.

The non-fatal errors such as GNUTLS E AGAIN and GNUTLS E INTERRUPTED
interrupt the handshake procedure, which should be later be resumed. Call this
function again, until it returns 0; cf. gnutls_record_get_direction() and gnutls_
error_is_fatal().

If this function is called by a server after a rehandshake request then
GNUTLS E GOT APPLICATION DATA or GNUTLS E WARNING ALERT RECEIVED
may be returned. Note that these are non fatal errors, only in the specific case of a
rehandshake. Their meaning is that the client rejected the rehandshake request.

gnutls hex decode

[Function]int gnutls_hex_decode (const gnutls datum t * hex_data, char *
result, size t * result_size)

hex data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data, using the hex encoding used by
PSK password files.

Note that hex data should be null terminated.

Returns GNUTLS E SHORT MEMORY BUFFER if the buffer given is not long
enough, or 0 on success.

gnutls hex encode

[Function]int gnutls_hex_encode (const gnutls datum t * data, char * result,
size t * result_size)

data: contain the raw data

result: the place where hex data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the hex encoding,
as used in the PSK password files.

Returns GNUTLS E SHORT MEMORY BUFFER if the buffer given is not long
enough, or 0 on success.

Chapter 9: Function reference 131

gnutls init

[Function]int gnutls_init (gnutls session t * session, gnutls connection end t
con_end)

session: is a pointer to a gnutls_session_t structure.

con end: is used to indicate if this session is to be used for server or client. Can be
one of GNUTLS CLIENT and GNUTLS SERVER.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit(). Returns zero on success.

gnutls kx get name

[Function]const char * gnutls_kx_get_name (gnutls kx algorithm t
algorithm)

algorithm: is a key exchange algorithm

Returns a pointer to a string that contains the name of the specified key exchange
algorithm or NULL.

gnutls kx get

[Function]gnutls_kx_algorithm_t gnutls_kx_get (gnutls session t session)
session: is a gnutls_session_t structure.

Returns the key exchange algorithm used in the last handshake.

gnutls kx set priority

[Function]int gnutls_kx_set_priority (gnutls session t session, const int *
list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls kx algorithm t elements.

Sets the priority on the key exchange algorithms supported by gnutls. Priority is
higher for algorithms specified before others. After specifying the algorithms you
want, you must append a 0. Note that the priority is set on the client. The server
does not use the algorithm’s priority except for disabling algorithms that were not
specified.

Returns 0 on success.

gnutls mac get name

[Function]const char * gnutls_mac_get_name (gnutls mac algorithm t
algorithm)

algorithm: is a MAC algorithm

Returns a string that contains the name of the specified MAC algorithm or NULL.

Chapter 9: Function reference 132

gnutls mac get

[Function]gnutls_mac_algorithm_t gnutls_mac_get (gnutls session t
session)

session: is a gnutls_session_t structure.
Returns the currently used mac algorithm.

gnutls mac set priority

[Function]int gnutls_mac_set_priority (gnutls session t session, const int *
list)

session: is a gnutls_session_t structure.
list: is a 0 terminated list of gnutls mac algorithm t elements.
Sets the priority on the mac algorithms supported by gnutls. Priority is higher for
algorithms specified before others. After specifying the algorithms you want, you
must append a 0. Note that the priority is set on the client. The server does not use
the algorithm’s priority except for disabling algorithms that were not specified.
Returns 0 on success.

gnutls malloc

[Function]void * gnutls_malloc (size t s)
This function will allocate ’s’ bytes data, and return a pointer to memory. This
function is supposed to be used by callbacks.
The allocation function used is the one set by gnutls_global_set_mem_functions().

gnutls openpgp send key

[Function]void gnutls_openpgp_send_key (gnutls session t session,
gnutls openpgp key status t status)

session: is a pointer to a gnutls_session_t structure.
status: is one of OPENPGP KEY, or OPENPGP KEY FINGERPRINT
This function will order gnutls to send the key fingerprint instead of the key in the
initial handshake procedure. This should be used with care and only when there is
indication or knowledge that the server can obtain the client’s key.

gnutls pem base64 decode alloc

[Function]int gnutls_pem_base64_decode_alloc (const char * header, const
gnutls datum t * b64_data, gnutls datum t * result)

header: The PEM header (eg. CERTIFICATE)
b64 data: contains the encoded data
result: the place where decoded data lie
This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. If the header given is non null this function will search for
"—–BEGIN header" and decode only this part. Otherwise it will decode the first
PEM packet found.
You should use gnutls_free() to free the returned data.

Chapter 9: Function reference 133

gnutls pem base64 decode

[Function]int gnutls_pem_base64_decode (const char * header, const
gnutls datum t * b64_data, unsigned char * result, size t * result_size)

header: A null terminated string with the PEM header (eg. CERTIFICATE)
b64 data: contain the encoded data
result: the place where decoded data will be copied
result size: holds the size of the result
This function will decode the given encoded data. If the header given is non null this
function will search for "—–BEGIN header" and decode only this part. Otherwise it
will decode the first PEM packet found.
Returns GNUTLS E SHORT MEMORY BUFFER if the buffer given is not long
enough, or 0 on success.

gnutls pem base64 encode alloc

[Function]int gnutls_pem_base64_encode_alloc (const char * msg, const
gnutls datum t * data, gnutls datum t * result)

msg : is a message to be put in the encoded header
data: contains the raw data
result: will hold the newly allocated encoded data
This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages. This function will allocate the required
memory to hold the encoded data.
You should use gnutls_free() to free the returned data.

gnutls pem base64 encode

[Function]int gnutls_pem_base64_encode (const char * msg, const
gnutls datum t * data, char * result, size t * result_size)

msg : is a message to be put in the header
data: contain the raw data
result: the place where base64 data will be copied
result size: holds the size of the result
This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages. If the provided buffer is not long enough
GNUTLS E SHORT MEMORY BUFFER is returned.
The output string will be null terminated, although the size will not include the
terminating null.

gnutls perror

[Function]void gnutls_perror (int error)
error: is an error returned by a gnutls function. Error is always a negative value.
This function is like perror(). The only difference is that it accepts an error number
returned by a gnutls function.

Chapter 9: Function reference 134

gnutls pk algorithm get name

[Function]const char * gnutls_pk_algorithm_get_name
(gnutls pk algorithm t algorithm)

algorithm: is a pk algorithm
Returns a string that contains the name of the specified public key algorithm or
NULL.

gnutls prf raw

[Function]int gnutls_prf_raw (gnutls session t session, size t label_size,
const char * label, size t seed_size, const char * seed, size t outsize,
char * out)

session: is a gnutls_session_t structure.
label size: length of the label variable.
label: label used in PRF computation, typically a short string.
seed size: length of the seed variable.
seed: optional extra data to seed the PRF with.
outsize: size of pre-allocated output buffer to hold the output.
out: pre-allocate buffer to hold the generated data.
Apply the TLS Pseudo-Random-Function (PRF) using the master secret on some
data.
The label variable usually contain a string denoting the purpose for the generated
data. The seed usually contain data such as the client and server random, perhaps
together with some additional data that is added to guarantee uniqueness of the
output for a particular purpose.
Because the output is not guaranteed to be unique for a particular session unless seed
include the client random and server random fields (the PRF would output the same
data on another connection resumed from the first one), it is not recommended to
use this function directly. The gnutls_prf() function seed the PRF with the client
and server random fields directly, and is recommended if you want to generate pseudo
random data unique for each session.
Return value: Return 0 on success, or an error code.

gnutls prf

[Function]int gnutls_prf (gnutls session t session, size t label_size, const
char * label, int server_random_first, size t extra_size, const char *
extra, size t outsize, char * out)

session: is a gnutls_session_t structure.
label size: length of the label variable.
label: label used in PRF computation, typically a short string.
server random first: non-0 if server random field should be first in seed
extra size: length of the extra variable.

Chapter 9: Function reference 135

extra: optional extra data to seed the PRF with.
outsize: size of pre-allocated output buffer to hold the output.
out: pre-allocate buffer to hold the generated data.
Apply the TLS Pseudo-Random-Function (PRF) using the master secret on some
data, seeded with the client and server random fields.
The label variable usually contain a string denoting the purpose for the generated
data. The server_random_first indicate whether the client random field or the
server random field should be first in the seed. Non-0 indicate that the server random
field is first, 0 that the client random field is first.
The extra variable can be used to add more data to the seed, after the random
variables. It can be used to tie make sure the generated output is strongly connected
to some additional data (e.g., a string used in user authentication).
The output is placed in *OUT, which must be pre-allocated.
Return value: Return 0 on success, or an error code.

gnutls protocol get name

[Function]const char * gnutls_protocol_get_name (gnutls protocol t
version)

version: is a (gnutls) version number
Returns a string that contains the name of the specified TLS version or NULL.

gnutls protocol get version

[Function]gnutls_protocol_t gnutls_protocol_get_version
(gnutls session t session)

session: is a gnutls_session_t structure.
Returns the version of the currently used protocol.

gnutls protocol set priority

[Function]int gnutls_protocol_set_priority (gnutls session t session, const
int * list)

session: is a gnutls_session_t structure.
list: is a 0 terminated list of gnutls protocol t elements.
Sets the priority on the protocol versions supported by gnutls. This function actually
enables or disables protocols. Newer protocol versions always have highest priority.
Returns 0 on success.

gnutls psk allocate client credentials

[Function]int gnutls_psk_allocate_client_credentials
(gnutls psk client credentials t * sc)

sc: is a pointer to an gnutls_psk_server_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.
Returns 0 on success.

Chapter 9: Function reference 136

gnutls psk allocate server credentials

[Function]int gnutls_psk_allocate_server_credentials
(gnutls psk server credentials t * sc)

sc: is a pointer to an gnutls_psk_server_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.
Returns 0 on success.

gnutls psk free client credentials

[Function]void gnutls_psk_free_client_credentials
(gnutls psk client credentials t sc)

sc: is an gnutls_psk_client_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls psk free server credentials

[Function]void gnutls_psk_free_server_credentials
(gnutls psk server credentials t sc)

sc: is an gnutls_psk_server_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls psk server get username

[Function]const char * gnutls_psk_server_get_username (gnutls session t
session)

session: is a gnutls session
This function will return the username of the peer. This should only be called in case
of PSK authentication and in case of a server. Returns NULL in case of an error.

gnutls psk set client credentials function

[Function]void gnutls_psk_set_client_credentials_function
(gnutls psk client credentials t cred, gnutls psk client credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.
func: is the callback function
This function can be used to set a callback to retrieve the username and pass-
word for client PSK authentication. The callback’s function form is: int (*call-
back)(gnutls session t, char** username, gnutls datum* key);
The username and key must be allocated using gnutls_malloc(). username should
be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of "string-
prep".
The callback function will be called once per handshake.
The callback function should return 0 on success. -1 indicates an error.

Chapter 9: Function reference 137

gnutls psk set client credentials

[Function]int gnutls_psk_set_client_credentials
(gnutls psk client credentials t res, const char * username, const
gnutls datum * key, unsigned int flags)

res: is an gnutls_psk_client_credentials_t structure.
username: is the user’s zero-terminated userid
key : is the user’s key
This function sets the username and password, in a gnutls psk client credentials t
structure. Those will be used in PSK authentication. username should be an ASCII
string or UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The
key can be either in raw byte format or in Hex (not with the ’0x’ prefix).
Returns 0 on success.

gnutls psk set params function

[Function]void gnutls_psk_set_params_function
(gnutls psk server credentials t res, gnutls params function * func)

res: is a gnutls psk server credentials t structure
func: is the function to be called
This function will set a callback in order for the server to get the diffie hellman or
RSA parameters for psk authentication. The callback should return zero on success.

gnutls psk set server credentials file

[Function]int gnutls_psk_set_server_credentials_file
(gnutls psk server credentials t res, const char * password_file)

res: is an gnutls_psk_server_credentials_t structure.
password file: is the PSK password file (passwd.psk)
This function sets the password file, in a gnutls psk server credentials t structure.
This password file holds usernames and keys and will be used for PSK authentication.
Returns 0 on success.

gnutls psk set server credentials function

[Function]void gnutls_psk_set_server_credentials_function
(gnutls psk server credentials t cred, gnutls psk server credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.
func: is the callback function
This function can be used to set a callback to retrieve the user’s PSK credentials. The
callback’s function form is: int (*callback)(gnutls session t, const char* username,
gnutls datum t* key);
username contains the actual username. The key must be filled in using the gnutls_
malloc().

Chapter 9: Function reference 138

In case the callback returned a negative number then gnutls will assume that the
username does not exist.

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

gnutls psk set server dh params

[Function]void gnutls_psk_set_server_dh_params
(gnutls psk server credentials t res, gnutls dh params t dh_params)

res: is a gnutls psk server credentials t structure

dh params: is a structure that holds diffie hellman parameters.

This function will set the diffie hellman parameters for an anonymous server to use.
These parameters will be used in Diffie Hellman with PSK cipher suites.

gnutls psk set server params function

[Function]void gnutls_psk_set_server_params_function
(gnutls psk server credentials t res, gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the diffie hellman
parameters for PSK authentication. The callback should return zero on success.

gnutls record check pending

[Function]size_t gnutls_record_check_pending (gnutls session t session)
session: is a gnutls_session_t structure.

This function checks if there are any data to receive in the gnutls buffers. Returns
the size of that data or 0. Notice that you may also use select() to check for data
in a TCP connection, instead of this function. (gnutls leaves some data in the tcp
buffer in order for select to work).

gnutls record get direction

[Function]int gnutls_record_get_direction (gnutls session t session)
session: is a gnutls_session_t structure.

This function provides information about the internals of the record protocol and is
only useful if a prior gnutls function call (e.g. gnutls_handshake()) was interrupted
for some reason, that is, if a function returned GNUTLS E INTERRUPTED or
GNUTLS E AGAIN. In such a case, you might want to call select() or poll() be-
fore calling the interrupted gnutls function again. To tell you whether a file descriptor
should be selected for either reading or writing, gnutls_record_get_direction()
returns 0 if the interrupted function was trying to read data, and 1 if it was trying to
write data.

Chapter 9: Function reference 139

gnutls record get max size

[Function]size_t gnutls_record_get_max_size (gnutls session t session)
session: is a gnutls_session_t structure.

This function returns the maximum record packet size in this connection. The maxi-
mum record size is negotiated by the client after the first handshake message.

gnutls record recv

[Function]ssize_t gnutls_record_recv (gnutls session t session, void * data,
size t sizeofdata)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into

sizeofdata: the number of requested bytes

This function has the similar semantics with recv(). The only difference is that is
accepts a GNUTLS session, and uses different error codes.

In the special case that a server requests a renegotiation, the client may receive an
error code of GNUTLS_E_REHANDSHAKE. This message may be simply ignored, replied
with an alert containing NO RENEGOTIATION, or replied with a new handshake,
depending on the client’s will.

If EINTR is returned by the internal push function (the default is recv()) then GNUTLS_
E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN is
returned, you must call this function again to get the data. See also gnutls_record_
get_direction().

A server may also receive GNUTLS_E_REHANDSHAKE when a client has initiated a hand-
shake. In that case the server can only initiate a handshake or terminate the connec-
tion.

Returns the number of bytes received and zero on EOF. A negative error code is
returned in case of an error. The number of bytes received might be less than
sizeofdata.

gnutls record send

[Function]ssize_t gnutls_record_send (gnutls session t session, const void *
data, size t sizeofdata)

session: is a gnutls_session_t structure.

data: contains the data to send

sizeofdata: is the length of the data

This function has the similar semantics with send(). The only difference is that is
accepts a GNUTLS session, and uses different error codes.

Note that if the send buffer is full, send() will block this function. See the send()
documentation for full information. You can replace the default push function by us-
ing gnutls_transport_set_ptr2() with a call to send() with a MSG DONTWAIT
flag if blocking is a problem.

Chapter 9: Function reference 140

If the EINTR is returned by the internal push function (the default is send()} then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_
AGAIN is returned, you must call this function again, with the same parameters;
alternatively you could provide a NULL pointer for data, and 0 for size. cf. gnutls_
record_get_direction().

Returns the number of bytes sent, or a negative error code. The number of bytes sent
might be less than sizeofdata. The maximum number of bytes this function can
send in a single call depends on the negotiated maximum record size.

gnutls record set max size

[Function]ssize_t gnutls_record_set_max_size (gnutls session t session,
size t size)

session: is a gnutls_session_t structure.

size: is the new size

This function sets the maximum record packet size in this connection. This property
can only be set to clients. The server may choose not to accept the requested size.

Acceptable values are 512(=2^9), 1024(=2^10), 2048(=2^11) and 4096(=2^12). Re-
turns 0 on success. The requested record size does get in effect immediately only
while sending data. The receive part will take effect after a successful handshake.

This function uses a TLS extension called ’max record size’. Not all TLS implemen-
tations use or even understand this extension.

gnutls rehandshake

[Function]int gnutls_rehandshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function will renegotiate security parameters with the client. This should only
be called in case of a server.

This message informs the peer that we want to renegotiate parameters (perform a
handshake).

If this function succeeds (returns 0), you must call the gnutls_handshake() function
in order to negotiate the new parameters.

If the client does not wish to renegotiate parameters he will should with an alert
message, thus the return code will be GNUTLS E WARNING ALERT RECEIVED
and the alert will be GNUTLS A NO RENEGOTIATION. A client may also choose
to ignore this message.

gnutls rsa export get modulus bits

[Function]int gnutls_rsa_export_get_modulus_bits (gnutls session t
session)

session: is a gnutls session

This function will return the bits used in the last RSA-EXPORT key exchange with
the peer. Returns a negative value in case of an error.

Chapter 9: Function reference 141

gnutls rsa export get pubkey

[Function]int gnutls_rsa_export_get_pubkey (gnutls session t session,
gnutls datum t * exponent, gnutls datum t * modulus)

session: is a gnutls session

exponent: will hold the exponent.

modulus: will hold the modulus.

This function will return the peer’s public key exponent and modulus used in the last
RSA-EXPORT authentication. The output parameters must be freed with gnutls_
free().

Returns a negative value in case of an error.

gnutls rsa params cpy

[Function]int gnutls_rsa_params_cpy (gnutls rsa params t dst,
gnutls rsa params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

This function will copy the RSA parameters structure from source to destination.

gnutls rsa params deinit

[Function]void gnutls_rsa_params_deinit (gnutls rsa params t rsa_params)
rsa params: Is a structure that holds the parameters

This function will deinitialize the RSA parameters structure.

gnutls rsa params export pkcs1

[Function]int gnutls_rsa_params_export_pkcs1 (gnutls rsa params t params,
gnutls x509 crt fmt t format, unsigned char * params_data, size t *
params_data_size)

params: Holds the RSA parameters

format: the format of output params. One of PEM or DER.

params data: will contain a PKCS1 RSAPublicKey structure PEM or DER encoded

params data size: holds the size of params data (and will be replaced by the actual
size of parameters)

This function will export the given RSA parameters to a PKCS1 RSAPublicKey
structure. If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 142

gnutls rsa params export raw

[Function]int gnutls_rsa_params_export_raw (gnutls rsa params t params,
gnutls datum t * m, gnutls datum t * e, gnutls datum t * d, gnutls datum t *
p, gnutls datum t * q, gnutls datum t * u, unsigned int * bits)

params: a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

bits: if non null will hold the prime’s number of bits

This function will export the RSA parameters found in the given structure. The
new parameters will be allocated using gnutls_malloc() and will be stored in the
appropriate datum.

gnutls rsa params generate2

[Function]int gnutls_rsa_params_generate2 (gnutls rsa params t params,
unsigned int bits)

params: The structure where the parameters will be stored

bits: is the prime’s number of bits

This function will generate new temporary RSA parameters for use in RSA-EXPORT
ciphersuites. This function is normally slow.

Note that if the parameters are to be used in export cipher suites the bits value should
be 512 or less. Also note that the generation of new RSA parameters is only useful
to servers. Clients use the parameters sent by the server, thus it’s no use calling this
in client side.

gnutls rsa params import pkcs1

[Function]int gnutls_rsa_params_import_pkcs1 (gnutls rsa params t params,
const gnutls datum t * pkcs1_params, gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to

pkcs1 params: should contain a PKCS1 RSAPublicKey structure PEM or DER en-
coded

format: the format of params. PEM or DER.

This function will extract the RSAPublicKey found in a PKCS1 formatted structure.

If the structure is PEM encoded, it should have a header of "BEGIN RSA PRIVATE
KEY".

In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 143

gnutls rsa params import raw

[Function]int gnutls_rsa_params_import_raw (gnutls rsa params t
rsa_params, const gnutls datum t * m, const gnutls datum t * e, const
gnutls datum t * d, const gnutls datum t * p, const gnutls datum t * q, const
gnutls datum t * u)

rsa params: Is a structure will hold the parameters

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

This function will replace the parameters in the given structure. The new parameters
should be stored in the appropriate gnutls datum.

gnutls rsa params init

[Function]int gnutls_rsa_params_init (gnutls rsa params t * rsa_params)
rsa params: Is a structure that will hold the parameters

This function will initialize the temporary RSA parameters structure.

gnutls server name get

[Function]int gnutls_server_name_get (gnutls session t session, void * data,
size t * data_length, unsigned int * type, unsigned int indx)

session: is a gnutls_session_t structure.

data: will hold the data

data length: will hold the data length. Must hold the maximum size of data.

type: will hold the server name indicator type

indx: is the index of the server name

This function will allow you to get the name indication (if any), a client has sent.
The name indication may be any of the enumeration gnutls server name type t.

If type is GNUTLS NAME DNS, then this function is to be used by servers that
support virtual hosting, and the data will be a null terminated UTF-8 string.

If data has not enough size to hold the server name GNUTLS E SHORT MEMORY BUFFER
is returned, and data_length will hold the required size.

index is used to retrieve more than one server names (if sent by the client). The first
server name has an index of 0, the second 1 and so on. If no name with the given
index exists GNUTLS E REQUESTED DATA NOT AVAILABLE is returned.

Chapter 9: Function reference 144

gnutls server name set

[Function]int gnutls_server_name_set (gnutls session t session,
gnutls server name type t type, const void * name, size t name_length)

session: is a gnutls_session_t structure.
type: specifies the indicator type
name: is a string that contains the server name.
name length: holds the length of name
This function is to be used by clients that want to inform (via a TLS extension
mechanism) the server of the name they connected to. This should be used by clients
that connect to servers that do virtual hosting.
The value of name depends on the ind type. In case of GNUTLS NAME DNS, an
ASCII or UTF-8 null terminated string, without the trailing dot, is expected. IPv4
or IPv6 addresses are not permitted.

gnutls session get client random

[Function]const void * gnutls_session_get_client_random
(gnutls session t session)

session: is a gnutls_session_t structure.
Return a pointer to the 32-byte client random field used in the session. The pointer
must not be modified or deallocated.
If a client random value has not yet been established, the output will be garbage; in
particular, a NULL return value should not be expected.
Return value: pointer to client random.

gnutls session get data2

[Function]int gnutls_session_get_data2 (gnutls session t session,
gnutls datum * data)

session: is a gnutls_session_t structure.
Returns all session parameters, in order to support resuming. The client should call
this, and keep the returned session, if he wants to resume that current version later by
calling gnutls_session_set_data() This function must be called after a successful
handshake. The returned datum must be freed with gnutls_free().
Resuming sessions is really useful and speedups connections after a succesful one.

gnutls session get data

[Function]int gnutls_session_get_data (gnutls session t session, void *
session_data, size t * session_data_size)

session: is a gnutls_session_t structure.
session data: is a pointer to space to hold the session.
session data size: is the session data’s size, or it will be set by the function.
Returns all session parameters, in order to support resuming. The client should call
this, and keep the returned session, if he wants to resume that current version later by

Chapter 9: Function reference 145

calling gnutls_session_set_data() This function must be called after a successful
handshake.

Resuming sessions is really useful and speedups connections after a succesful one.

gnutls session get id

[Function]int gnutls_session_get_id (gnutls session t session, void *
session_id, size t * session_id_size)

session: is a gnutls_session_t structure.

session id: is a pointer to space to hold the session id.

session id size: is the session id’s size, or it will be set by the function.

Returns the current session id. This can be used if you want to check if the next
session you tried to resume was actually resumed. This is because resumed sessions
have the same sessionID with the original session.

Session id is some data set by the server, that identify the current session. In TLS
1.0 and SSL 3.0 session id is always less than 32 bytes.

Returns zero on success.

gnutls session get master secret

[Function]const void * gnutls_session_get_master_secret
(gnutls session t session)

session: is a gnutls_session_t structure.

Return a pointer to the 48-byte master secret in the session. The pointer must not
be modified or deallocated.

If a master secret value has not yet been established, the output will be garbage; in
particular, a NULL return value should not be expected.

Consider using gnutls_prf() rather than extracting the master secret and use it to
derive further data.

Return value: pointer to master secret.

gnutls session get ptr

[Function]void * gnutls_session_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

This function will return the user given pointer from the session structure. This is
the pointer set with gnutls_session_set_ptr().

gnutls session get server random

[Function]const void * gnutls_session_get_server_random
(gnutls session t session)

session: is a gnutls_session_t structure.

Return a pointer to the 32-byte server random field used in the session. The pointer
must not be modified or deallocated.

Chapter 9: Function reference 146

If a server random value has not yet been established, the output will be garbage; in
particular, a NULL return value should not be expected.

Return value: pointer to server random.

gnutls session is resumed

[Function]int gnutls_session_is_resumed (gnutls session t session)
session: is a gnutls_session_t structure.

This function will return non zero if this session is a resumed one, or a zero if this is
a new session.

gnutls session set data

[Function]int gnutls_session_set_data (gnutls session t session, const void *
session_data, size t session_data_size)

session: is a gnutls_session_t structure.

session data: is a pointer to space to hold the session.

session data size: is the session’s size

Sets all session parameters, in order to resume a previously established session. The
session data given must be the one returned by gnutls_session_get_data(). This
function should be called before gnutls_handshake().

Keep in mind that session resuming is advisory. The server may choose not to resume
the session, thus a full handshake will be performed.

Returns a negative value on error.

gnutls session set ptr

[Function]void gnutls_session_set_ptr (gnutls session t session, void * ptr)
session: is a gnutls_session_t structure.

ptr: is the user pointer

This function will set (associate) the user given pointer to the session structure. This
is pointer can be accessed with gnutls_session_get_ptr().

gnutls set default export priority

[Function]int gnutls_set_default_export_priority (gnutls session t
session)

session: is a gnutls_session_t structure.

Sets some default priority on the ciphers, key exchange methods, macs and com-
pression methods. This is to avoid using the gnutls *_priority() functions, if
these defaults are ok. This function also includes weak algorithms. The order is
TLS1, SSL3 for protocols, RSA, DHE DSS, DHE RSA, RSA EXPORT for key ex-
change algorithms. SHA, MD5, RIPEMD160 for MAC algorithms, AES 256 CBC,
AES 128 CBC, and 3DES CBC, ARCFOUR 128, ARCFOUR 40 for ciphers.

Returns 0 on success.

Chapter 9: Function reference 147

gnutls set default priority

[Function]int gnutls_set_default_priority (gnutls session t session)
session: is a gnutls_session_t structure.
Sets some default priority on the ciphers, key exchange methods, macs and compres-
sion methods. This is to avoid using the gnutls *_priority() functions, if these
defaults are ok. You may override any of the following priorities by calling the ap-
propriate functions.
The order is TLS 1.2, TLS 1.1, TLS 1.0, SSL3 for protocols. RSA, DHE DSS,
DHE RSA for key exchange algorithms. SHA, MD5 and RIPEMD160 for MAC al-
gorithms. AES 128 CBC, 3DES CBC, and ARCFOUR 128 for ciphers.
Returns 0 on success.

gnutls sign algorithm get name

[Function]const char * gnutls_sign_algorithm_get_name
(gnutls sign algorithm t sign)

Returns a string that contains the name of the specified sign algorithm or NULL.

gnutls srp allocate client credentials

[Function]int gnutls_srp_allocate_client_credentials
(gnutls srp client credentials t * sc)

sc: is a pointer to an gnutls_srp_server_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.
Returns 0 on success.

gnutls srp allocate server credentials

[Function]int gnutls_srp_allocate_server_credentials
(gnutls srp server credentials t * sc)

sc: is a pointer to an gnutls_srp_server_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.
Returns 0 on success.

gnutls srp base64 decode alloc

[Function]int gnutls_srp_base64_decode_alloc (const gnutls datum t *
b64_data, gnutls datum t * result)

b64 data: contains the encoded data
result: the place where decoded data lie
This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. It will decode using the base64 algorithm found in libsrp.
You should use gnutls_free() to free the returned data.

Chapter 9: Function reference 148

gnutls srp base64 decode

[Function]int gnutls_srp_base64_decode (const gnutls datum t * b64_data,
char * result, size t * result_size)

b64 data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data, using the base64 encoding found
in libsrp.

Note that b64 data should be null terminated.

Returns GNUTLS E SHORT MEMORY BUFFER if the buffer given is not long
enough, or 0 on success.

gnutls srp base64 encode alloc

[Function]int gnutls_srp_base64_encode_alloc (const gnutls datum t * data,
gnutls datum t * result)

data: contains the raw data

result: will hold the newly allocated encoded data

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in SRP password files. This function will allocate the
required memory to hold the encoded data.

You should use gnutls_free() to free the returned data.

gnutls srp base64 encode

[Function]int gnutls_srp_base64_encode (const gnutls datum t * data, char *
result, size t * result_size)

data: contain the raw data

result: the place where base64 data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the base64 encoding,
as used in the libsrp. This is the encoding used in SRP password files. If the provided
buffer is not long enough GNUTLS E SHORT MEMORY BUFFER is returned.

gnutls srp free client credentials

[Function]void gnutls_srp_free_client_credentials
(gnutls srp client credentials t sc)

sc: is an gnutls_srp_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

Chapter 9: Function reference 149

gnutls srp free server credentials

[Function]void gnutls_srp_free_server_credentials
(gnutls srp server credentials t sc)

sc: is an gnutls_srp_server_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls srp server get username

[Function]const char * gnutls_srp_server_get_username (gnutls session t
session)

session: is a gnutls session
This function will return the username of the peer. This should only be called in case
of SRP authentication and in case of a server. Returns NULL in case of an error.

gnutls srp set client credentials function

[Function]void gnutls_srp_set_client_credentials_function
(gnutls srp client credentials t cred, gnutls srp client credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.
func: is the callback function
This function can be used to set a callback to retrieve the username and pass-
word for client SRP authentication. The callback’s function form is: int (*call-
back)(gnutls session t, unsigned int times, char** username, char** password);
The username and password must be allocated using gnutls_malloc(). times will
be 0 the first time called, and 1 the second. username and password should be ASCII
strings or UTF-8 strings prepared using the "SASLprep" profile of "stringprep".
The callback function will be called once or twice per handshake. The first time
called, is before the ciphersuite is negotiated. At that time if the callback returns a
negative error code, the callback will be called again if SRP has been negotiated. This
uses a special TLS-SRP idiom in order to avoid asking the user for SRP password
and username if the server does not support SRP.
The callback should not return a negative error code the second time called, since the
handshake procedure will be aborted.
The callback function should return 0 on success. -1 indicates an error.

gnutls srp set client credentials

[Function]int gnutls_srp_set_client_credentials
(gnutls srp client credentials t res, const char * username, const char *
password)

res: is an gnutls_srp_client_credentials_t structure.
username: is the user’s userid
password: is the user’s password

Chapter 9: Function reference 150

This function sets the username and password, in a gnutls srp client credentials t
structure. Those will be used in SRP authentication. username and password should
be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of "string-
prep".
Returns 0 on success.

gnutls srp set server credentials file

[Function]int gnutls_srp_set_server_credentials_file
(gnutls srp server credentials t res, const char * password_file, const char
* password_conf_file)

res: is an gnutls_srp_server_credentials_t structure.
password file: is the SRP password file (tpasswd)
password conf file: is the SRP password conf file (tpasswd.conf)
This function sets the password files, in a gnutls srp server credentials t structure.
Those password files hold usernames and verifiers and will be used for SRP authen-
tication.
Returns 0 on success.

gnutls srp set server credentials function

[Function]void gnutls_srp_set_server_credentials_function
(gnutls srp server credentials t cred, gnutls srp server credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.
func: is the callback function
This function can be used to set a callback to retrieve the user’s SRP credentials. The
callback’s function form is: int (*callback)(gnutls session t, const char* username,
gnutls datum t* salt, gnutls datum t *verifier, gnutls datum t* g, gnutls datum t*
n);
username contains the actual username. The salt, verifier, generator and prime
must be filled in using the gnutls_malloc(). For convenience prime and generator
may also be one of the static parameters defined in extra.h.
In case the callback returned a negative number then gnutls will assume that the
username does not exist.
In order to prevent attackers from guessing valid usernames, if a user does not exist,
g and n values should be filled in using a random user’s parameters. In that case the
callback must return the special value (1).
The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

gnutls srp verifier

[Function]int gnutls_srp_verifier (const char * username, const char *
password, const gnutls datum t * salt, const gnutls datum t * generator,
const gnutls datum t * prime, gnutls datum t * res)

username: is the user’s name

Chapter 9: Function reference 151

password: is the user’s password
salt: should be some randomly generated bytes
generator: is the generator of the group
prime: is the group’s prime
res: where the verifier will be stored.
This function will create an SRP verifier, as specified in RFC2945. The prime and
generator should be one of the static parameters defined in gnutls/extra.h or may be
generated using the GCRYPT functions gcry_prime_generate() and gcry_prime_
group_generator(). The verifier will be allocated with malloc and will be stored in
res using binary format.

gnutls strerror

[Function]const char * gnutls_strerror (int error)
error: is an error returned by a gnutls function. Error is always a negative value.
This function is similar to strerror(). Differences: it accepts an error number
returned by a gnutls function; In case of an unknown error a descriptive string is sent
instead of NULL.

gnutls transport get ptr2

[Function]void gnutls_transport_get_ptr2 (gnutls session t session,
gnutls transport ptr t * recv_ptr, gnutls transport ptr t * send_ptr)

session: is a gnutls_session_t structure.
recv ptr: will hold the value for the pull function
send ptr: will hold the value for the push function
Used to get the arguments of the transport functions (like PUSH and PULL). These
should have been set using gnutls_transport_set_ptr2().

gnutls transport get ptr

[Function]gnutls_transport_ptr_t gnutls_transport_get_ptr
(gnutls session t session)

session: is a gnutls_session_t structure.
Used to get the first argument of the transport function (like PUSH and PULL). This
must have been set using gnutls_transport_set_ptr().

gnutls transport set errno

[Function]void gnutls_transport_set_errno (gnutls session t session, int
err)

session: is a gnutls_session_t structure.
err: error value to store in session-specific errno variable.
Store err in the session-specific errno variable. Useful values for err is EAGAIN
and EINTR, other values are treated will be treated as real errors in the push/pull
function.

Chapter 9: Function reference 152

This function is useful in replacement push/pull functions set by
gnutls transport set push function and gnutls transport set pullpush function
under Windows, where the replacement push/pull may not have access to the same
errno variable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll
and gnutls is linked to msvcrt.dll).
If you don’t have the session variable easily accessible from the push/pull function,
and don’t worry about thread conflicts, you can also use gnutls_transport_set_
global_errno().

gnutls transport set global errno

[Function]void gnutls_transport_set_global_errno (int err)
err: error value to store in global errno variable.
Store err in the global errno variable. Useful values for err is EAGAIN and EINTR,
other values are treated will be treated as real errors in the push/pull function.
This function is useful in replacement push/pull functions set by
gnutls transport set push function and gnutls transport set pullpush function
under Windows, where the replacement push/pull may not have access to the same
errno variable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll
and gnutls is linked to msvcrt.dll).
Whether this function is thread safe or not depends on whether the global variable
errno is thread safe, some system libraries make it a thread-local variable. When
feasible, using the guaranteed thread-safe gnutls_transport_set_errno() may be
better.

gnutls transport set lowat

[Function]void gnutls_transport_set_lowat (gnutls session t session, int
num)

session: is a gnutls_session_t structure.
num: is the low water value.
Used to set the lowat value in order for select to check if there are pending data to
socket buffer. Used only if you have changed the default low water value (default is
1). Normally you will not need that function. This function is only useful if using
berkeley style sockets. Otherwise it must be called and set lowat to zero.

gnutls transport set ptr2

[Function]void gnutls_transport_set_ptr2 (gnutls session t session,
gnutls transport ptr t recv_ptr, gnutls transport ptr t send_ptr)

session: is a gnutls_session_t structure.
recv ptr: is the value for the pull function
send ptr: is the value for the push function
Used to set the first argument of the transport function (like PUSH and PULL). In
berkeley style sockets this function will set the connection handle. With this function
you can use two different pointers for receiving and sending.

Chapter 9: Function reference 153

gnutls transport set ptr

[Function]void gnutls_transport_set_ptr (gnutls session t session,
gnutls transport ptr t ptr)

session: is a gnutls_session_t structure.
ptr: is the value.
Used to set the first argument of the transport function (like PUSH and PULL). In
berkeley style sockets this function will set the connection handle.

gnutls transport set pull function

[Function]void gnutls_transport_set_pull_function (gnutls session t
session, gnutls pull func pull_func)

session: gnutls session
pull func: a callback function similar to read()

This is the function where you set a function for gnutls to receive data. Normally,
if you use berkeley style sockets, do not need to use this function since the default
(recv(2)) will probably be ok.
PULL FUNC is of the form, ssize t (*gnutls pull func)(gnutls transport ptr t, void*,
size t);

gnutls transport set push function

[Function]void gnutls_transport_set_push_function (gnutls session t
session, gnutls push func push_func)

session: gnutls session
push func: a callback function similar to write()

This is the function where you set a push function for gnutls to use in order to
send data. If you are going to use berkeley style sockets, you do not need to use
this function since the default (send(2)) will probably be ok. Otherwise you should
specify this function for gnutls to be able to send data.
PUSH FUNC is of the form, ssize t (*gnutls push func)(gnutls transport ptr t,
const void*, size t);

9.2 X.509 certificate functions

The following functions are to be used for X.509 certificate handling. Their prototypes lie
in ‘gnutls/x509.h’.

gnutls pkcs12 bag decrypt

[Function]int gnutls_pkcs12_bag_decrypt (gnutls pkcs12 bag t bag, const char
* pass)

bag : The bag
pass: The password used for encryption. This can only be ASCII.
This function will decrypt the given encrypted bag and return 0 on success.

Chapter 9: Function reference 154

gnutls pkcs12 bag deinit

[Function]void gnutls_pkcs12_bag_deinit (gnutls pkcs12 bag t bag)
bag : The structure to be initialized

This function will deinitialize a PKCS12 Bag structure.

gnutls pkcs12 bag encrypt

[Function]int gnutls_pkcs12_bag_encrypt (gnutls pkcs12 bag t bag, const char
* pass, unsigned int flags)

bag : The bag

pass: The password used for encryption. This can only be ASCII.

flags: should be one of gnutls pkcs encrypt flags t elements bitwise or’d

This function will encrypt the given bag and return 0 on success.

gnutls pkcs12 bag get count

[Function]int gnutls_pkcs12_bag_get_count (gnutls pkcs12 bag t bag)
bag : The bag

This function will return the number of the elements withing the bag.

gnutls pkcs12 bag get data

[Function]int gnutls_pkcs12_bag_get_data (gnutls pkcs12 bag t bag, int
indx, gnutls datum t * data)

bag : The bag

indx: The element of the bag to get the data from

data: where the bag’s data will be. Should be treated as constant.

This function will return the bag’s data. The data is a constant that is stored into
the bag. Should not be accessed after the bag is deleted.

Returns 0 on success and a negative error code on error.

gnutls pkcs12 bag get friendly name

[Function]int gnutls_pkcs12_bag_get_friendly_name (gnutls pkcs12 bag t
bag, int indx, char ** name)

bag : The bag

indx: The bag’s element to add the id

name: will hold a pointer to the name (to be treated as const)

This function will return the friendly name, of the specified bag element. The key ID
is usually used to distinguish the local private key and the certificate pair.

Returns 0 on success, or a negative value on error.

Chapter 9: Function reference 155

gnutls pkcs12 bag get key id

[Function]int gnutls_pkcs12_bag_get_key_id (gnutls pkcs12 bag t bag, int
indx, gnutls datum t * id)

bag : The bag
indx: The bag’s element to add the id
id: where the ID will be copied (to be treated as const)
This function will return the key ID, of the specified bag element. The key ID is
usually used to distinguish the local private key and the certificate pair.
Returns 0 on success, or a negative value on error.

gnutls pkcs12 bag get type

[Function]gnutls_pkcs12_bag_type_t gnutls_pkcs12_bag_get_type
(gnutls pkcs12 bag t bag, int indx)

bag : The bag
indx: The element of the bag to get the type
This function will return the bag’s type. One of the gnutls pkcs12 bag type t enu-
merations.

gnutls pkcs12 bag init

[Function]int gnutls_pkcs12_bag_init (gnutls pkcs12 bag t * bag)
bag : The structure to be initialized
This function will initialize a PKCS12 bag structure. PKCS12 Bags usually contain
private keys, lists of X.509 Certificates and X.509 Certificate revocation lists.
Returns 0 on success.

gnutls pkcs12 bag set crl

[Function]int gnutls_pkcs12_bag_set_crl (gnutls pkcs12 bag t bag,
gnutls x509 crl t crl)

bag : The bag
crl: the CRL to be copied.
This function will insert the given CRL into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data().
Returns the index of the added bag on success, or a negative value on failure.

gnutls pkcs12 bag set crt

[Function]int gnutls_pkcs12_bag_set_crt (gnutls pkcs12 bag t bag,
gnutls x509 crt t crt)

bag : The bag
crt: the certificate to be copied.
This function will insert the given certificate into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data().
Returns the index of the added bag on success, or a negative value on failure.

Chapter 9: Function reference 156

gnutls pkcs12 bag set data

[Function]int gnutls_pkcs12_bag_set_data (gnutls pkcs12 bag t bag,
gnutls pkcs12 bag type t type, const gnutls datum t * data)

bag : The bag
type: The data’s type
data: the data to be copied.
This function will insert the given data of the given type into the bag.
Returns the index of the added bag on success, or a negative value on error.

gnutls pkcs12 bag set friendly name

[Function]int gnutls_pkcs12_bag_set_friendly_name (gnutls pkcs12 bag t
bag, int indx, const char * name)

bag : The bag
indx: The bag’s element to add the id
name: the name
This function will add the given key friendly name, to the specified, by the index,
bag element. The name will be encoded as a ’Friendly name’ bag attribute, which is
usually used to set a user name to the local private key and the certificate pair.
Returns 0 on success, or a negative value on error.

gnutls pkcs12 bag set key id

[Function]int gnutls_pkcs12_bag_set_key_id (gnutls pkcs12 bag t bag, int
indx, const gnutls datum t * id)

bag : The bag
indx: The bag’s element to add the id
id: the ID
This function will add the given key ID, to the specified, by the index, bag element.
The key ID will be encoded as a ’Local key identifier’ bag attribute, which is usually
used to distinguish the local private key and the certificate pair.
Returns 0 on success, or a negative value on error.

gnutls pkcs12 deinit

[Function]void gnutls_pkcs12_deinit (gnutls pkcs12 t pkcs12)
pkcs12: The structure to be initialized
This function will deinitialize a PKCS12 structure.

gnutls pkcs12 export

[Function]int gnutls_pkcs12_export (gnutls pkcs12 t pkcs12,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

pkcs12: Holds the pkcs12 structure

Chapter 9: Function reference 157

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the pkcs12 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
will be updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS12".

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls pkcs12 generate mac

[Function]int gnutls_pkcs12_generate_mac (gnutls pkcs12 t pkcs12, const
char * pass)

pkcs12: should contain a gnutls pkcs12 t structure

pass: The password for the MAC

This function will generate a MAC for the PKCS12 structure. Returns 0 on success.

gnutls pkcs12 get bag

[Function]int gnutls_pkcs12_get_bag (gnutls pkcs12 t pkcs12, int indx,
gnutls pkcs12 bag t bag)

pkcs12: should contain a gnutls pkcs12 t structure

indx: contains the index of the bag to extract

bag : An initialized bag, where the contents of the bag will be copied

This function will return a Bag from the PKCS12 structure. Returns 0 on success.

After the last Bag has been read GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

gnutls pkcs12 import

[Function]int gnutls_pkcs12_import (gnutls pkcs12 t pkcs12, const
gnutls datum t * data, gnutls x509 crt fmt t format, unsigned int flags)

pkcs12: The structure to store the parsed PKCS12.

data: The DER or PEM encoded PKCS12.

format: One of DER or PEM

flags: an ORed sequence of gnutls privkey pkcs8 flags

This function will convert the given DER or PEM encoded PKCS12 to the native
gnutls pkcs12 t format. The output will be stored in ’pkcs12’.

If the PKCS12 is PEM encoded it should have a header of "PKCS12".

Returns 0 on success.

Chapter 9: Function reference 158

gnutls pkcs12 init

[Function]int gnutls_pkcs12_init (gnutls pkcs12 t * pkcs12)
pkcs12: The structure to be initialized

This function will initialize a PKCS12 structure. PKCS12 structures usually contain
lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns 0 on success.

gnutls pkcs12 set bag

[Function]int gnutls_pkcs12_set_bag (gnutls pkcs12 t pkcs12,
gnutls pkcs12 bag t bag)

pkcs12: should contain a gnutls pkcs12 t structure

bag : An initialized bag

This function will insert a Bag into the PKCS12 structure. Returns 0 on success.

gnutls pkcs12 verify mac

[Function]int gnutls_pkcs12_verify_mac (gnutls pkcs12 t pkcs12, const char *
pass)

pkcs12: should contain a gnutls pkcs12 t structure

pass: The password for the MAC

This function will verify the MAC for the PKCS12 structure. Returns 0 on success.

gnutls pkcs7 deinit

[Function]void gnutls_pkcs7_deinit (gnutls pkcs7 t pkcs7)
pkcs7: The structure to be initialized

This function will deinitialize a PKCS7 structure.

gnutls pkcs7 delete crl

[Function]int gnutls_pkcs7_delete_crl (gnutls pkcs7 t pkcs7, int indx)
indx: the index of the crl to delete

This function will delete a crl from a PKCS7 or RFC2630 crl set. Index starts from
0. Returns 0 on success.

gnutls pkcs7 delete crt

[Function]int gnutls_pkcs7_delete_crt (gnutls pkcs7 t pkcs7, int indx)
indx: the index of the certificate to delete

This function will delete a certificate from a PKCS7 or RFC2630 certificate set. Index
starts from 0. Returns 0 on success.

Chapter 9: Function reference 159

gnutls pkcs7 export

[Function]int gnutls_pkcs7_export (gnutls pkcs7 t pkcs7,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

pkcs7: Holds the pkcs7 structure

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the pkcs7 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS7".

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls pkcs7 get crl count

[Function]int gnutls_pkcs7_get_crl_count (gnutls pkcs7 t pkcs7)
This function will return the number of certifcates in the PKCS7 or RFC2630 crl set.

Returns a negative value on failure.

gnutls pkcs7 get crl raw

[Function]int gnutls_pkcs7_get_crl_raw (gnutls pkcs7 t pkcs7, int indx, void
* crl, size t * crl_size)

indx: contains the index of the crl to extract

crl: the contents of the crl will be copied there (may be null)

crl size: should hold the size of the crl

This function will return a crl of the PKCS7 or RFC2630 crl set. Returns 0 on
success. If the provided buffer is not long enough, then crl_size is updated and
GNUTLS E SHORT MEMORY BUFFER is returned.

After the last crl has been read GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

gnutls pkcs7 get crt count

[Function]int gnutls_pkcs7_get_crt_count (gnutls pkcs7 t pkcs7)
This function will return the number of certifcates in the PKCS7 or RFC2630 certifi-
cate set.

Returns a negative value on failure.

Chapter 9: Function reference 160

gnutls pkcs7 get crt raw

[Function]int gnutls_pkcs7_get_crt_raw (gnutls pkcs7 t pkcs7, int indx, void
* certificate, size t * certificate_size)

indx: contains the index of the certificate to extract
certificate: the contents of the certificate will be copied there (may be null)
certificate size: should hold the size of the certificate
This function will return a certificate of the PKCS7 or RFC2630 certificate set. Re-
turns 0 on success. If the provided buffer is not long enough, then certificate_size
is updated and GNUTLS E SHORT MEMORY BUFFER is returned.
After the last certificate has been read GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

gnutls pkcs7 import

[Function]int gnutls_pkcs7_import (gnutls pkcs7 t pkcs7, const
gnutls datum t * data, gnutls x509 crt fmt t format)

pkcs7: The structure to store the parsed PKCS7.
data: The DER or PEM encoded PKCS7.
format: One of DER or PEM
This function will convert the given DER or PEM encoded PKCS7 to the native
gnutls pkcs7 t format. The output will be stored in ’pkcs7’.
If the PKCS7 is PEM encoded it should have a header of "PKCS7".
Returns 0 on success.

gnutls pkcs7 init

[Function]int gnutls_pkcs7_init (gnutls pkcs7 t * pkcs7)
pkcs7: The structure to be initialized
This function will initialize a PKCS7 structure. PKCS7 structures usually contain
lists of X.509 Certificates and X.509 Certificate revocation lists.
Returns 0 on success.

gnutls pkcs7 set crl raw

[Function]int gnutls_pkcs7_set_crl_raw (gnutls pkcs7 t pkcs7, const
gnutls datum t * crl)

crl: the DER encoded crl to be added
This function will add a crl to the PKCS7 or RFC2630 crl set. Returns 0 on success.

gnutls pkcs7 set crl

[Function]int gnutls_pkcs7_set_crl (gnutls pkcs7 t pkcs7, gnutls x509 crl t
crl)

crl: the DER encoded crl to be added
This function will add a parsed crl to the PKCS7 or RFC2630 crl set. Returns 0 on
success.

Chapter 9: Function reference 161

gnutls pkcs7 set crt raw

[Function]int gnutls_pkcs7_set_crt_raw (gnutls pkcs7 t pkcs7, const
gnutls datum t * crt)

crt: the DER encoded certificate to be added
This function will add a certificate to the PKCS7 or RFC2630 certificate set. Returns
0 on success.

gnutls pkcs7 set crt

[Function]int gnutls_pkcs7_set_crt (gnutls pkcs7 t pkcs7, gnutls x509 crt t
crt)

crt: the certificate to be copied.
This function will add a parsed certificate to the PKCS7 or RFC2630 certificate set.
This is a wrapper function over gnutls_pkcs7_set_crt_raw() .
Returns 0 on success.

gnutls x509 crl check issuer

[Function]int gnutls_x509_crl_check_issuer (gnutls x509 crl t cert,
gnutls x509 crt t issuer)

issuer: is the certificate of a possible issuer
This function will check if the given CRL was issued by the given issuer certificate.
It will return true (1) if the given CRL was issued by the given issuer, and false (0)
if not.
A negative value is returned in case of an error.

gnutls x509 crl deinit

[Function]void gnutls_x509_crl_deinit (gnutls x509 crl t crl)
crl: The structure to be initialized
This function will deinitialize a CRL structure.

gnutls x509 crl export

[Function]int gnutls_x509_crl_export (gnutls x509 crl t crl,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

crl: Holds the revocation list
format: the format of output params. One of PEM or DER.
output data: will contain a private key PEM or DER encoded
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will export the revocation list to DER or PEM format.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN X509 CRL".
Returns 0 on success, and a negative value on failure.

Chapter 9: Function reference 162

gnutls x509 crl get crt count

[Function]int gnutls_x509_crl_get_crt_count (gnutls x509 crl t crl)
crl: should contain a gnutls x509 crl t structure
This function will return the number of revoked certificates in the given CRL.
Returns a negative value on failure.

gnutls x509 crl get crt serial

[Function]int gnutls_x509_crl_get_crt_serial (gnutls x509 crl t crl, int
indx, unsigned char * serial, size t * serial_size, time t * t)

crl: should contain a gnutls x509 crl t structure
indx: the index of the certificate to extract (starting from 0)
serial: where the serial number will be copied
serial size: initially holds the size of serial
t: if non null, will hold the time this certificate was revoked
This function will return the serial number of the specified, by the index, revoked
certificate.
Returns a negative value on failure.

gnutls x509 crl get dn oid

[Function]int gnutls_x509_crl_get_dn_oid (gnutls x509 crl t crl, int indx,
void * oid, size t * sizeof_oid)

crl: should contain a gnutls x509 crl t structure
indx: Specifies which DN OID to send. Use zero to get the first one.
oid: a pointer to a structure to hold the name (may be null)
sizeof oid: initially holds the size of ’oid’
This function will extract the requested OID of the name of the CRL issuer, specified
by the given index.
If oid is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof oid will be updated with the required size. On
success 0 is returned.

gnutls x509 crl get issuer dn by oid

[Function]int gnutls_x509_crl_get_issuer_dn_by_oid (gnutls x509 crl t
crl, const char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

crl: should contain a gnutls x509 crl t structure
oid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.
raw flag : If non zero returns the raw DER data of the DN part.

Chapter 9: Function reference 163

buf : a pointer to a structure to hold the peer’s name (may be null)
sizeof buf : initially holds the size of buf
This function will extract the part of the name of the CRL issuer specified by the
given OID. The output will be encoded as described in RFC2253. The output string
will be ASCII or UTF-8 encoded, depending on the certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size, and 0
on success.

gnutls x509 crl get issuer dn

[Function]int gnutls_x509_crl_get_issuer_dn (const gnutls x509 crl t crl,
char * buf, size t * sizeof_buf)

crl: should contain a gnutls x509 crl t structure
buf : a pointer to a structure to hold the peer’s name (may be null)
sizeof buf : initially holds the size of buf
This function will copy the name of the CRL issuer in the provided buffer. The name
will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the sizeof buf will be updated with the required size, and 0
on success.

gnutls x509 crl get next update

[Function]time_t gnutls_x509_crl_get_next_update (gnutls x509 crl t crl)
crl: should contain a gnutls x509 crl t structure
This function will return the time the next CRL will be issued. This field is optional
in a CRL so it might be normal to get an error instead.
Returns (time t)-1 on error.

gnutls x509 crl get signature algorithm

[Function]int gnutls_x509_crl_get_signature_algorithm (gnutls x509 crl t
crl)

crl: should contain a gnutls x509 crl t structure
This function will return a value of the gnutls sign algorithm t enumeration that is
the signature algorithm.
Returns a negative value on error.

Chapter 9: Function reference 164

gnutls x509 crl get signature

[Function]int gnutls_x509_crl_get_signature (gnutls x509 crl t crl, char *
sig, size t * sizeof_sig)

crl: should contain a gnutls x509 crl t structure
sig : a pointer where the signature part will be copied (may be null).
sizeof sig : initially holds the size of sig
This function will extract the signature field of a CRL.
Returns 0 on success, and a negative value on error.

gnutls x509 crl get this update

[Function]time_t gnutls_x509_crl_get_this_update (gnutls x509 crl t crl)
crl: should contain a gnutls x509 crl t structure
This function will return the time this CRL was issued.
Returns (time t)-1 on error.

gnutls x509 crl get version

[Function]int gnutls_x509_crl_get_version (gnutls x509 crl t crl)
crl: should contain a gnutls x509 crl t structure
This function will return the version of the specified CRL.
Returns a negative value on error.

gnutls x509 crl import

[Function]int gnutls_x509_crl_import (gnutls x509 crl t crl, const
gnutls datum t * data, gnutls x509 crt fmt t format)

crl: The structure to store the parsed CRL.
data: The DER or PEM encoded CRL.
format: One of DER or PEM
This function will convert the given DER or PEM encoded CRL to the native
gnutls x509 crl t format. The output will be stored in ’crl’.
If the CRL is PEM encoded it should have a header of "X509 CRL".
Returns 0 on success.

gnutls x509 crl init

[Function]int gnutls_x509_crl_init (gnutls x509 crl t * crl)
crl: The structure to be initialized
This function will initialize a CRL structure. CRL stands for Certificate Revoca-
tion List. A revocation list usually contains lists of certificate serial numbers that
have been revoked by an Authority. The revocation lists are always signed with the
authority’s private key.
Returns 0 on success.

Chapter 9: Function reference 165

gnutls x509 crl print

[Function]int gnutls_x509_crl_print (gnutls x509 crl t crl,
gnutls certificate print formats t format, gnutls datum t * out)

crl: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with zero terminated string.

This function will pretty print a X.509 certificate revocation list, suitable for display
to a human.

The output out needs to be deallocate using gnutls_free().

Returns 0 on success.

gnutls x509 crl set crt serial

[Function]int gnutls_x509_crl_set_crt_serial (gnutls x509 crl t crl, const
void * serial, size t serial_size, time t revocation_time)

crl: should contain a gnutls x509 crl t structure

serial: The revoked certificate’s serial number

serial size: Holds the size of the serial field.

revocation time: The time this certificate was revoked

This function will set a revoked certificate’s serial number to the CRL.

Returns 0 on success, or a negative value in case of an error.

gnutls x509 crl set crt

[Function]int gnutls_x509_crl_set_crt (gnutls x509 crl t crl,
gnutls x509 crt t crt, time t revocation_time)

crl: should contain a gnutls x509 crl t structure

crt: should contain a gnutls x509 crt t structure with the revoked certificate

revocation time: The time this certificate was revoked

This function will set a revoked certificate’s serial number to the CRL.

Returns 0 on success, or a negative value in case of an error.

gnutls x509 crl set next update

[Function]int gnutls_x509_crl_set_next_update (gnutls x509 crl t crl,
time t exp_time)

crl: should contain a gnutls x509 crl t structure

exp time: The actual time

This function will set the time this CRL will be updated.

Returns 0 on success, or a negative value in case of an error.

Chapter 9: Function reference 166

gnutls x509 crl set this update

[Function]int gnutls_x509_crl_set_this_update (gnutls x509 crl t crl,
time t act_time)

crl: should contain a gnutls x509 crl t structure
act time: The actual time
This function will set the time this CRL was issued.
Returns 0 on success, or a negative value in case of an error.

gnutls x509 crl set version

[Function]int gnutls_x509_crl_set_version (gnutls x509 crl t crl, unsigned
int version)

crl: should contain a gnutls x509 crl t structure
version: holds the version number. For CRLv1 crls must be 1.
This function will set the version of the CRL. This must be one for CRL version 1,
and so on. The CRLs generated by gnutls should have a version number of 2.
Returns 0 on success.

gnutls x509 crl sign2

[Function]int gnutls_x509_crl_sign2 (gnutls x509 crl t crl, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key, gnutls digest algorithm t dig,
unsigned int flags)

crl: should contain a gnutls x509 crl t structure
issuer: is the certificate of the certificate issuer
issuer key : holds the issuer’s private key
dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.
flags: must be 0
This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.
This must be the last step in a certificate CRL since all the previously set parameters
are now signed.
Returns 0 on success.

gnutls x509 crl sign

[Function]int gnutls_x509_crl_sign (gnutls x509 crl t crl, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key)

crl: should contain a gnutls x509 crl t structure
issuer: is the certificate of the certificate issuer
issuer key : holds the issuer’s private key
This function is the same a gnutls_x509_crl_sign2() with no flags, and SHA1 as
the hash algorithm.
Returns 0 on success.

Chapter 9: Function reference 167

gnutls x509 crl verify

[Function]int gnutls_x509_crl_verify (gnutls x509 crl t crl, const
gnutls x509 crt t * CA_list, int CA_list_length, unsigned int flags,
unsigned int * verify)

crl: is the crl to be verified
CA list: is a certificate list that is considered to be trusted one
CA list length: holds the number of CA certificates in CA list
flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.
verify : will hold the crl verification output.
This function will try to verify the given crl and return its status. See gnutls_x509_
crt_list_verify() for a detailed description of return values.
Returns 0 on success and a negative value in case of an error.

gnutls x509 crq deinit

[Function]void gnutls_x509_crq_deinit (gnutls x509 crq t crq)
crq: The structure to be initialized
This function will deinitialize a CRL structure.

gnutls x509 crq export

[Function]int gnutls_x509_crq_export (gnutls x509 crq t crq,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

crq: Holds the request
format: the format of output params. One of PEM or DER.
output data: will contain a certificate request PEM or DER encoded
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will export the certificate request to a PKCS10
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned and *output data size
will be updated.
If the structure is PEM encoded, it will have a header of "BEGIN NEW CERTIFI-
CATE REQUEST".
Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls x509 crq get attribute by oid

[Function]int gnutls_x509_crq_get_attribute_by_oid (gnutls x509 crq t
crq, const char * oid, int indx, void * buf, size t * sizeof_buf)

crq: should contain a gnutls x509 crq t structure
oid: holds an Object Identified in null terminated string

Chapter 9: Function reference 168

indx: In case multiple same OIDs exist in the attribute list, this specifies which to
send. Use zero to get the first one.

buf : a pointer to a structure to hold the attribute data (may be null)

sizeof buf : initially holds the size of buf

This function will return the attribute in the certificate request specified by the given
Object ID. The attribute will be DER encoded.

Returns 0 on success.

gnutls x509 crq get challenge password

[Function]int gnutls_x509_crq_get_challenge_password (gnutls x509 crq t
crq, char * pass, size t * sizeof_pass)

crq: should contain a gnutls x509 crq t structure

pass: will hold a null terminated password

sizeof pass: Initially holds the size of pass.

This function will return the challenge password in the request.

Returns 0 on success.

gnutls x509 crq get dn by oid

[Function]int gnutls_x509_crq_get_dn_by_oid (gnutls x509 crq t crq, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

crq: should contain a gnutls x509 crq t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.

raw flag : If non zero returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

This function will extract the part of the name of the Certificate request subject,
specified by the given OID. The output will be encoded as described in RFC2253.
The output string will be ASCII or UTF-8 encoded, depending on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

If buf is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof buf will be updated with the required size. On
success 0 is returned.

Chapter 9: Function reference 169

gnutls x509 crq get dn oid

[Function]int gnutls_x509_crq_get_dn_oid (gnutls x509 crq t crq, int indx,
void * oid, size t * sizeof_oid)

crq: should contain a gnutls x509 crq t structure

indx: Specifies which DN OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the name (may be null)

sizeof oid: initially holds the size of oid

This function will extract the requested OID of the name of the Certificate request
subject, specified by the given index.

If oid is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof oid will be updated with the required size. On
success 0 is returned.

gnutls x509 crq get dn

[Function]int gnutls_x509_crq_get_dn (gnutls x509 crq t crq, char * buf,
size t * sizeof_buf)

crq: should contain a gnutls x509 crq t structure

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

This function will copy the name of the Certificate request subject in the provided
buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in
RFC2253. The output string will be ASCII or UTF-8 encoded, depending on the
certificate data.

If buf is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof buf will be updated with the required size. On
success 0 is returned.

gnutls x509 crq get pk algorithm

[Function]int gnutls_x509_crq_get_pk_algorithm (gnutls x509 crq t crq,
unsigned int * bits)

crq: should contain a gnutls x509 crq t structure

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a PKCS \10 certificate request.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns a member of the gnutls pk algorithm t enumeration on success, or a negative
value on error.

Chapter 9: Function reference 170

gnutls x509 crq get version

[Function]int gnutls_x509_crq_get_version (gnutls x509 crq t crq)
crq: should contain a gnutls x509 crq t structure
This function will return the version of the specified Certificate request.
Returns a negative value on error.

gnutls x509 crq import

[Function]int gnutls_x509_crq_import (gnutls x509 crq t crq, const
gnutls datum t * data, gnutls x509 crt fmt t format)

crq: The structure to store the parsed certificate request.
data: The DER or PEM encoded certificate.
format: One of DER or PEM
This function will convert the given DER or PEM encoded Certificate to the native
gnutls x509 crq t format. The output will be stored in cert.
If the Certificate is PEM encoded it should have a header of "NEW CERTIFICATE
REQUEST".
Returns 0 on success.

gnutls x509 crq init

[Function]int gnutls_x509_crq_init (gnutls x509 crq t * crq)
crq: The structure to be initialized
This function will initialize a PKCS10 certificate request structure.
Returns 0 on success.

gnutls x509 crq set attribute by oid

[Function]int gnutls_x509_crq_set_attribute_by_oid (gnutls x509 crq t
crq, const char * oid, void * buf, size t sizeof_buf)

crq: should contain a gnutls x509 crq t structure
oid: holds an Object Identified in null terminated string
buf : a pointer to a structure that holds the attribute data
sizeof buf : holds the size of buf
This function will set the attribute in the certificate request specified by the given
Object ID. The attribute must be be DER encoded.
Returns 0 on success.

gnutls x509 crq set challenge password

[Function]int gnutls_x509_crq_set_challenge_password (gnutls x509 crq t
crq, const char * pass)

crq: should contain a gnutls x509 crq t structure
pass: holds a null terminated password
This function will set a challenge password to be used when revoking the request.
Returns 0 on success.

Chapter 9: Function reference 171

gnutls x509 crq set dn by oid

[Function]int gnutls_x509_crq_set_dn_by_oid (gnutls x509 crq t crq, const
char * oid, unsigned int raw_flag, const void * data, unsigned int
sizeof_data)

crq: should contain a gnutls x509 crq t structure

oid: holds an Object Identifier in a null terminated string

raw flag : must be 0, or 1 if the data are DER encoded

data: a pointer to the input data

sizeof data: holds the size of data

This function will set the part of the name of the Certificate request subject, specified
by the given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.

Returns 0 on success.

gnutls x509 crq set key

[Function]int gnutls_x509_crq_set_key (gnutls x509 crq t crq,
gnutls x509 privkey t key)

crq: should contain a gnutls x509 crq t structure

key : holds a private key

This function will set the public parameters from the given private key to the request.
Only RSA keys are currently supported.

Returns 0 on success.

gnutls x509 crq set version

[Function]int gnutls_x509_crq_set_version (gnutls x509 crq t crq, unsigned
int version)

crq: should contain a gnutls x509 crq t structure

version: holds the version number. For v1 Requests must be 1.

This function will set the version of the certificate request. For version 1 requests this
must be one.

Returns 0 on success.

gnutls x509 crq sign2

[Function]int gnutls_x509_crq_sign2 (gnutls x509 crq t crq,
gnutls x509 privkey t key, gnutls digest algorithm t dig, unsigned int flags)

crq: should contain a gnutls x509 crq t structure

key : holds a private key

Chapter 9: Function reference 172

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns 0 on success.

gnutls x509 crq sign

[Function]int gnutls_x509_crq_sign (gnutls x509 crq t crq,
gnutls x509 privkey t key)

crq: should contain a gnutls x509 crq t structure

key : holds a private key

This function is the same a gnutls_x509_crq_sign2() with no flags, and SHA1 as
the hash algorithm.

Returns 0 on success.

gnutls x509 crt check hostname

[Function]int gnutls_x509_crt_check_hostname (gnutls x509 crt t cert, const
char * hostname)

cert: should contain an gnutls x509 crt t structure

hostname: A null terminated string that contains a DNS name

This function will check if the given certificate’s subject matches the given hostname.
This is a basic implementation of the matching described in RFC2818 (HTTPS),
which takes into account wildcards, and the DNSName/IPAddress subject alternative
name PKIX extension.

Returns non zero for a successful match, and zero on failure.

gnutls x509 crt check issuer

[Function]int gnutls_x509_crt_check_issuer (gnutls x509 crt t cert,
gnutls x509 crt t issuer)

cert: is the certificate to be checked

issuer: is the certificate of a possible issuer

This function will check if the given certificate was issued by the given issuer. It will
return true (1) if the given certificate is issued by the given issuer, and false (0) if
not.

A negative value is returned in case of an error.

Chapter 9: Function reference 173

gnutls x509 crt check revocation

[Function]int gnutls_x509_crt_check_revocation (gnutls x509 crt t cert,
const gnutls x509 crl t * crl_list, int crl_list_length)

cert: should contain a gnutls x509 crt t structure
crl list: should contain a list of gnutls x509 crl t structures
crl list length: the length of the crl list
This function will return check if the given certificate is revoked. It is assumed that
the CRLs have been verified before.
Returns 0 if the certificate is NOT revoked, and 1 if it is. A negative value is returned
on error.

gnutls x509 crt cpy crl dist points

[Function]int gnutls_x509_crt_cpy_crl_dist_points (gnutls x509 crt t dst,
gnutls x509 crt t src)

dst: should contain a gnutls x509 crt t structure
src: the certificate where the dist points will be copied from
This function will copy the CRL distribution points certificate extension, from the
source to the destination certificate. This may be useful to copy from a CA certificate
to issued ones.
Returns 0 on success.

gnutls x509 crt deinit

[Function]void gnutls_x509_crt_deinit (gnutls x509 crt t cert)
cert: The structure to be initialized
This function will deinitialize a CRL structure.

gnutls x509 crt export

[Function]int gnutls_x509_crt_export (gnutls x509 crt t cert,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

cert: Holds the certificate
format: the format of output params. One of PEM or DER.
output data: will contain a certificate PEM or DER encoded
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will export the certificate to DER or PEM format.
If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.
If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".
Return value: In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 174

gnutls x509 crt get activation time

[Function]time_t gnutls_x509_crt_get_activation_time (gnutls x509 crt t
cert)

cert: should contain a gnutls x509 crt t structure
This function will return the time this Certificate was or will be activated.
Returns (time t)-1 on error.

gnutls x509 crt get authority key id

[Function]int gnutls_x509_crt_get_authority_key_id (gnutls x509 crt t
cert, void * ret, size t * ret_size, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure
critical: will be non zero if the extension is marked as critical (may be null)
This function will return the X.509v3 certificate authority’s key identifier. This is
obtained by the X.509 Authority Key identifier extension field (2.5.29.35). Note that
this function only returns the keyIdentifier field of the extension.
Returns 0 on success and a negative value in case of an error.

gnutls x509 crt get basic constraints

[Function]int gnutls_x509_crt_get_basic_constraints (gnutls x509 crt t
cert, unsigned int * critical, int * ca, int * pathlen)

cert: should contain a gnutls x509 crt t structure
critical: will be non zero if the extension is marked as critical
ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the
certificate CA flag is set, 0 otherwise.
pathlen: pointer to output integer indicating path length (may be NULL), non-
negative values indicate a present pathLenConstraint field and the actual value, -1
indicate that the field is absent.
This function will read the certificate’s basic constraints, and return the certificates
CA status. It reads the basicConstraints X.509 extension (2.5.29.19).
Return value: If the certificate is a CA a positive value will be returned, or zero
if the certificate does not have CA flag set. A negative value may be returned in
case of errors. If the certificate does not contain the basicConstraints extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get ca status

[Function]int gnutls_x509_crt_get_ca_status (gnutls x509 crt t cert,
unsigned int * critical)

cert: should contain a gnutls x509 crt t structure
critical: will be non zero if the extension is marked as critical
This function will return certificates CA status, by reading the basicConstraints X.509
extension (2.5.29.19). If the certificate is a CA a positive value will be returned, or
zero if the certificate does not have CA flag set.

Chapter 9: Function reference 175

Use gnutls_x509_crt_get_basic_constraints() if you want to read the pathLen-
Constraint field too.
A negative value may be returned in case of parsing error. If the certificate does not
contain the basicConstraints extension GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

gnutls x509 crt get crl dist points

[Function]int gnutls_x509_crt_get_crl_dist_points (gnutls x509 crt t
cert, unsigned int seq, void * ret, size t * ret_size, unsigned int *
reason_flags, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure
seq: specifies the sequence number of the distribution point (0 for the first one, 1 for
the second etc.)
ret: is the place where the distribution point will be copied to
ret size: holds the size of ret.
reason flags: Revocation reasons flags.
critical: will be non zero if the extension is marked as critical (may be null)
This function will return the CRL distribution points (2.5.29.31), contained in the
given certificate.
reason_flags should be an ORed sequence of GNUTLS CRL REASON UNUSED,
GNUTLS CRL REASON KEY COMPROMISE, GNUTLS CRL REASON CA COMPROMISE,
GNUTLS CRL REASON AFFILIATION CHANGED, GNUTLS CRL REASON SUPERSEEDED,
GNUTLS CRL REASON CESSATION OF OPERATION, GNUTLS CRL REASON CERTIFICATE HOLD,
GNUTLS CRL REASON PRIVILEGE WITHDRAWN, GNUTLS CRL REASON AA COMPROMISE,
or zero for all possible reasons.
This is specified in X509v3 Certificate Extensions. GNUTLS will return the distri-
bution point type, or a negative error code on error.
Returns GNUTLS E SHORT MEMORY BUFFER and updates &ret size if
&ret size is not enough to hold the distribution point, or the type of the
distribution point if everything was ok. The type is one of the enumerated
gnutls x509 subject alt name t.
If the certificate does not have an Alternative name with the specified sequence num-
ber then returns GNUTLS E REQUESTED DATA NOT AVAILABLE;

gnutls x509 crt get dn by oid

[Function]int gnutls_x509_crt_get_dn_by_oid (gnutls x509 crt t cert, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

cert: should contain a gnutls x509 crt t structure
oid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.
raw flag : If non zero returns the raw DER data of the DN part.

Chapter 9: Function reference 176

buf : a pointer where the DN part will be copied (may be null).
sizeof buf : initially holds the size of buf
This function will extract the part of the name of the Certificate subject specified by
the given OID. The output, if the raw flag is not used, will be encoded as described
in RFC2253. Thus a string that is ASCII or UTF-8 encoded, depending on the
certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof buf will be updated with the required size. On
success 0 is returned.

gnutls x509 crt get dn oid

[Function]int gnutls_x509_crt_get_dn_oid (gnutls x509 crt t cert, int indx,
void * oid, size t * sizeof_oid)

cert: should contain a gnutls x509 crt t structure
indx: This specifies which OID to return. Use zero to get the first one.
oid: a pointer to a buffer to hold the OID (may be null)
sizeof oid: initially holds the size of oid
This function will extract the OIDs of the name of the Certificate subject specified
by the given index.
If oid is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof oid will be updated with the required size. On
success 0 is returned.

gnutls x509 crt get dn

[Function]int gnutls_x509_crt_get_dn (gnutls x509 crt t cert, char * buf,
size t * sizeof_buf)

cert: should contain a gnutls x509 crt t structure
buf : a pointer to a structure to hold the name (may be null)
sizeof buf : initially holds the size of buf
This function will copy the name of the Certificate in the provided buffer. The name
will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof buf will be updated with the required size. On
success 0 is returned.

Chapter 9: Function reference 177

gnutls x509 crt get expiration time

[Function]time_t gnutls_x509_crt_get_expiration_time (gnutls x509 crt t
cert)

cert: should contain a gnutls x509 crt t structure

This function will return the time this Certificate was or will be expired.

Returns (time t)-1 on error.

gnutls x509 crt get extension by oid

[Function]int gnutls_x509_crt_get_extension_by_oid (gnutls x509 crt t
cert, const char * oid, int indx, void * buf, size t * sizeof_buf, unsigned
int * critical)

cert: should contain a gnutls x509 crt t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to send.
Use zero to get the first one.

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

critical: will be non zero if the extension is marked as critical

This function will return the extension specified by the OID in the certificate. The
extensions will be returned as binary data DER encoded, in the provided buffer.

A negative value may be returned in case of parsing error. If the certificate does not
contain the specified extension GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

gnutls x509 crt get extension data

[Function]int gnutls_x509_crt_get_extension_data (gnutls x509 crt t cert,
int indx, void * data, size t * sizeof_data)

cert: should contain a gnutls x509 crt t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

This function will return the requested extension data in the certificate. The extension
data will be stored as a string in the provided buffer.

Use gnutls_x509_crt_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crt_get_extension_by_oid() instead, if you want to get data
indexed by the extension OID rather than sequence.

Return 0 on success. A negative value may be returned in case
of parsing error. If you have reached the last extension available
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

Chapter 9: Function reference 178

gnutls x509 crt get extension info

[Function]int gnutls_x509_crt_get_extension_info (gnutls x509 crt t cert,
int indx, void * oid, size t * sizeof_oid, int * critical)

cert: should contain a gnutls x509 crt t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the size of oid

critical: output variable with critical flag, may be NULL.

This function will return the requested extension OID in the certificate, and the
critical flag for it. The extension OID will be stored as a string in the provided
buffer. Use gnutls_x509_crt_get_extension_data() to extract the data.

Return 0 on success. A negative value may be returned in case
of parsing error. If you have reached the last extension available
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get extension oid

[Function]int gnutls_x509_crt_get_extension_oid (gnutls x509 crt t cert,
int indx, void * oid, size t * sizeof_oid)

cert: should contain a gnutls x509 crt t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the OID (may be null)

sizeof oid: initially holds the size of oid

This function will return the requested extension OID in the certificate. The extension
OID will be stored as a string in the provided buffer.

A negative value may be returned in case of parsing error. If your have reached the
last extension available GNUTLS E REQUESTED DATA NOT AVAILABLE will
be returned.

gnutls x509 crt get fingerprint

[Function]int gnutls_x509_crt_get_fingerprint (gnutls x509 crt t cert,
gnutls digest algorithm t algo, void * buf, size t * sizeof_buf)

cert: should contain a gnutls x509 crt t structure

algo: is a digest algorithm

buf : a pointer to a structure to hold the fingerprint (may be null)

sizeof buf : initially holds the size of buf

This function will calculate and copy the certificate’s fingerprint in the provided buffer.

If the buffer is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof buf will be updated with the required size. On
success 0 is returned.

Chapter 9: Function reference 179

gnutls x509 crt get issuer dn by oid

[Function]int gnutls_x509_crt_get_issuer_dn_by_oid (gnutls x509 crt t
cert, const char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

cert: should contain a gnutls x509 crt t structure
oid: holds an Object Identified in null terminated string
indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.
raw flag : If non zero returns the raw DER data of the DN part.
buf : a pointer to a structure to hold the name (may be null)
sizeof buf : initially holds the size of buf
This function will extract the part of the name of the Certificate issuer specified by
the given OID. The output, if the raw flag is not used, will be encoded as described
in RFC2253. Thus a string that is ASCII or UTF-8 encoded, depending on the
certificate data.
Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().
If buf is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof buf will be updated with the required size. On
success 0 is returned.

gnutls x509 crt get issuer dn oid

[Function]int gnutls_x509_crt_get_issuer_dn_oid (gnutls x509 crt t cert,
int indx, void * oid, size t * sizeof_oid)

cert: should contain a gnutls x509 crt t structure
indx: This specifies which OID to return. Use zero to get the first one.
oid: a pointer to a buffer to hold the OID (may be null)
sizeof oid: initially holds the size of oid
This function will extract the OIDs of the name of the Certificate issuer specified by
the given index.
If oid is null then only the size will be filled.
Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof oid will be updated with the required size. On
success 0 is returned.

gnutls x509 crt get issuer dn

[Function]int gnutls_x509_crt_get_issuer_dn (gnutls x509 crt t cert, char *
buf, size t * sizeof_buf)

cert: should contain a gnutls x509 crt t structure

Chapter 9: Function reference 180

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

This function will copy the name of the Certificate issuer in the provided buffer. The
name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof buf will be updated with the required size. On
success 0 is returned.

gnutls x509 crt get key id

[Function]int gnutls_x509_crt_get_key_id (gnutls x509 crt t crt, unsigned
int flags, unsigned char * output_data, size t * output_data_size)

crt: Holds the certificate

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls x509 crt get key purpose oid

[Function]int gnutls_x509_crt_get_key_purpose_oid (gnutls x509 crt t
cert, int indx, void * oid, size t * sizeof_oid, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure

indx: This specifies which OID to return. Use zero to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

sizeof oid: initially holds the size of oid

This function will extract the key purpose OIDs of the Certificate specified by the
given index. These are stored in the Extended Key Usage extension (2.5.29.37) See
the GNUTLS KP * definitions for human readable names.

If oid is null then only the size will be filled.

Returns GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not long
enough, and in that case the *sizeof oid will be updated with the required size. On
success 0 is returned.

Chapter 9: Function reference 181

gnutls x509 crt get key usage

[Function]int gnutls_x509_crt_get_key_usage (gnutls x509 crt t cert,
unsigned int * key_usage, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure

key usage: where the key usage bits will be stored

critical: will be non zero if the extension is marked as critical

This function will return certificate’s key usage, by reading the keyUsage
X.509 extension (2.5.29.15). The key usage value will ORed values of the:
GNUTLS KEY DIGITAL SIGNATURE, GNUTLS KEY NON REPUDIATION,
GNUTLS KEY KEY ENCIPHERMENT, GNUTLS KEY DATA ENCIPHERMENT,
GNUTLS KEY KEY AGREEMENT, GNUTLS KEY KEY CERT SIGN,
GNUTLS KEY CRL SIGN, GNUTLS KEY ENCIPHER ONLY, GNUTLS KEY DECIPHER ONLY.

A negative value may be returned in case of parsing error. If the certificate does not
contain the keyUsage extension GNUTLS E REQUESTED DATA NOT AVAILABLE
will be returned.

gnutls x509 crt get pk algorithm

[Function]int gnutls_x509_crt_get_pk_algorithm (gnutls x509 crt t cert,
unsigned int * bits)

cert: should contain a gnutls x509 crt t structure

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an X.509 certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns a member of the gnutls pk algorithm t enumeration on success, or a negative
value on error.

gnutls x509 crt get pk dsa raw

[Function]int gnutls_x509_crt_get_pk_dsa_raw (gnutls x509 crt t crt,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * g, gnutls datum t *
y)

crt: Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA private key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Chapter 9: Function reference 182

gnutls x509 crt get pk rsa raw

[Function]int gnutls_x509_crt_get_pk_rsa_raw (gnutls x509 crt t crt,
gnutls datum t * m, gnutls datum t * e)

crt: Holds the certificate
m: will hold the modulus
e: will hold the public exponent
This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

gnutls x509 crt get proxy

[Function]int gnutls_x509_crt_get_proxy (gnutls x509 crt t cert, unsigned
int * critical, int * pathlen, char ** policyLanguage, char ** policy,
size t * sizeof_policy)

cert: should contain a gnutls x509 crt t structure
critical: will be non zero if the extension is marked as critical
pathlen: pointer to output integer indicating path length (may be NULL), non-
negative values indicate a present pCPathLenConstraint field and the actual value,
-1 indicate that the field is absent.
This function will read the certificate’s basic constraints, and return the certificates
CA status. It reads the basicConstraints X.509 extension (2.5.29.19).
Return value: If the certificate is a CA a positive value will be returned, or zero
if the certificate does not have CA flag set. A negative value may be returned in
case of errors. If the certificate does not contain the basicConstraints extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get serial

[Function]int gnutls_x509_crt_get_serial (gnutls x509 crt t cert, void *
result, size t * result_size)

cert: should contain a gnutls x509 crt t structure
result: The place where the serial number will be copied
result size: Holds the size of the result field.
This function will return the X.509 certificate’s serial number. This is obtained by
the X509 Certificate serialNumber field. Serial is not always a 32 or 64bit number.
Some CAs use large serial numbers, thus it may be wise to handle it as something
opaque.
Returns 0 on success and a negative value in case of an error.

gnutls x509 crt get signature algorithm

[Function]int gnutls_x509_crt_get_signature_algorithm (gnutls x509 crt t
cert)

cert: should contain a gnutls x509 crt t structure

Chapter 9: Function reference 183

This function will return a value of the gnutls sign algorithm t enumeration that is
the signature algorithm.

Returns a negative value on error.

gnutls x509 crt get signature

[Function]int gnutls_x509_crt_get_signature (gnutls x509 crt t cert, char *
sig, size t * sizeof_sig)

cert: should contain a gnutls x509 crt t structure

sig : a pointer where the signature part will be copied (may be null).

sizeof sig : initially holds the size of sig

This function will extract the signature field of a certificate.

Returns 0 on success, and a negative value on error.

gnutls x509 crt get subject alt name

[Function]int gnutls_x509_crt_get_subject_alt_name (gnutls x509 crt t
cert, unsigned int seq, void * ret, size t * ret_size, unsigned int *
critical)

cert: should contain a gnutls x509 crt t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the alternative names, contained in the given certificate.

This is specified in X509v3 Certificate Extensions. GNUTLS will return the Alterna-
tive name (2.5.29.17), or a negative error code.

When the SAN type is otherName, it will extract the data in the otherName’s value
field, and GNUTLS_SAN_OTHERNAME is returned. You may use gnutls_x509_crt_get_
subject_alt_othername_oid() to get the corresponding OID and the "virtual" SAN
types (e.g., GNUTLS_SAN_OTHERNAME_XMPP).

If an otherName OID is known, the data will be decoded. Otherwise the returned
data will be DER encoded, and you will have to decode it yourself. Currently, only
the RFC 3920 id-on-xmppAddr SAN is recognized.

Returns the alternative subject name type on success. The type is one of the enu-
merated gnutls x509 subject alt name t. It will return GNUTLS_E_SHORT_MEMORY_
BUFFER if ret_size is not large enough to hold the value. In that case ret_size will
be updated with the required size. If the certificate does not have an Alternative name
with the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE
is returned.

Chapter 9: Function reference 184

gnutls x509 crt get subject alt othername oid

[Function]int gnutls_x509_crt_get_subject_alt_othername_oid
(gnutls x509 crt t cert, unsigned int seq, void * ret, size t * ret_size)

cert: should contain a gnutls x509 crt t structure
seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)
ret: is the place where the otherName OID will be copied to
ret size: holds the size of ret.
This function will extract the type OID of an otherName Subject Alternative Name,
contained in the given certificate, and return the type as an enumerated element.
This function is only useful if gnutls_x509_crt_get_subject_alt_name() returned
GNUTLS_SAN_OTHERNAME.
Returns the alternative subject name type on success. The type is one of the enu-
merated gnutls x509 subject alt name t. For supported OIDs, it will return one of
the virtual (GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_
XMPP, and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_
SHORT_MEMORY_BUFFER if ret_size is not large enough to hold the value. In that
case ret_size will be updated with the required size. If the certificate does not have
an Alternative name with the specified sequence number and with the otherName
type then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get subject key id

[Function]int gnutls_x509_crt_get_subject_key_id (gnutls x509 crt t cert,
void * ret, size t * ret_size, unsigned int * critical)

cert: should contain a gnutls x509 crt t structure
ret: The place where the identifier will be copied
ret size: Holds the size of the result field.
critical: will be non zero if the extension is marked as critical (may be null)
This function will return the X.509v3 certificate’s subject key identifier. This is
obtained by the X.509 Subject Key identifier extension field (2.5.29.14).
Returns 0 on success and a negative value in case of an error.

gnutls x509 crt get version

[Function]int gnutls_x509_crt_get_version (gnutls x509 crt t cert)
cert: should contain a gnutls x509 crt t structure
This function will return the version of the specified Certificate.
Returns a negative value on error.

gnutls x509 crt import

[Function]int gnutls_x509_crt_import (gnutls x509 crt t cert, const
gnutls datum t * data, gnutls x509 crt fmt t format)

cert: The structure to store the parsed certificate.

Chapter 9: Function reference 185

data: The DER or PEM encoded certificate.
format: One of DER or PEM
This function will convert the given DER or PEM encoded Certificate to the native
gnutls x509 crt t format. The output will be stored in cert.
If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".
Returns 0 on success.

gnutls x509 crt init

[Function]int gnutls_x509_crt_init (gnutls x509 crt t * cert)
cert: The structure to be initialized
This function will initialize an X.509 certificate structure.
Returns 0 on success.

gnutls x509 crt list import

[Function]int gnutls_x509_crt_list_import (gnutls x509 crt t * certs,
unsigned int * cert_max, const gnutls datum t * data, gnutls x509 crt fmt t
format, unsigned int flags)

certs: The structures to store the parsed certificate. Must not be initialized.
cert max: Initially must hold the maximum number of certs. It will be updated with
the number of certs available.
data: The PEM encoded certificate.
format: One of DER or PEM.
flags: must be zero or an OR’d sequence of gnutls certificate import flags.
This function will convert the given PEM encoded certificate list to the native
gnutls x509 crt t format. The output will be stored in certs. They will be
automatically initialized.
If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".
Returns the number of certificates read or a negative error value.

gnutls x509 crt list verify

[Function]int gnutls_x509_crt_list_verify (const gnutls x509 crt t *
cert_list, int cert_list_length, const gnutls x509 crt t * CA_list, int
CA_list_length, const gnutls x509 crl t * CRL_list, int
CRL_list_length, unsigned int flags, unsigned int * verify)

cert list: is the certificate list to be verified
cert list length: holds the number of certificate in cert list
CA list: is the CA list which will be used in verification
CA list length: holds the number of CA certificate in CA list
CRL list: holds a list of CRLs.

Chapter 9: Function reference 186

CRL list length: the length of CRL list.

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

This function will try to verify the given certificate list and return its status. Note
that expiration and activation dates are not checked by this function, you should
check them using the appropriate functions.

If no flags are specified (0), this function will use the basicConstraints (2.5.29.19)
PKIX extension. This means that only a certificate authority is allowed to sign a
certificate.

You must also check the peer’s name in order to check if the verified certificate belongs
to the actual peer.

The certificate verification output will be put in verify and will be one or more of
the gnutls certificate status t enumerated elements bitwise or’d. For a more detailed
verification status use gnutls_x509_crt_verify() per list element.

GNUTLS CERT INVALID: the certificate chain is not valid.

GNUTLS CERT REVOKED: a certificate in the chain has been revoked.

Returns 0 on success and a negative value in case of an error.

gnutls x509 crt print

[Function]int gnutls_x509_crt_print (gnutls x509 crt t cert,
gnutls certificate print formats t format, gnutls datum t * out)

cert: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with zero terminated string.

This function will pretty print a X.509 certificate, suitable for display to a human.

If the format is GNUTLS_X509_CRT_FULL then all fields of the certificate will be output,
on multiple lines. The GNUTLS_X509_CRT_ONELINE format will generate one line with
some selected fields, which is useful for logging purposes.

The output out needs to be deallocate using gnutls_free().

Returns 0 on success.

gnutls x509 crt set activation time

[Function]int gnutls_x509_crt_set_activation_time (gnutls x509 crt t
cert, time t act_time)

cert: should contain a gnutls x509 crt t structure

act time: The actual time

This function will set the time this Certificate was or will be activated.

Returns 0 on success, or a negative value in case of an error.

Chapter 9: Function reference 187

gnutls x509 crt set authority key id

[Function]int gnutls_x509_crt_set_authority_key_id (gnutls x509 crt t
cert, const void * id, size t id_size)

cert: should contain a gnutls x509 crt t structure
id: The key ID
id size: Holds the size of the serial field.
This function will set the X.509 certificate’s authority key ID extension. Only the
keyIdentifier field can be set with this function.
Returns 0 on success, or a negative value in case of an error.

gnutls x509 crt set basic constraints

[Function]int gnutls_x509_crt_set_basic_constraints (gnutls x509 crt t
crt, unsigned int ca, int pathLenConstraint)

crt: should contain a gnutls x509 crt t structure
ca: true(1) or false(0). Depending on the Certificate authority status.
pathLenConstraint: non-negative values indicate maximum length of path, and neg-
ative values indicate that the pathLenConstraints field should not be present.
This function will set the basicConstraints certificate extension.
Returns 0 on success.

gnutls x509 crt set ca status

[Function]int gnutls_x509_crt_set_ca_status (gnutls x509 crt t crt,
unsigned int ca)

crt: should contain a gnutls x509 crt t structure
ca: true(1) or false(0). Depending on the Certificate authority status.
This function will set the basicConstraints certificate extension. Use gnutls_x509_
crt_set_basic_constraints() if you want to control the pathLenConstraint field
too.
Returns 0 on success.

gnutls x509 crt set crl dist points

[Function]int gnutls_x509_crt_set_crl_dist_points (gnutls x509 crt t crt,
gnutls x509 subject alt name t type, const void * data_string, unsigned int
reason_flags)

crt: should contain a gnutls x509 crt t structure
type: is one of the gnutls x509 subject alt name t enumerations
data string : The data to be set
reason flags: revocation reasons
This function will set the CRL distribution points certificate extension.
Returns 0 on success.

Chapter 9: Function reference 188

gnutls x509 crt set crq

[Function]int gnutls_x509_crt_set_crq (gnutls x509 crt t crt,
gnutls x509 crq t crq)

crt: should contain a gnutls x509 crt t structure
crq: holds a certificate request
This function will set the name and public parameters from the given certificate
request to the certificate. Only RSA keys are currently supported.
Returns 0 on success.

gnutls x509 crt set dn by oid

[Function]int gnutls_x509_crt_set_dn_by_oid (gnutls x509 crt t crt, const
char * oid, unsigned int raw_flag, const void * name, unsigned int
sizeof_name)

crt: should contain a gnutls x509 crt t structure
oid: holds an Object Identifier in a null terminated string
raw flag : must be 0, or 1 if the data are DER encoded
name: a pointer to the name
sizeof name: holds the size of name
This function will set the part of the name of the Certificate subject, specified by the
given OID. The input string should be ASCII or UTF-8 encoded.
Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.
Returns 0 on success.

gnutls x509 crt set expiration time

[Function]int gnutls_x509_crt_set_expiration_time (gnutls x509 crt t
cert, time t exp_time)

cert: should contain a gnutls x509 crt t structure
exp time: The actual time
This function will set the time this Certificate will expire.
Returns 0 on success, or a negative value in case of an error.

gnutls x509 crt set extension by oid

[Function]int gnutls_x509_crt_set_extension_by_oid (gnutls x509 crt t
crt, const char * oid, const void * buf, size t sizeof_buf, unsigned int
critical)

crt: should contain a gnutls x509 crt t structure
oid: holds an Object Identified in null terminated string
buf : a pointer to a DER encoded data

Chapter 9: Function reference 189

sizeof buf : holds the size of buf
critical: should be non zero if the extension is to be marked as critical
This function will set an the extension, by the specified OID, in the certificate. The
extension data should be binary data DER encoded.
Returns 0 on success and a negative value in case of an error.

gnutls x509 crt set issuer dn by oid

[Function]int gnutls_x509_crt_set_issuer_dn_by_oid (gnutls x509 crt t
crt, const char * oid, unsigned int raw_flag, const void * name, unsigned int
sizeof_name)

crt: should contain a gnutls x509 crt t structure
oid: holds an Object Identifier in a null terminated string
raw flag : must be 0, or 1 if the data are DER encoded
name: a pointer to the name
sizeof name: holds the size of name
This function will set the part of the name of the Certificate issuer, specified by the
given OID. The input string should be ASCII or UTF-8 encoded.
Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.
Normally you do not need to call this function, since the signing operation will copy
the signer’s name as the issuer of the certificate.
Returns 0 on success.

gnutls x509 crt set key purpose oid

[Function]int gnutls_x509_crt_set_key_purpose_oid (gnutls x509 crt t
cert, const void * oid, unsigned int critical)

cert: should contain a gnutls x509 crt t structure
oid: a pointer to a null terminated string that holds the OID
critical: Whether this extension will be critical or not
This function will set the key purpose OIDs of the Certificate. These are stored in
the Extended Key Usage extension (2.5.29.37) See the GNUTLS KP * definitions for
human readable names.
Subsequent calls to this function will append OIDs to the OID list.
On success 0 is returned.

gnutls x509 crt set key usage

[Function]int gnutls_x509_crt_set_key_usage (gnutls x509 crt t crt,
unsigned int usage)

crt: should contain a gnutls x509 crt t structure

Chapter 9: Function reference 190

usage: an ORed sequence of the GNUTLS KEY * elements.

This function will set the keyUsage certificate extension.

Returns 0 on success.

gnutls x509 crt set key

[Function]int gnutls_x509_crt_set_key (gnutls x509 crt t crt,
gnutls x509 privkey t key)

crt: should contain a gnutls x509 crt t structure

key : holds a private key

This function will set the public parameters from the given private key to the certifi-
cate. Only RSA keys are currently supported.

Returns 0 on success.

gnutls x509 crt set proxy dn

[Function]int gnutls_x509_crt_set_proxy_dn (gnutls x509 crt t crt,
gnutls x509 crt t eecrt, unsigned int raw_flag, const void * name, unsigned
int sizeof_name)

crt: a gnutls x509 crt t structure with the new proxy cert

eecrt: the end entity certificate that will be issuing the proxy

raw flag : must be 0, or 1 if the CN is DER encoded

name: a pointer to the CN name, may be NULL (but MUST then be added later)

sizeof name: holds the size of name

This function will set the subject in crt to the end entity’s eecrt subject name, and
add a single Common Name component name of size sizeof_name. This corresponds
to the required proxy certificate naming style. Note that if name is NULL, you MUST
set it later by using gnutls_x509_crt_set_dn_by_oid() or similar.

Returns 0 on success.

gnutls x509 crt set proxy

[Function]int gnutls_x509_crt_set_proxy (gnutls x509 crt t crt, int
pathLenConstraint, const char * policyLanguage, const char * policy,
size t sizeof_policy)

crt: should contain a gnutls x509 crt t structure

pathLenConstraint: non-negative values indicate maximum length of path, and neg-
ative values indicate that the pathLenConstraints field should not be present.

policyLanguage: OID describing the language of policy.

policy : opaque byte array with policy language, can be NULL

sizeof policy : size of policy.

This function will set the proxyCertInfo extension.

Returns 0 on success.

Chapter 9: Function reference 191

gnutls x509 crt set serial

[Function]int gnutls_x509_crt_set_serial (gnutls x509 crt t cert, const void
* serial, size t serial_size)

cert: should contain a gnutls x509 crt t structure

serial: The serial number

serial size: Holds the size of the serial field.

This function will set the X.509 certificate’s serial number. Serial is not always a 32
or 64bit number. Some CAs use large serial numbers, thus it may be wise to handle
it as something opaque.

Returns 0 on success, or a negative value in case of an error.

gnutls x509 crt set subject alternative name

[Function]int gnutls_x509_crt_set_subject_alternative_name
(gnutls x509 crt t crt, gnutls x509 subject alt name t type, const char *
data_string)

crt: should contain a gnutls x509 crt t structure

type: is one of the gnutls x509 subject alt name t enumerations

data string : The data to be set

This function will set the subject alternative name certificate extension.

Returns 0 on success.

gnutls x509 crt set subject key id

[Function]int gnutls_x509_crt_set_subject_key_id (gnutls x509 crt t cert,
const void * id, size t id_size)

cert: should contain a gnutls x509 crt t structure

id: The key ID

id size: Holds the size of the serial field.

This function will set the X.509 certificate’s subject key ID extension.

Returns 0 on success, or a negative value in case of an error.

gnutls x509 crt set version

[Function]int gnutls_x509_crt_set_version (gnutls x509 crt t crt, unsigned
int version)

crt: should contain a gnutls x509 crt t structure

version: holds the version number. For X.509v1 certificates must be 1.

This function will set the version of the certificate. This must be one for X.509 version
1, and so on. Plain certificates without extensions must have version set to one.

Returns 0 on success.

Chapter 9: Function reference 192

gnutls x509 crt sign2

[Function]int gnutls_x509_crt_sign2 (gnutls x509 crt t crt, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key, gnutls digest algorithm t dig,
unsigned int flags)

crt: should contain a gnutls x509 crt t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

flags: must be 0

This function will sign the certificate with the issuer’s private key, and will copy the
issuer’s information into the certificate.

This must be the last step in a certificate generation since all the previously set
parameters are now signed.

Returns 0 on success.

gnutls x509 crt sign

[Function]int gnutls_x509_crt_sign (gnutls x509 crt t crt, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key)

crt: should contain a gnutls x509 crt t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

This function is the same a gnutls_x509_crt_sign2() with no flags, and SHA1 as
the hash algorithm.

Returns 0 on success.

gnutls x509 crt to xml

[Function]int gnutls_x509_crt_to_xml (gnutls x509 crt t cert, gnutls datum t
* res, int detail)

cert: should contain a gnutls x509 crt t structure

res: The datum that will hold the result

detail: The detail level (must be GNUTLS XML SHOW ALL or
GNUTLS XML NORMAL)

This function will return the XML structures of the given X.509 certificate. The XML
structures are allocated internally (with malloc) and stored into res.

Returns a negative error code in case of an error.

Deprecated: This function is currently not implemented. See the NEWS entry for
GnuTLS version 1.3.5.

Chapter 9: Function reference 193

gnutls x509 crt verify data

[Function]int gnutls_x509_crt_verify_data (gnutls x509 crt t crt, unsigned
int flags, const gnutls datum t * data, const gnutls datum t * signature)

crt: Holds the certificate
flags: should be 0 for now
data: holds the data to be signed
signature: contains the signature
This function will verify the given signed data, using the parameters from the certifi-
cate.
In case of a verification failure 0 is returned, and 1 on success.

gnutls x509 crt verify

[Function]int gnutls_x509_crt_verify (gnutls x509 crt t cert, const
gnutls x509 crt t * CA_list, int CA_list_length, unsigned int flags,
unsigned int * verify)

cert: is the certificate to be verified
CA list: is one certificate that is considered to be trusted one
CA list length: holds the number of CA certificate in CA list
flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.
verify : will hold the certificate verification output.
This function will try to verify the given certificate and return its status. The verifi-
cation output in this functions cannot be GNUTLS CERT NOT VALID.
Returns 0 on success and a negative value in case of an error.

gnutls x509 dn oid known

[Function]int gnutls_x509_dn_oid_known (const char * oid)
oid: holds an Object Identifier in a null terminated string
This function will inform about known DN OIDs. This is useful since functions like
gnutls_x509_crt_set_dn_by_oid() use the information on known OIDs to properly
encode their input. Object Identifiers that are not known are not encoded by these
functions, and their input is stored directly into the ASN.1 structure. In that case of
unknown OIDs, you have the responsibility of DER encoding your data.
Returns 1 on known OIDs and 0 otherwise.

gnutls x509 privkey cpy

[Function]int gnutls_x509_privkey_cpy (gnutls x509 privkey t dst,
gnutls x509 privkey t src)

dst: The destination key, which should be initialized.
src: The source key
This function will copy a private key from source to destination key.

Chapter 9: Function reference 194

gnutls x509 privkey deinit

[Function]void gnutls_x509_privkey_deinit (gnutls x509 privkey t key)
key : The structure to be initialized

This function will deinitialize a private key structure.

gnutls x509 privkey export dsa raw

[Function]int gnutls_x509_privkey_export_dsa_raw (gnutls x509 privkey t
key, gnutls datum t * p, gnutls datum t * q, gnutls datum t * g,
gnutls datum t * y, gnutls datum t * x)

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

x: will hold the x

This function will export the DSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

gnutls x509 privkey export pkcs8

[Function]int gnutls_x509_privkey_export_pkcs8 (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, const char * password, unsigned int flags,
void * output_data, size t * output_data_size)

key : Holds the key

format: the format of output params. One of PEM or DER.

password: the password that will be used to encrypt the key.

flags: an ORed sequence of gnutls pkcs encrypt flags t

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the private key to a PKCS8 structure. Currently only RSA
keys can be exported since there is no documented standard for other keys. If the
flags do not specify the encryption cipher, then the default 3DES (PBES2) will be
used.

The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN ENCRYPTED
PRIVATE KEY" or "BEGIN PRIVATE KEY" if encryption is not used.

Return value: In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 195

gnutls x509 privkey export rsa raw

[Function]int gnutls_x509_privkey_export_rsa_raw (gnutls x509 privkey t
key, gnutls datum t * m, gnutls datum t * e, gnutls datum t * d,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * u)

key : a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

gnutls x509 privkey export

[Function]int gnutls_x509_privkey_export (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

key : Holds the key

format: the format of output params. One of PEM or DER.

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the private key to a PKCS1 structure for RSA keys, or
an integer sequence for DSA keys. The DSA keys are in the same format with the
parameters used by openssl.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls x509 privkey fix

[Function]int gnutls_x509_privkey_fix (gnutls x509 privkey t key)
key : Holds the key

This function will recalculate the secondary parameters in a key. In RSA keys, this
can be the coefficient and exponent1,2.

Return value: In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function reference 196

gnutls x509 privkey generate

[Function]int gnutls_x509_privkey_generate (gnutls x509 privkey t key,
gnutls pk algorithm t algo, unsigned int bits, unsigned int flags)

key : should contain a gnutls x509 privkey t structure
algo: is one of RSA or DSA.
bits: the size of the modulus
flags: unused for now. Must be 0.
This function will generate a random private key. Note that this function must be
called on an empty private key.
Returns 0 on success or a negative value on error.

gnutls x509 privkey get key id

[Function]int gnutls_x509_privkey_get_key_id (gnutls x509 privkey t key,
unsigned int flags, unsigned char * output_data, size t *
output_data_size)

key : Holds the key
flags: should be 0 for now
output data: will contain the key ID
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given key.
If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.
Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls x509 privkey get pk algorithm

[Function]int gnutls_x509_privkey_get_pk_algorithm (gnutls x509 privkey t
key)

key : should contain a gnutls x509 privkey t structure
This function will return the public key algorithm of a private key.
Returns a member of the gnutls pk algorithm t enumeration on success, or a negative
value on error.

gnutls x509 privkey import dsa raw

[Function]int gnutls_x509_privkey_import_dsa_raw (gnutls x509 privkey t
key, const gnutls datum t * p, const gnutls datum t * q, const gnutls datum t
* g, const gnutls datum t * y, const gnutls datum t * x)

key : The structure to store the parsed key
p: holds the p

Chapter 9: Function reference 197

q: holds the q
g : holds the g
y : holds the y
x: holds the x
This function will convert the given DSA raw parameters to the native
gnutls x509 privkey t format. The output will be stored in key.

gnutls x509 privkey import pkcs8

[Function]int gnutls_x509_privkey_import_pkcs8 (gnutls x509 privkey t key,
const gnutls datum t * data, gnutls x509 crt fmt t format, const char *
password, unsigned int flags)

key : The structure to store the parsed key
data: The DER or PEM encoded key.
format: One of DER or PEM
password: the password to decrypt the key (if it is encrypted).
flags: 0 if encrypted or GNUTLS PKCS PLAIN if not encrypted.
This function will convert the given DER or PEM encoded PKCS8 2.0 encrypted
key to the native gnutls x509 privkey t format. The output will be stored in key.
Currently only RSA keys can be imported, and flags can only be used to indicate an
unencrypted key.
The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.
If the Certificate is PEM encoded it should have a header of "ENCRYPTED PRI-
VATE KEY", or "PRIVATE KEY". You only need to specify the flags if the key is
DER encoded, since in that case the encryption status cannot be auto-detected.
Returns 0 on success.

gnutls x509 privkey import rsa raw

[Function]int gnutls_x509_privkey_import_rsa_raw (gnutls x509 privkey t
key, const gnutls datum t * m, const gnutls datum t * e, const gnutls datum t
* d, const gnutls datum t * p, const gnutls datum t * q, const gnutls datum t
* u)

key : The structure to store the parsed key
m: holds the modulus
e: holds the public exponent
d: holds the private exponent
p: holds the first prime (p)
q: holds the second prime (q)
u: holds the coefficient
This function will convert the given RSA raw parameters to the native
gnutls x509 privkey t format. The output will be stored in key.

Chapter 9: Function reference 198

gnutls x509 privkey import

[Function]int gnutls_x509_privkey_import (gnutls x509 privkey t key, const
gnutls datum t * data, gnutls x509 crt fmt t format)

key : The structure to store the parsed key
data: The DER or PEM encoded certificate.
format: One of DER or PEM
This function will convert the given DER or PEM encoded key to the native
gnutls x509 privkey t format. The output will be stored in key .
If the key is PEM encoded it should have a header of "RSA PRIVATE KEY", or
"DSA PRIVATE KEY".
Returns 0 on success.

gnutls x509 privkey init

[Function]int gnutls_x509_privkey_init (gnutls x509 privkey t * key)
key : The structure to be initialized
This function will initialize an private key structure.
Returns 0 on success.

gnutls x509 privkey sign data

[Function]int gnutls_x509_privkey_sign_data (gnutls x509 privkey t key,
gnutls digest algorithm t digest, unsigned int flags, const gnutls datum t *
data, void * signature, size t * signature_size)

key : Holds the key
digest: should be MD5 or SHA1
flags: should be 0 for now
data: holds the data to be signed
signature: will contain the signature
signature size: holds the size of signature (and will be replaced by the new size)
This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-1 for the
DSA keys.
If the buffer provided is not long enough to hold the output, then *signature size is
updated and GNUTLS E SHORT MEMORY BUFFER will be returned.
In case of failure a negative value will be returned, and 0 on success.

gnutls x509 privkey verify data

[Function]int gnutls_x509_privkey_verify_data (gnutls x509 privkey t key,
unsigned int flags, const gnutls datum t * data, const gnutls datum t *
signature)

key : Holds the key

Chapter 9: Function reference 199

flags: should be 0 for now
data: holds the data to be signed
signature: contains the signature
This function will verify the given signed data, using the parameters in the private
key.
In case of a verification failure 0 is returned, and 1 on success.

gnutls x509 rdn get by oid

[Function]int gnutls_x509_rdn_get_by_oid (const gnutls datum t * idn, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

idn: should contain a DER encoded RDN sequence
oid: an Object Identifier
indx: In case multiple same OIDs exist in the RDN indicates which to send. Use 0
for the first one.
raw flag : If non zero then the raw DER data are returned.
buf : a pointer to a structure to hold the peer’s name
sizeof buf : holds the size of buf
This function will return the name of the given Object identifier, of the RDN sequence.
The name will be encoded using the rules from RFC2253.
Returns GNUTLS E SHORT MEMORY BUFFER and updates *sizeof buf if the
provided buffer is not long enough, and 0 on success.

gnutls x509 rdn get oid

[Function]int gnutls_x509_rdn_get_oid (const gnutls datum t * idn, int indx,
void * buf, size t * sizeof_buf)

idn: should contain a DER encoded RDN sequence
indx: Indicates which OID to return. Use 0 for the first one.
This function will return the specified Object identifier, of the RDN sequence.
Returns GNUTLS E SHORT MEMORY BUFFER and updates *sizeof buf if the
provided buffer is not long enough, and 0 on success.

gnutls x509 rdn get

[Function]int gnutls_x509_rdn_get (const gnutls datum t * idn, char * buf,
size t * sizeof_buf)

idn: should contain a DER encoded RDN sequence
buf : a pointer to a structure to hold the peer’s name
sizeof buf : holds the size of buf
This function will return the name of the given RDN sequence. The name will be in
the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253.
If the provided buffer is not long enough, returns GNUTLS E SHORT MEMORY BUFFER
and *sizeof buf will be updated. On success 0 is returned.

Chapter 9: Function reference 200

9.3 GnuTLS-extra functions

These functions are only available in the GPL version of the library called gnutls-extra.
The prototypes for this library lie in ‘gnutls/extra.h’.

gnutls extra check version

[Function]const char * gnutls_extra_check_version (const char *
req_version)

req version: the version to check
Check that the version of the gnutls-extra library is at minimum the requested one
and return the version string; return NULL if the condition is not satisfied. If a NULL
is passed to this function, no check is done, but the version string is simply returned.

gnutls global init extra

[Function]int gnutls_global_init_extra (void)
This function initializes the global state of gnutls-extra library to defaults. Returns
zero on success.
Note that gnutls_global_init() has to be called before this function. If this func-
tion is not called then the gnutls-extra library will not be usable.

9.4 OpenPGP functions

The following functions are to be used for OpenPGP certificate handling. Their prototypes
lie in ‘gnutls/openpgp.h’. You need to link with ‘libgnutls-extra’ to be able to use
these functions (see Section 9.3 [GnuTLS-extra functions], page 200).

gnutls certificate set openpgp key file

[Function]int gnutls_certificate_set_openpgp_key_file
(gnutls certificate credentials t res, const char * certfile, const char *
keyfile)

res: the destination context to save the data.
certfile: the file that contains the public key.
keyfile: the file that contains the secret key.
This funtion is used to load OpenPGP keys into the GnuTLS credentials structure. It
doesn’t matter whether the keys are armored or not, but the files should only contain
one key which should not be encrypted.

gnutls certificate set openpgp key mem

[Function]int gnutls_certificate_set_openpgp_key_mem
(gnutls certificate credentials t res, const gnutls datum t * cert, const
gnutls datum t * key)

res: the destination context to save the data.
cert: the datum that contains the public key.
key : the datum that contains the secret key.

Chapter 9: Function reference 201

This funtion is used to load OpenPGP keys into the GnuTLS credential structure. It
doesn’t matter whether the keys are armored or not, but the files should only contain
one key which should not be encrypted.

gnutls certificate set openpgp keyring file

[Function]int gnutls_certificate_set_openpgp_keyring_file
(gnutls certificate credentials t c, const char * file)

c: A certificate credentials structure
file: filename of the keyring.
The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

gnutls certificate set openpgp keyring mem

[Function]int gnutls_certificate_set_openpgp_keyring_mem
(gnutls certificate credentials t c, const opaque * data, size t dlen)

c: A certificate credentials structure
data: buffer with keyring data.
dlen: length of data buffer.
The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

gnutls certificate set openpgp keyserver

[Function]int gnutls_certificate_set_openpgp_keyserver
(gnutls certificate credentials t res, const char * keyserver, int port)

res: the destination context to save the data.
keyserver: is the key server address
port: is the key server port to connect to
This funtion will set a key server for use with openpgp keys. This key server will only
be used if the peer sends a key fingerprint instead of a key in the handshake. Using
a key server may delay the handshake process.

gnutls certificate set openpgp key

[Function]int gnutls_certificate_set_openpgp_key
(gnutls certificate credentials t res, gnutls openpgp key t key,
gnutls openpgp privkey t pkey)

res: is an gnutls_certificate_credentials_t structure.
key : contains an openpgp public key
pkey : is an openpgp private key
This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).

Chapter 9: Function reference 202

gnutls certificate set openpgp trustdb

[Function]int gnutls_certificate_set_openpgp_trustdb
(gnutls certificate credentials t res, const char * trustdb)

res: the destination context to save the data.
trustdb: is the trustdb filename
This funtion will set a GnuPG trustdb which will be used in key verification functions.
Only version 3 trustdb files are supported.

gnutls openpgp key check hostname

[Function]int gnutls_openpgp_key_check_hostname (gnutls openpgp key t
key, const char * hostname)

key : should contain an gnutls openpgp key t structure
hostname: A null terminated string that contains a DNS name
This function will check if the given key’s owner matches the given hostname. This
is a basic implementation of the matching described in RFC2818 (HTTPS), which
takes into account wildcards.
Returns non zero on success, and zero on failure.

gnutls openpgp key deinit

[Function]void gnutls_openpgp_key_deinit (gnutls openpgp key t key)
key : The structure to be initialized
This function will deinitialize a key structure.

gnutls openpgp key export

[Function]int gnutls_openpgp_key_export (gnutls openpgp key t key,
gnutls openpgp key fmt t format, void * output_data, size t *
output_data_size)

key : Holds the key.
format: One of gnutls openpgp key fmt t elements.
output data: will contain the key base64 encoded or raw
output data size: holds the size of output data (and will be replaced by the actual
size of parameters)
This function will convert the given key to RAW or Base64 format.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.
Returns 0 on success.

gnutls openpgp key get creation time

[Function]time_t gnutls_openpgp_key_get_creation_time
(gnutls openpgp key t key)

key : the structure that contains the OpenPGP public key.
Returns the timestamp when the OpenPGP key was created.

Chapter 9: Function reference 203

gnutls openpgp key get expiration time

[Function]time_t gnutls_openpgp_key_get_expiration_time
(gnutls openpgp key t key)

key : the structure that contains the OpenPGP public key.
Returns the time when the OpenPGP key expires. A value of ’0’ means that the key
doesn’t expire at all.

gnutls openpgp key get fingerprint

[Function]int gnutls_openpgp_key_get_fingerprint (gnutls openpgp key t
key, void * fpr, size t * fprlen)

key : the raw data that contains the OpenPGP public key.
fpr: the buffer to save the fingerprint, must hold at least 20 bytes.
fprlen: the integer to save the length of the fingerprint.
Returns the fingerprint of the OpenPGP key. Depends on the algorithm, the finger-
print can be 16 or 20 bytes.

gnutls openpgp key get id

[Function]int gnutls_openpgp_key_get_id (gnutls openpgp key t key,
unsigned char keyid[8])

key : the structure that contains the OpenPGP public key.
Returns the 64-bit keyID of the OpenPGP key.

gnutls openpgp key get key usage

[Function]int gnutls_openpgp_key_get_key_usage (gnutls openpgp key t key,
unsigned int * key_usage)

key : should contain a gnutls openpgp key t structure
key usage: where the key usage bits will be stored
This function will return certificate’s key usage, by checking the key algorithm. The
key usage value will ORed values of the: GNUTLS KEY DIGITAL SIGNATURE,
GNUTLS KEY KEY ENCIPHERMENT.
A negative value may be returned in case of parsing error.

gnutls openpgp key get name

[Function]int gnutls_openpgp_key_get_name (gnutls openpgp key t key, int
idx, char * buf, size t * sizeof_buf)

key : the structure that contains the OpenPGP public key.
idx: the index of the ID to extract
buf : a pointer to a structure to hold the name
sizeof buf : holds the maximum size of buf, on return hold the actual/required size
of buf.
Extracts the userID from the parsed OpenPGP key.
Returns 0 on success, and GNUTLS E REQUESTED DATA NOT AVAILABLE if
the index of the ID does not exist.

Chapter 9: Function reference 204

gnutls openpgp key get pk algorithm

[Function]gnutls_pk_algorithm_t gnutls_openpgp_key_get_pk_algorithm
(gnutls openpgp key t key, unsigned int * bits)

key : is an OpenPGP key
bits: if bits is non null it will hold the size of the parameters’ in bits
This function will return the public key algorithm of an OpenPGP certificate.
If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.
Returns a member of the GNUTLS PKAlgorithm enumeration on success, or a neg-
ative value on error.

gnutls openpgp key get version

[Function]int gnutls_openpgp_key_get_version (gnutls openpgp key t key)
key : the structure that contains the OpenPGP public key.
Extract the version of the OpenPGP key.

gnutls openpgp key import

[Function]int gnutls_openpgp_key_import (gnutls openpgp key t key, const
gnutls datum t * data, gnutls openpgp key fmt t format)

key : The structure to store the parsed key.
data: The RAW or BASE64 encoded key.
format: One of gnutls openpgp key fmt t elements.
This function will convert the given RAW or Base64 encoded key to the native
gnutls openpgp key t format. The output will be stored in ’key’.
Returns 0 on success.

gnutls openpgp key init

[Function]int gnutls_openpgp_key_init (gnutls openpgp key t * key)
key : The structure to be initialized
This function will initialize an OpenPGP key structure.
Returns 0 on success.

gnutls openpgp key to xml

[Function]int gnutls_openpgp_key_to_xml (gnutls openpgp key t key,
gnutls datum t * xmlkey, int ext)

xmlkey : he datum struct to store the XML result.
ext: extension mode (1/0), 1 means include key signatures and key data.
This function will return the all OpenPGP key information encapsulated as a XML
string.

Chapter 9: Function reference 205

gnutls openpgp key verify ring

[Function]int gnutls_openpgp_key_verify_ring (gnutls openpgp key t key,
gnutls openpgp keyring t keyring, unsigned int flags, unsigned int *
verify)

key : the structure that holds the key.
keyring : holds the keyring to check against
flags: unused (should be 0)
verify : will hold the certificate verification output.
Verify all signatures in the key, using the given set of keys (keyring).
The key verification output will be put in verify and will be one or more of the
gnutls certificate status t enumerated elements bitwise or’d.
GNUTLS CERT INVALID: A signature on the key is invalid.
GNUTLS CERT REVOKED: The key has been revoked.
Note that this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.
Returns 0 on success.

gnutls openpgp key verify self

[Function]int gnutls_openpgp_key_verify_self (gnutls openpgp key t key,
unsigned int flags, unsigned int * verify)

key : the structure that holds the key.
flags: unused (should be 0)
verify : will hold the key verification output.
Verifies the self signature in the key. The key verification output will be put in verify
and will be one or more of the gnutls certificate status t enumerated elements bitwise
or’d.
GNUTLS CERT INVALID: The self signature on the key is invalid.
Returns 0 on success.

gnutls openpgp key verify trustdb

[Function]int gnutls_openpgp_key_verify_trustdb (gnutls openpgp key t
key, gnutls openpgp trustdb t trustdb, unsigned int flags, unsigned int *
verify)

key : the structure that holds the key.
trustdb: holds the trustdb to check against
flags: unused (should be 0)
verify : will hold the certificate verification output.
Checks if the key is revoked or disabled, in the trustdb. The verification output will be
put in verify and will be one or more of the gnutls certificate status t enumerated
elements bitwise or’d.
GNUTLS CERT INVALID: A signature on the key is invalid.

Chapter 9: Function reference 206

GNUTLS CERT REVOKED: The key has been revoked.
Note that this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.
Returns 0 on success.

gnutls openpgp keyring check id

[Function]int gnutls_openpgp_keyring_check_id (gnutls openpgp keyring t
ring, const unsigned char keyid[8], unsigned int flags)

ring : holds the keyring to check against
flags: unused (should be 0)
Check if a given key ID exists in the keyring.
Returns 0 on success (if keyid exists) and a negative error code on failure.

gnutls openpgp keyring deinit

[Function]void gnutls_openpgp_keyring_deinit (gnutls openpgp keyring t
keyring)

keyring : The structure to be initialized
This function will deinitialize a CRL structure.

gnutls openpgp keyring import

[Function]int gnutls_openpgp_keyring_import (gnutls openpgp keyring t
keyring, const gnutls datum t * data, gnutls openpgp key fmt t format)

keyring : The structure to store the parsed key.
data: The RAW or BASE64 encoded keyring.
format: One of gnutls openpgp keyring fmt elements.
This function will convert the given RAW or Base64 encoded keyring to the native
gnutls openpgp keyring t format. The output will be stored in ’keyring’.
Returns 0 on success.

gnutls openpgp keyring init

[Function]int gnutls_openpgp_keyring_init (gnutls openpgp keyring t *
keyring)

keyring : The structure to be initialized
This function will initialize an OpenPGP keyring structure.
Returns 0 on success.

gnutls openpgp privkey deinit

[Function]void gnutls_openpgp_privkey_deinit (gnutls openpgp privkey t
key)

key : The structure to be initialized
This function will deinitialize a key structure.

Chapter 9: Function reference 207

gnutls openpgp privkey get pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_privkey_get_pk_algorithm (gnutls openpgp privkey t
key, unsigned int * bits)

key : is an OpenPGP key

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an OpenPGP certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns a member of the GNUTLS PKAlgorithm enumeration on success, or a neg-
ative value on error.

gnutls openpgp privkey import

[Function]int gnutls_openpgp_privkey_import (gnutls openpgp privkey t key,
const gnutls datum t * data, gnutls openpgp key fmt t format, const char *
pass, unsigned int flags)

key : The structure to store the parsed key.

data: The RAW or BASE64 encoded key.

format: One of gnutls openpgp key fmt t elements.

pass: Unused for now

flags: should be zero

This function will convert the given RAW or Base64 encoded key to the native
gnutls openpgp privkey t format. The output will be stored in ’key’.

Returns 0 on success.

gnutls openpgp privkey init

[Function]int gnutls_openpgp_privkey_init (gnutls openpgp privkey t * key)
key : The structure to be initialized

This function will initialize an OpenPGP key structure.

Returns 0 on success.

gnutls openpgp set recv key function

[Function]void gnutls_openpgp_set_recv_key_function (gnutls session t
session, gnutls openpgp recv key func func)

session: a TLS session

func: the callback

This funtion will set a key retrieval function for OpenPGP keys. This callback is only
useful in server side, and will be used if the peer sent a key fingerprint instead of a
full key.

Chapter 9: Function reference 208

gnutls openpgp trustdb deinit

[Function]void gnutls_openpgp_trustdb_deinit (gnutls openpgp trustdb t
trustdb)

trustdb: The structure to be initialized
This function will deinitialize a CRL structure.

gnutls openpgp trustdb import file

[Function]int gnutls_openpgp_trustdb_import_file
(gnutls openpgp trustdb t trustdb, const char * file)

trustdb: The structure to store the parsed key.
file: The file that holds the trustdb.
This function will convert the given RAW or Base64 encoded trustdb to the native
gnutls openpgp trustdb t format. The output will be stored in ’trustdb’.
Returns 0 on success.

gnutls openpgp trustdb init

[Function]int gnutls_openpgp_trustdb_init (gnutls openpgp trustdb t *
trustdb)

trustdb: The structure to be initialized
This function will initialize an OpenPGP trustdb structure.
Returns 0 on success.

9.5 TLS Inner Application (TLS/IA) functions

The following functions are used for TLS Inner Application (TLS/IA). Their prototypes lie
in ‘gnutls/extra.h’. You need to link with ‘libgnutls-extra’ to be able to use these
functions (see Section 9.3 [GnuTLS-extra functions], page 200).
The typical control flow in an TLS/IA client (that would not require an Application Phase
for resumed sessions) would be similar to the following:

int client_avp (gnuls_session_t *session, void *ptr,
const char *last, size_t lastlen,

char **new, size_t *newlen)
{
...
}
...
int main ()
{
gnutls_ia_client_credentials_t iacred;

...
gnutls_init (&session, GNUTLS_CLIENT);

...
/* Enable TLS/IA. */
gnutls_ia_allocate_client_credentials(&iacred);

Chapter 9: Function reference 209

gnutls_ia_set_client_avp_function(iacred, client_avp);
gnutls_credentials_set (session, GNUTLS_CRD_IA, iacred);

...
ret = gnutls_handshake (session);
// Error handling...

...
if (gnutls_ia_handshake_p (session))
{
ret = gnutls_ia_handshake (session);
// Error handling...

...

See below for detailed descriptions of all the functions used above.

The function client_avp would have to be implemented by your application. The func-
tion is responsible for handling the AVP data. See gnutls_ia_set_client_avp_function
below for more information on how that function should be implemented.

The control flow in a typical server is similar to the above, use gnutls_ia_server_
credentials_t instead of gnutls_ia_client_credentials_t, and replace the call to the
client functions with the corresponding server functions.

gnutls ia allocate client credentials

[Function]int gnutls_ia_allocate_client_credentials
(gnutls ia client credentials t * sc)

sc: is a pointer to an gnutls_ia_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Adding this credential to a session will enable TLS/IA, and will require an Application
Phase after the TLS handshake (if the server support TLS/IA). Use gnutls_ia_
require_inner_phase() to toggle the TLS/IA mode.

Returns 0 on success.

gnutls ia allocate server credentials

[Function]int gnutls_ia_allocate_server_credentials
(gnutls ia server credentials t * sc)

sc: is a pointer to an gnutls_ia_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Adding this credential to a session will enable TLS/IA, and will require an Application
Phase after the TLS handshake (if the client support TLS/IA). Use gnutls_ia_
require_inner_phase() to toggle the TLS/IA mode.

Returns 0 on success.

gnutls ia enable

Chapter 9: Function reference 210

[Function]void gnutls_ia_enable (gnutls session t session, int
allow_skip_on_resume)

session: is a gnutls_session_t structure.

allow skip on resume: non-zero if local party allows to skip the TLS/IA application
phases for a resumed session.

Specify whether we must advertise support for the TLS/IA extension during the
handshake.

At the client side, we always advertise TLS/IA if gnutls ia enable was called before
the handshake; at the server side, we also require that the client has advertised that it
wants to run TLS/IA before including the advertisement, as required by the protocol.

Similarly, at the client side we always advertise that we allow TLS/IA to be skipped
for resumed sessions if allow_skip_on_resume is non-zero; at the server side, we also
require that the session is indeed resumable and that the client has also advertised
that it allows TLS/IA to be skipped for resumed sessions.

After the TLS handshake, call gnutls_ia_handshake_p() to find out whether both
parties agreed to do a TLS/IA handshake, before calling gnutls_ia_handshake() or
one of the lower level gnutls ia * functions.

gnutls ia endphase send

[Function]int gnutls_ia_endphase_send (gnutls session t session, int
final_p)

session: is a gnutls_session_t structure.

final p: Set iff this should signal the final phase.

Send a TLS/IA end phase message.

In the client, this should only be used to acknowledge an end phase message sent by
the server.

In the server, this can be called instead of gnutls_ia_send() if the server wishes to
end an application phase.

Return value: Return 0 on success, or an error code.

gnutls ia extract inner secret

[Function]void gnutls_ia_extract_inner_secret (gnutls session t session,
char * buffer)

session: is a gnutls_session_t structure.

buffer: pre-allocated buffer to hold 48 bytes of inner secret.

Copy the 48 bytes large inner secret into the specified buffer

This function is typically used after the TLS/IA handshake has concluded. The
TLS/IA inner secret can be used as input to a PRF to derive session keys. Do not
use the inner secret directly as a session key, because for a resumed session that does
not include an application phase, the inner secret will be identical to the inner secret
in the original session. It is important to include, for example, the client and server
randomness when deriving a sesssion key from the inner secret.

Chapter 9: Function reference 211

gnutls ia free client credentials

[Function]void gnutls_ia_free_client_credentials
(gnutls ia client credentials t sc)

sc: is an gnutls_ia_client_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls ia free server credentials

[Function]void gnutls_ia_free_server_credentials
(gnutls ia server credentials t sc)

sc: is an gnutls_ia_server_credentials_t structure.
This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls ia generate challenge

[Function]int gnutls_ia_generate_challenge (gnutls session t session, size t
buffer_size, char * buffer)

session: is a gnutls_session_t structure.
buffer size: size of output buffer.
buffer: pre-allocated buffer to contain buffer_size bytes of output.
Generate an application challenge that the client cannot control or predict, based on
the TLS/IA inner secret.
Return value: Returns 0 on success, or an negative error code.

gnutls ia get client avp ptr

[Function]void * gnutls_ia_get_client_avp_ptr
(gnutls ia client credentials t cred)

cred: is a gnutls_ia_client_credentials_t structure.
Returns the pointer that will be provided to the TLS/IA callback function as the first
argument.

gnutls ia get server avp ptr

[Function]void * gnutls_ia_get_server_avp_ptr
(gnutls ia server credentials t cred)

cred: is a gnutls_ia_client_credentials_t structure.
Returns the pointer that will be provided to the TLS/IA callback function as the first
argument.

gnutls ia handshake p

[Function]int gnutls_ia_handshake_p (gnutls session t session)
session: is a gnutls_session_t structure.

Chapter 9: Function reference 212

Predicate to be used after gnutls_handshake() to decide whether to invoke gnutls_
ia_handshake(). Usable by both clients and servers.
Return value: non-zero if TLS/IA handshake is expected, zero otherwise.

gnutls ia handshake

[Function]int gnutls_ia_handshake (gnutls session t session)
session: is a gnutls_session_t structure.
Perform a TLS/IA handshake. This should be called after gnutls_handshake() iff
gnutls_ia_handshake_p().
Return 0 on success, or an error code.

gnutls ia permute inner secret

[Function]int gnutls_ia_permute_inner_secret (gnutls session t session,
size t session_keys_size, const char * session_keys)

session: is a gnutls_session_t structure.
session keys size: Size of generated session keys (0 if none).
session keys: Generated session keys, used to permute inner secret (NULL if none).
Permute the inner secret using the generated session keys.
This can be called in the TLS/IA AVP callback to mix any generated session keys
with the TLS/IA inner secret.
Return value: Return zero on success, or a negative error code.

gnutls ia recv

[Function]ssize_t gnutls_ia_recv (gnutls session t session, char * data,
size t sizeofdata)

session: is a gnutls_session_t structure.
data: the buffer that the data will be read into, must hold >= 12 bytes.
sizeofdata: the number of requested bytes, must be >= 12.
Receive TLS/IA data. This function has the similar semantics with recv(). The
only difference is that is accepts a GNUTLS session, and uses different error codes.
If the server attempt to finish an application phase, this function will return
GNUTLS_E_WARNING_IA_IPHF_RECEIVED or GNUTLS_E_WARNING_IA_FPHF_RECEIVED.
The caller should then invoke gnutls_ia_verify_endphase(), and if it runs the
client side, also send an endphase message of its own using gnutls ia endphase send.
If EINTR is returned by the internal push function (the default is code{recv()}) then
GNUTLS E INTERRUPTED will be returned. If GNUTLS E INTERRUPTED or
GNUTLS E AGAIN is returned, you must call this function again, with the same
parameters; alternatively you could provide a NULL pointer for data, and 0 for size.
Returns the number of bytes received. A negative error code is returned in case of
an error. The GNUTLS_E_WARNING_IA_IPHF_RECEIVED and GNUTLS_E_WARNING_IA_
FPHF_RECEIVED errors are returned when an application phase finished message has
been sent by the server.

Chapter 9: Function reference 213

gnutls ia send

[Function]ssize_t gnutls_ia_send (gnutls session t session, const char * data,
size t sizeofdata)

session: is a gnutls_session_t structure.
data: contains the data to send
sizeofdata: is the length of the data
Send TLS/IA application payload data. This function has the similar semantics with
send(). The only difference is that is accepts a GNUTLS session, and uses different
error codes.
The TLS/IA protocol is synchronous, so you cannot send more than one packet at a
time. The client always send the first packet.
To finish an application phase in the server, use gnutls_ia_endphase_send(). The
client cannot end an application phase unilaterally; rather, a client is required to
respond with an endphase of its own if gnutls ia recv indicates that the server has
sent one.
If the EINTR is returned by the internal push function (the default is send()} then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_
AGAIN is returned, you must call this function again, with the same parameters;
alternatively you could provide a NULL pointer for data, and 0 for size.
Returns the number of bytes sent, or a negative error code.

gnutls ia set client avp function

[Function]void gnutls_ia_set_client_avp_function
(gnutls ia client credentials t cred, gnutls ia avp func avp_func)

cred: is a gnutls_ia_client_credentials_t structure.
avp func: is the callback function
Set the TLS/IA AVP callback handler used for the session.
The AVP callback is called to process AVPs received from the server, and to get a
new AVP to send to the server.
The callback’s function form is: int (*avp func) (gnutls session t session, void *ptr,
const char *last, size t lastlen, char **next, size t *nextlen);
The session parameter is the gnutls_session_t structure corresponding to the
current session. The ptr parameter is the application hook pointer, set through
gnutls_ia_set_client_avp_ptr(). The AVP received from the server is present in
last of lastlen size, which will be NULL on the first invocation. The newly allocated
output AVP to send to the server should be placed in *next of *nextlen size.
The callback may invoke gnutls_ia_permute_inner_secret() to mix any generated
session keys with the TLS/IA inner secret.
Return 0 (GNUTLS_IA_APPLICATION_PAYLOAD) on success, or a negative error code to
abort the TLS/IA handshake.
Note that the callback must use allocate the next parameter using gnutls_malloc(),
because it is released via gnutls_free() by the TLS/IA handshake function.

Chapter 9: Function reference 214

gnutls ia set client avp ptr

[Function]void gnutls_ia_set_client_avp_ptr (gnutls ia client credentials t
cred, void * ptr)

cred: is a gnutls_ia_client_credentials_t structure.

ptr: is the pointer

Sets the pointer that will be provided to the TLS/IA callback function as the first
argument.

gnutls ia set server avp function

[Function]void gnutls_ia_set_server_avp_function
(gnutls ia server credentials t cred, gnutls ia avp func avp_func)

cred: is a gnutls_ia_server_credentials_t structure.

Set the TLS/IA AVP callback handler used for the session.

The callback’s function form is: int (*avp func) (gnutls session t session, void *ptr,
const char *last, size t lastlen, char **next, size t *nextlen);

The session parameter is the gnutls_session_t structure corresponding to the
current session. The ptr parameter is the application hook pointer, set through
gnutls_ia_set_server_avp_ptr(). The AVP received from the client is present in
last of lastlen size. The newly allocated output AVP to send to the client should
be placed in *next of *nextlen size.

The AVP callback is called to process incoming AVPs from the client, and to get a
new AVP to send to the client. It can also be used to instruct the TLS/IA handshake
to do go into the Intermediate or Final phases. It return a negative error code, or an
gnutls_ia_apptype_t message type.

The callback may invoke gnutls_ia_permute_inner_secret() to mix any generated
session keys with the TLS/IA inner secret.

Specifically, return GNUTLS_IA_APPLICATION_PAYLOAD (0) to send another AVP to
the client, return GNUTLS_IA_INTERMEDIATE_PHASE_FINISHED (1) to indicate that an
IntermediatePhaseFinished message should be sent, and return GNUTLS_IA_FINAL_
PHASE_FINISHED (2) to indicate that an FinalPhaseFinished message should be sent.
In the last two cases, the contents of the next and nextlen parameter is not used.

Note that the callback must use allocate the next parameter using gnutls_malloc(),
because it is released via gnutls_free() by the TLS/IA handshake function.

gnutls ia set server avp ptr

[Function]void gnutls_ia_set_server_avp_ptr (gnutls ia server credentials t
cred, void * ptr)

cred: is a gnutls_ia_client_credentials_t structure.

ptr: is the pointer

Sets the pointer that will be provided to the TLS/IA callback function as the first
argument.

Chapter 9: Function reference 215

gnutls ia verify endphase

[Function]int gnutls_ia_verify_endphase (gnutls session t session, const
char * checksum)

session: is a gnutls_session_t structure.
checksum: 12-byte checksum data, received from gnutls_ia_recv().
Verify TLS/IA end phase checksum data. If verification fails, the GNUTLS_A_INNER_
APPLICATION_VERIFICATION alert is sent to the other sie.
This function is called when gnutls_ia_recv() return GNUTLS_E_WARNING_IA_IPHF_
RECEIVED or GNUTLS_E_WARNING_IA_FPHF_RECEIVED.
Return value: Return 0 on successful verification, or an error code. If the checksum
verification of the end phase message fails, GNUTLS_E_IA_VERIFY_FAILED is returned.

9.6 Error codes and descriptions

The error codes used throughout the library are described below. The return code GNUTLS_
E_SUCCESS indicate successful operation, and is guaranteed to have the value 0, so you can
use it in logical expressions.

GNUTLS_E_AGAIN:
Function was interrupted.

GNUTLS_E_ASN1_DER_ERROR:
ASN1 parser: Error in DER parsing.

GNUTLS_E_ASN1_DER_OVERFLOW:
ASN1 parser: Overflow in DER parsing.

GNUTLS_E_ASN1_ELEMENT_NOT_FOUND:
ASN1 parser: Element was not found.

GNUTLS_E_ASN1_GENERIC_ERROR:
ASN1 parser: Generic parsing error.

GNUTLS_E_ASN1_IDENTIFIER_NOT_FOUND:
ASN1 parser: Identifier was not found

GNUTLS_E_ASN1_SYNTAX_ERROR:
ASN1 parser: Syntax error.

GNUTLS_E_ASN1_TAG_ERROR:
ASN1 parser: Error in TAG.

GNUTLS_E_ASN1_TAG_IMPLICIT:
ASN1 parser: error in implicit tag

GNUTLS_E_ASN1_TYPE_ANY_ERROR:
ASN1 parser: Error in type ’ANY’.

GNUTLS_E_ASN1_VALUE_NOT_FOUND:
ASN1 parser: Value was not found.

GNUTLS_E_ASN1_VALUE_NOT_VALID:
ASN1 parser: Value is not valid.

Chapter 9: Function reference 216

GNUTLS_E_BASE64_DECODING_ERROR:
Base64 decoding error.

GNUTLS_E_BASE64_ENCODING_ERROR:
Base64 encoding error.

GNUTLS_E_CERTIFICATE_ERROR:
Error in the certificate.

GNUTLS_E_CERTIFICATE_KEY_MISMATCH:
The certificate and the given key do not match.

GNUTLS_E_COMPRESSION_FAILED:
Compression of the TLS record packet has failed.

GNUTLS_E_CONSTRAINT_ERROR:
Some constraint limits were reached.

GNUTLS_E_DB_ERROR:
Error in Database backend.

GNUTLS_E_DECOMPRESSION_FAILED:
Decompression of the TLS record packet has failed.

GNUTLS_E_DECRYPTION_FAILED:
Decryption has failed.

GNUTLS_E_DH_PRIME_UNACCEPTABLE:
The Diffie Hellman prime sent by the server is not acceptable (not long enough).

GNUTLS_E_ENCRYPTION_FAILED:
Encryption has failed.

GNUTLS_E_ERROR_IN_FINISHED_PACKET:
An error was encountered at the TLS Finished packet calculation.

GNUTLS_E_EXPIRED:
The requested session has expired.

GNUTLS_E_FATAL_ALERT_RECEIVED:
A TLS fatal alert has been received.

GNUTLS_E_FILE_ERROR:
Error while reading file.

GNUTLS_E_GOT_APPLICATION_DATA:
TLS Application data were received, while expecting handshake data.

GNUTLS_E_HASH_FAILED:
Hashing has failed.

GNUTLS_E_IA_VERIFY_FAILED:
Verifying TLS/IA phase checksum failed

GNUTLS_E_ILLEGAL_SRP_USERNAME:
The SRP username supplied is illegal.

Chapter 9: Function reference 217

GNUTLS_E_INCOMPATIBLE_GCRYPT_LIBRARY:
The gcrypt library version is too old.

GNUTLS_E_INCOMPATIBLE_LIBTASN1_LIBRARY:
The tasn1 library version is too old.

GNUTLS_E_INIT_LIBEXTRA:
The initialization of GnuTLS-extra has failed.

GNUTLS_E_INSUFFICIENT_CREDENTIALS:
Insufficient credentials for that request.

GNUTLS_E_INTERNAL_ERROR:
GnuTLS internal error.

GNUTLS_E_INTERRUPTED:
Function was interrupted.

GNUTLS_E_INVALID_PASSWORD:
The given password contains invalid characters.

GNUTLS_E_INVALID_REQUEST:
The request is invalid.

GNUTLS_E_INVALID_SESSION:
The specified session has been invalidated for some reason.

GNUTLS_E_KEY_USAGE_VIOLATION:
Key usage violation in certificate has been detected.

GNUTLS_E_LARGE_PACKET:
A large TLS record packet was received.

GNUTLS_E_LIBRARY_VERSION_MISMATCH:
The GnuTLS library version does not match the GnuTLS-extra library version.

GNUTLS_E_LZO_INIT_FAILED:
The initialization of LZO has failed.

GNUTLS_E_MAC_VERIFY_FAILED:
The Message Authentication Code verification failed.

GNUTLS_E_MEMORY_ERROR:
Internal error in memory allocation.

GNUTLS_E_MPI_PRINT_FAILED:
Could not export a large integer.

GNUTLS_E_MPI_SCAN_FAILED:
The scanning of a large integer has failed.

GNUTLS_E_NO_CERTIFICATE_FOUND:
The peer did not send any certificate.

GNUTLS_E_NO_CIPHER_SUITES:
No supported cipher suites have been found.

Chapter 9: Function reference 218

GNUTLS_E_NO_COMPRESSION_ALGORITHMS:
No supported compression algorithms have been found.

GNUTLS_E_NO_TEMPORARY_DH_PARAMS:
No temporary DH parameters were found.

GNUTLS_E_NO_TEMPORARY_RSA_PARAMS:
No temporary RSA parameters were found.

GNUTLS_E_OPENPGP_FINGERPRINT_UNSUPPORTED:
The OpenPGP fingerprint is not supported.

GNUTLS_E_OPENPGP_GETKEY_FAILED:
Could not get OpenPGP key.

GNUTLS_E_OPENPGP_KEYRING_ERROR:
Error loading the keyring.

GNUTLS_E_OPENPGP_TRUSTDB_VERSION_UNSUPPORTED:
The specified GnuPG TrustDB version is not supported. TrustDB v4 is sup-
ported.

GNUTLS_E_PKCS1_WRONG_PAD:
Wrong padding in PKCS1 packet.

GNUTLS_E_PK_DECRYPTION_FAILED:
Public key decryption has failed.

GNUTLS_E_PK_ENCRYPTION_FAILED:
Public key encryption has failed.

GNUTLS_E_PK_SIGN_FAILED:
Public key signing has failed.

GNUTLS_E_PK_SIG_VERIFY_FAILED:
Public key signature verification has failed.

GNUTLS_E_PULL_ERROR:
Error in the pull function.

GNUTLS_E_PUSH_ERROR:
Error in the push function.

GNUTLS_E_RANDOM_FAILED:
Failed to acquire random data.

GNUTLS_E_RECEIVED_ILLEGAL_EXTENSION:
An illegal TLS extension was received.

GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER:
An illegal parameter has been received.

GNUTLS_E_RECORD_LIMIT_REACHED:
The upper limit of record packet sequence numbers has been reached. Wow!

GNUTLS_E_REHANDSHAKE:
Rehandshake was requested by the peer.

Chapter 9: Function reference 219

GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE:
The requested data were not available.

GNUTLS_E_SHORT_MEMORY_BUFFER:
The given memory buffer is too short to hold parameters.

GNUTLS_E_SRP_PWD_ERROR:
Error in password file.

GNUTLS_E_SRP_PWD_PARSING_ERROR:
Parsing error in password file.

GNUTLS_E_SUCCESS:
Success.

GNUTLS_E_TOO_MANY_EMPTY_PACKETS:
Too many empty record packets have been received.

GNUTLS_E_UNEXPECTED_HANDSHAKE_PACKET:
An unexpected TLS handshake packet was received.

GNUTLS_E_UNEXPECTED_PACKET:
An unexpected TLS packet was received.

GNUTLS_E_UNEXPECTED_PACKET_LENGTH:
A TLS packet with unexpected length was received.

GNUTLS_E_UNKNOWN_CIPHER_SUITE:
Could not negotiate a supported cipher suite.

GNUTLS_E_UNKNOWN_CIPHER_TYPE:
The cipher type is unsupported.

GNUTLS_E_UNKNOWN_COMPRESSION_ALGORITHM:
Could not negotiate a supported compression method.

GNUTLS_E_UNKNOWN_HASH_ALGORITHM:
The hash algorithm is unknown.

GNUTLS_E_UNKNOWN_PKCS_BAG_TYPE:
The PKCS structure’s bag type is unknown.

GNUTLS_E_UNKNOWN_PKCS_CONTENT_TYPE:
The PKCS structure’s content type is unknown.

GNUTLS_E_UNKNOWN_PK_ALGORITHM:
An unknown public key algorithm was encountered.

GNUTLS_E_UNSUPPORTED_CERTIFICATE_TYPE:
The certificate type is not supported.

GNUTLS_E_UNSUPPORTED_VERSION_PACKET:
A record packet with illegal version was received.

GNUTLS_E_UNWANTED_ALGORITHM:
An algorithm that is not enabled was negotiated.

Chapter 9: Function reference 220

GNUTLS_E_WARNING_ALERT_RECEIVED:
A TLS warning alert has been received.

GNUTLS_E_WARNING_IA_FPHF_RECEIVED:
Received a TLS/IA Final Phase Finished message

GNUTLS_E_WARNING_IA_IPHF_RECEIVED:
Received a TLS/IA Intermediate Phase Finished message

GNUTLS_E_X509_UNKNOWN_SAN:
Unknown Subject Alternative name in X.509 certificate.

GNUTLS_E_X509_UNSUPPORTED_ATTRIBUTE:
The certificate has unsupported attributes.

GNUTLS_E_X509_UNSUPPORTED_CRITICAL_EXTENSION:
Unsupported critical extension in X.509 certificate.

GNUTLS_E_X509_UNSUPPORTED_OID:
The OID is not supported.

Chapter 10: Certificate to XML convertion functions 221

10 Certificate to XML convertion functions

This appendix contains some example output of the XML convertion functions:
• [gnutls x509 crt to xml], page 192
• [gnutls openpgp key to xml], page 204

10.1 An X.509 certificate
<?xml version="1.0" encoding="UTF-8"?>

<gnutls:x509:certificate version="1.1">

<certificate type="SEQUENCE">

<tbsCertificate type="SEQUENCE">

<version type="INTEGER" encoding="HEX">02</version>

<serialNumber type="INTEGER" encoding="HEX">01</serialNumber>

<signature type="SEQUENCE">

<algorithm type="OBJECT ID">1.2.840.113549.1.1.4</algorithm>

<parameters type="ANY">

<md5WithRSAEncryption encoding="HEX">0500</md5WithRSAEncryption>

</parameters>

</signature>

<issuer type="CHOICE">

<rdnSequence type="SEQUENCE OF">

<unnamed1 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.6</type>

<value type="ANY">

<X520countryName>GR</X520countryName>

</value>

</unnamed1>

</unnamed1>

<unnamed2 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.8</type>

<value type="ANY">

<X520StateOrProvinceName>Attiki</X520StateOrProvinceName>

</value>

</unnamed1>

</unnamed2>

<unnamed3 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.7</type>

<value type="ANY">

<X520LocalityName>Athina</X520LocalityName>

</value>

</unnamed1>

</unnamed3>

<unnamed4 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.10</type>

<value type="ANY">

<X520OrganizationName>GNUTLS</X520OrganizationName>

</value>

</unnamed1>

</unnamed4>

<unnamed5 type="SET OF">

<unnamed1 type="SEQUENCE">

Chapter 10: Certificate to XML convertion functions 222

<type type="OBJECT ID">2.5.4.11</type>

<value type="ANY">

<X520OrganizationalUnitName>GNUTLS dev.</X520OrganizationalUnitName>

</value>

</unnamed1>

</unnamed5>

<unnamed6 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.3</type>

<value type="ANY">

<X520CommonName>GNUTLS TEST CA</X520CommonName>

</value>

</unnamed1>

</unnamed6>

<unnamed7 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">1.2.840.113549.1.9.1</type>

<value type="ANY">

<Pkcs9email>gnutls-dev@gnupg.org</Pkcs9email>

</value>

</unnamed1>

</unnamed7>

</rdnSequence>

</issuer>

<validity type="SEQUENCE">

<notBefore type="CHOICE">

<utcTime type="TIME">010707101845Z</utcTime>

</notBefore>

<notAfter type="CHOICE">

<utcTime type="TIME">020707101845Z</utcTime>

</notAfter>

</validity>

<subject type="CHOICE">

<rdnSequence type="SEQUENCE OF">

<unnamed1 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.6</type>

<value type="ANY">

<X520countryName>GR</X520countryName>

</value>

</unnamed1>

</unnamed1>

<unnamed2 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.8</type>

<value type="ANY">

<X520StateOrProvinceName>Attiki</X520StateOrProvinceName>

</value>

</unnamed1>

</unnamed2>

<unnamed3 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.7</type>

<value type="ANY">

<X520LocalityName>Athina</X520LocalityName>

</value>

</unnamed1>

</unnamed3>

Chapter 10: Certificate to XML convertion functions 223

<unnamed4 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.10</type>

<value type="ANY">

<X520OrganizationName>GNUTLS</X520OrganizationName>

</value>

</unnamed1>

</unnamed4>

<unnamed5 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.11</type>

<value type="ANY">

<X520OrganizationalUnitName>GNUTLS dev.</X520OrganizationalUnitName>

</value>

</unnamed1>

</unnamed5>

<unnamed6 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">2.5.4.3</type>

<value type="ANY">

<X520CommonName>localhost</X520CommonName>

</value>

</unnamed1>

</unnamed6>

<unnamed7 type="SET OF">

<unnamed1 type="SEQUENCE">

<type type="OBJECT ID">1.2.840.113549.1.9.1</type>

<value type="ANY">

<Pkcs9email>root@localhost</Pkcs9email>

</value>

</unnamed1>

</unnamed7>

</rdnSequence>

</subject>

<subjectPublicKeyInfo type="SEQUENCE">

<algorithm type="SEQUENCE">

<algorithm type="OBJECT ID">1.2.840.113549.1.1.1</algorithm>

<parameters type="ANY">

<rsaEncryption encoding="HEX">0500</rsaEncryption>

</parameters>

</algorithm>

<subjectPublicKey type="BIT STRING" encoding="HEX" length="1120">

30818902818100D00B49EBB226D951F5CC57072199DDF287683D2DA1A0E

FCC96BFF73164777C78C3991E92EDA66584E7B97BAB4BE68D595D225557

E01E7E57B5C35C04B491948C5C427AD588D8C6989764996D6D44E17B65C

CFC86F3B4842DE559B730C1DE3AEF1CE1A328AFF8A357EBA911E1F7E8FC

1598E21E4BF721748C587F50CF46157D950203010001</subjectPublicKey>

</subjectPublicKeyInfo>

<extensions type="SEQUENCE OF">

<unnamed1 type="SEQUENCE">

<extnID type="OBJECT ID">2.5.29.35</extnID>

<critical type="BOOLEAN">FALSE</critical>

<extnValue type="SEQUENCE">

<keyIdentifier type="OCTET STRING" encoding="HEX">

EFEE94ABC8CA577F5313DB76DC1A950093BAF3C9</keyIdentifier>

</extnValue>

</unnamed1>

<unnamed2 type="SEQUENCE">

Chapter 10: Certificate to XML convertion functions 224

<extnID type="OBJECT ID">2.5.29.37</extnID>

<critical type="BOOLEAN">FALSE</critical>

<extnValue type="SEQUENCE OF">

<unnamed1 type="OBJECT ID">1.3.6.1.5.5.7.3.1</unnamed1>

<unnamed2 type="OBJECT ID">1.3.6.1.5.5.7.3.2</unnamed2>

<unnamed3 type="OBJECT ID">1.3.6.1.4.1.311.10.3.3</unnamed3>

<unnamed4 type="OBJECT ID">2.16.840.1.113730.4.1</unnamed4>

</extnValue>

</unnamed2>

<unnamed3 type="SEQUENCE">

<extnID type="OBJECT ID">2.5.29.19</extnID>

<critical type="BOOLEAN">TRUE</critical>

<extnValue type="SEQUENCE">

<cA type="BOOLEAN">FALSE</cA>

</extnValue>

</unnamed3>

</extensions>

</tbsCertificate>

<signatureAlgorithm type="SEQUENCE">

<algorithm type="OBJECT ID">1.2.840.113549.1.1.4</algorithm>

<parameters type="ANY">

<md5WithRSAEncryption encoding="HEX">0500</md5WithRSAEncryption>

</parameters>

</signatureAlgorithm>

<signature type="BIT STRING" encoding="HEX" length="1024">

B73945273AF2A395EC54BF5DC669D953885A9D811A3B92909D24792D36A44EC

27E1C463AF8738BEFD29B311CCE8C6D9661BEC30911DAABB39B8813382B32D2

E259581EBCD26C495C083984763966FF35D1DEFE432891E610C85072578DA74

23244A8F5997B41A1F44E61F4F22C94375775055A5E72F25D5E4557467A91BD

4251</signature>

</certificate>

</gnutls:x509:certificate>

10.2 An OpenPGP key
<?xml version="1.0"?>

<gnutls:openpgp:key version="1.0">

<OPENPGPKEY>

<MAINKEY>

<KEYID>BD572CDCCCC07C3</KEYID>

<FINGERPRINT>BE615E88D6CFF27225B8A2E7BD572CDCCCC07C35</FINGERPRINT>

<PKALGO>DSA</PKALGO>

<KEYLEN>1024</KEYLEN>

<CREATED>1011533164</CREATED>

<REVOKED>0</REVOKED>

<KEY ENCODING="HEX"/>

<DSA-P>0400E72E76B62EEFA9A3BD594093292418050C02D7029D6CA2066E

FC34C86038627C643EB1A652A7AF1D37CF46FC505AC1E0C699B37895B4BCB

3E53541FFDA4766D6168C2B8AAFD6AB22466D06D18034D5DAC698E6993BA5

B350FF822E1CD8702A75114E8B73A6B09CB3B93CE44DBB516C9BB5F95BB66

6188602A0A1447236C0658F</DSA-P>

<DSA-Q>00A08F5B5E78D85F792CC2072F9474645726FB4D9373</DSA-Q>

<DSA-G>03FE3578D689D6606E9118E9F9A7042B963CF23F3D8F1377A273C0

F0974DBF44B3CABCBE14DD64412555863E39A9C627662D77AC36662AE4497

92C3262D3F12E9832A7565309D67BA0AE4DF25F5EDA0937056AD5BE89F406

9EBD7EC76CE432441DF5D52FFFD06D39E5F61E36947B698A77CB62AB81E4A

4122BF9050671D9946C865E</DSA-G>

Chapter 10: Certificate to XML convertion functions 225

<DSA-Y>0400D061437A964DDE318818C2B24DE008E60096B60DB8A684B85A

838D119FC930311889AD57A3B927F448F84EB253C623EDA73B42FF78BCE63

A6A531D75A64CE8540513808E9F5B10CE075D3417B801164918B131D3544C

8765A8ECB9971F61A09FC73D509806106B5977D211CB0E1D04D0ED96BCE89

BAE8F73D800B052139CBF8D</DSA-Y>

</MAINKEY>

<USERID>

<NAME>OpenCDK test key (Only intended for test purposes!)</NAME>

<EMAIL>opencdk@foo-bar.org</EMAIL>

<PRIMARY>0</PRIMARY>

<REVOKED>0</REVOKED>

</USERID>

<SIGNATURE>

<VERSION>4</VERSION>

<SIGCLASS>19</SIGCLASS>

<EXPIRED>0</EXPIRED>

<PKALGO>DSA</PKALGO>

<MDALGO>SHA1</MDALGO>

<CREATED>1011533164</CREATED>

<KEYID>BD572CDCCCC07C3</KEYID>

</SIGNATURE>

<SUBKEY>

<KEYID>FCB0CF3A5261E06</KEYID>

<FINGERPRINT>297B48ACC09C0FF683CA1ED1FCB0CF3A5261E067</FINGERPRINT>

<PKALGO>ELG</PKALGO>

<KEYLEN>1024</KEYLEN>

<CREATED>1011533167</CREATED>

<REVOKED>0</REVOKED>

<KEY ENCODING="HEX"/>

<ELG-P>0400E20156526069D067D24F4D71E6D38658E08BE3BF246C1ADCE0

8DB69CD8D459C1ED335738410798755AFDB79F1797CF022E70C7960F12CA6

896D27CFD24A11CD316DDE1FBCC1EA615C5C31FEC656E467078C875FC509B

1ECB99C8B56C2D875C50E2018B5B0FA378606EB6425A2533830F55FD21D64

9015615D49A1D09E9510F5F</ELG-P>

<ELG-G>000305</ELG-G>

<ELG-Y>0400D0BDADE40432758675C87D0730C360981467BAE1BEB6CC105A

3C1F366BFDBEA12E378456513238B8AD414E52A2A9661D1DF1DB6BB5F33F6

906166107556C813224330B30932DB7C8CC8225672D7AE24AF2469750E539

B661EA6475D2E03CD8D3838DC4A8AC4AFD213536FE3E96EC9D0AEA65164B5

76E01B37A8DCA89F2B257D0</ELG-Y>

</SUBKEY>

<SIGNATURE>

<VERSION>4</VERSION>

<SIGCLASS>24</SIGCLASS>

<EXPIRED>0</EXPIRED>

<PKALGO>DSA</PKALGO>

<MDALGO>SHA1</MDALGO>

<CREATED>1011533167</CREATED>

<KEYID>BD572CDCCCC07C3</KEYID>

</SIGNATURE>

</OPENPGPKEY>

</gnutls:openpgp:key>

Chapter 11: All the supported ciphersuites in GnuTLS 226

11 All the supported ciphersuites in GnuTLS

TLS_RSA_NULL_MD5 0x00 0x01 RFC 2246

TLS_ANON_DH_3DES_EDE_CBC_SHA 0x00 0x1B RFC 2246

TLS_ANON_DH_ARCFOUR_MD5 0x00 0x18 RFC 2246

TLS_ANON_DH_AES_128_CBC_SHA 0x00 0x34 RFC 2246

TLS_ANON_DH_AES_256_CBC_SHA 0x00 0x3A RFC 2246

TLS_RSA_ARCFOUR_SHA 0x00 0x05 RFC 2246

TLS_RSA_ARCFOUR_MD5 0x00 0x04 RFC 2246

TLS_RSA_3DES_EDE_CBC_SHA 0x00 0x0A RFC 2246

TLS_RSA_EXPORT_ARCFOUR_40_MD5 0x00 0x03 RFC 2246

TLS_DHE_DSS_3DES_EDE_CBC_SHA 0x00 0x13 RFC 2246

TLS_DHE_RSA_3DES_EDE_CBC_SHA 0x00 0x16 RFC 2246

TLS_RSA_AES_128_CBC_SHA 0x00 0x2F RFC 3268

TLS_RSA_AES_256_CBC_SHA 0x00 0x35 RFC 3268

TLS_DHE_DSS_AES_256_CBC_SHA 0x00 0x38 RFC 3268

TLS_DHE_DSS_AES_128_CBC_SHA 0x00 0x32 RFC 3268

TLS_DHE_RSA_AES_256_CBC_SHA 0x00 0x39 RFC 3268

TLS_DHE_RSA_AES_128_CBC_SHA 0x00 0x33 RFC 3268

TLS_SRP_SHA_3DES_EDE_CBC_SHA 0x00 0x50 draft-ietf-tls-srp

TLS_SRP_SHA_AES_128_CBC_SHA 0x00 0x53 draft-ietf-tls-srp

TLS_SRP_SHA_AES_256_CBC_SHA 0x00 0x56 draft-ietf-tls-srp

TLS_SRP_SHA_RSA_3DES_EDE_CBC_SHA 0x00 0x51 draft-ietf-tls-srp

TLS_SRP_SHA_DSS_3DES_EDE_CBC_SHA 0x00 0x52 draft-ietf-tls-srp

Chapter 11: All the supported ciphersuites in GnuTLS 227

TLS_SRP_SHA_RSA_AES_128_CBC_SHA 0x00 0x54 draft-ietf-tls-srp

TLS_SRP_SHA_DSS_AES_128_CBC_SHA 0x00 0x55 draft-ietf-tls-srp

TLS_SRP_SHA_RSA_AES_256_CBC_SHA 0x00 0x57 draft-ietf-tls-srp

TLS_SRP_SHA_DSS_AES_256_CBC_SHA 0x00 0x58 draft-ietf-tls-srp

TLS_DHE_DSS_ARCFOUR_SHA 0x00 0x66 draft-ietf-tls-56-bit-
ciphersuites

TLS_PSK_ARCFOUR_SHA 0x00 0x8A draft-ietf-tls-psk

TLS_PSK_3DES_EDE_CBC_SHA 0x00 0x8B draft-ietf-tls-psk

TLS_PSK_AES_128_CBC_SHA 0x00 0x8C draft-ietf-tls-psk

TLS_PSK_AES_256_CBC_SHA 0x00 0x8D draft-ietf-tls-psk

Chapter 12: Internal architecture of GnuTLS 228

12 Internal architecture of GnuTLS

This chapter is to give a brief description of the way GnuTLS works. The focus is to give
an idea to potential developers and those who want to know what happens inside the black
box.

12.1 The TLS protocol

The main needs for the TLS protocol to be used are shown in the image below.

This is being accomplished by the following object diagram. Note that since
GnuTLS is being developed in C object are just structures with attributes. The

Chapter 12: Internal architecture of GnuTLS 229

operations listed are functions that require the first parameter to be that object.

12.2 TLS Handshake protocol

The GnuTLS handshake protocol is implemented as a state machine that waits for input or
returns immediately when the non-blocking transport layer functions are used. The main
idea is shown in the following figure.

Also the way the input is processed varies per ciphersuite. Several implementations of the
internal handlers are available and [gnutls handshake], page 130 only multiplexes the input

Chapter 12: Internal architecture of GnuTLS 230

to the appropriate handler. For example a PSK ciphersuite has a different implementation
of the process_client_key_exchange than a certificate ciphersuite.

12.3 TLS authentication methods

In GnuTLS authentication methods can be implemented quite easily. Since the required
changes to add a new authentication method affect only the handshake protocol, a simple
interface is used. An authentication method needs only to implement the functions as seen
in the figure below.

The functions that need to be implemented are the ones responsible for interpreting the
handshake protocol messages. It is common for such functions to read data from one or

Chapter 12: Internal architecture of GnuTLS 231

more credentials_t structures1 and write data, such as certificates, usernames etc. to
auth_info_t structures.

Simple examples of existing authentication methods can be seen in auth_psk.c for PSK
ciphersuites and auth_srp.c for SRP ciphersuites. After implementing these functions the
structure holding its pointers has to be registered in gnutls_algorithms.c in the _gnutls_
kx_algorithms structure.

12.4 TLS Extension handling

As with authentication methods, the TLS extensions handlers can be implemented using
the following interface.

Here there are two functions, one for receiving the extension data and one for sending.
These functions have to check internally whether they operate in client or server side.

A simple example of an extension handler can be seen in ext_srp.c After implementing
these functions, together with the extension number they handle, they have to be registered
in gnutls_extensions.c in the _gnutls_extensions structure.

1 such as the gnutls_certificate_credentials_t structures

Chapter 12: Internal architecture of GnuTLS 232

12.5 Certificate handling

What is provided by the certificate handling functions is summarized in the following dia-
gram.

Appendix A: Copying Information 233

Appendix A Copying Information

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: Copying Information 234

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: Copying Information 235

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

Appendix A: Copying Information 236

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: Copying Information 237

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying Information 238

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying Information 239

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

A.2 GNU Lesser General Public License
Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who
decide to use it. You can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better strategy to use in any
particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish); that you receive source code or
can get it if you want it; that you can change the software and use pieces of it in new free
programs; and that you are informed that you can do these things.

Appendix A: Copying Information 240

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.
We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.
To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.
Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.
Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.
When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.
We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.
For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free
programs must be allowed to use the library. A more frequent case is that a free library
does the same job as widely used non-free libraries. In this case, there is little to gain by
limiting the free library to free software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the
GNU C Library in non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating system.

Appendix A: Copying Information 241

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

Appendix A: Copying Information 242

b. You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to
be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.
In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.
This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

Appendix A: Copying Information 243

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

Appendix A: Copying Information 244

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.
It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:
a. Accompany the combined library with a copy of the same work based on the

Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you

Appendix A: Copying Information 245

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

Appendix A: Copying Information 246

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: Copying Information 247

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full notice is
found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,

USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

A.3 GNU General Public License
Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This

Appendix A: Copying Information 248

General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Lesser General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

Appendix A: Copying Information 249

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-

Appendix A: Copying Information 250

bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way

Appendix A: Copying Information 251

you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

Appendix A: Copying Information 252

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: Copying Information 253

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits
your program.
You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License.

Concept Index 254

Concept Index

A
Alert protocol . 8
Anonymous authentication . 14

C
Callback functions . 4
Certificate authentication . 18
Certificate requests . 21
Certificate to XML convertion 221
certtool . 98
Ciphersuites . 226
Client Certificate authentication 9
Compression algorithms . 7

D
debug server . 96
Digital signatures . 23

E
Error codes . 215
Example programs . 28

F
FDL, GNU Free Documentation License 233
Function reference . 103

G
gnutls-cli . 93
gnutls-cli-debug . 94
GnuTLS-extra functions . 200
gnutls-serv . 95
GPL, GNU General Public License 247

H
Handshake protocol . 8
HTTPS server . 96

I
Inner Application (TLS/IA) functions 208
Internal architecture . 228

L
LGPL, GNU Lesser General Public License . . . 239

License, GNU GPL . 247
License, GNU LGPL . 239

M
Maximum fragment length . 11

O
OpenPGP functions . 200
OpenPGP Keys . 12, 21
OpenPGP Server . 72
OpenSSL . 92

P
PCT . 11
PKCS #10 . 21
PKCS #12 . 21
PSK authentication . 15

R
Record protocol . 6
Resuming sessions . 10

S
Server name indication . 11
SRP authentication . 14
srptool . 93
SSL 2 . 11
Symmetric encryption algorithms 7

T
TLS Extensions . 10, 11
TLS Inner Application (TLS/IA) functions 208
TLS Layers . 5
Transport protocol . 6

V
Verifying certificate paths . 20

X
X.509 certificates . 12, 18
X.509 Functions . 153

Function and Data Index 255

Function and Data Index

gnutls_alert_get . 103
gnutls_alert_get_name . 103
gnutls_alert_send . 103
gnutls_alert_send_appropriate 103
gnutls_anon_allocate_client_credentials

. 104
gnutls_anon_allocate_server_credentials

. 104
gnutls_anon_free_client_credentials 104
gnutls_anon_free_server_credentials 104
gnutls_anon_set_params_function 105
gnutls_anon_set_server_dh_params 105
gnutls_anon_set_server_params_function . . 105
gnutls_auth_client_get_type 105
gnutls_auth_get_type . 105
gnutls_auth_server_get_type 106
gnutls_authz_enable . 106
gnutls_authz_send_saml_assertion 107
gnutls_authz_send_saml_assertion_url 107
gnutls_authz_send_x509_attr_cert 108
gnutls_authz_send_x509_attr_cert_url 108
gnutls_bye . 108
gnutls_certificate_activation_time_peers

. 109
gnutls_certificate_allocate_credentials

. 109
gnutls_certificate_client_get_request_

status . 109
gnutls_certificate_client_set_retrieve_

function . 109
gnutls_certificate_expiration_time_peers

. 110
gnutls_certificate_free_ca_names 110
gnutls_certificate_free_cas 110
gnutls_certificate_free_credentials 110
gnutls_certificate_free_crls 111
gnutls_certificate_free_keys 111
gnutls_certificate_get_ours 111
gnutls_certificate_get_peers 111
gnutls_certificate_send_x509_rdn_sequence

. 112
gnutls_certificate_server_set_request . . . 112
gnutls_certificate_server_set_retrieve_

function . 112
gnutls_certificate_set_dh_params 112
gnutls_certificate_set_openpgp_key 201
gnutls_certificate_set_openpgp_key_file

. 200
gnutls_certificate_set_openpgp_key_mem . . 200
gnutls_certificate_set_openpgp_keyring_file

. 201
gnutls_certificate_set_openpgp_keyring_mem

. 201
gnutls_certificate_set_openpgp_keyserver

. 201

gnutls_certificate_set_openpgp_trustdb . . 202
gnutls_certificate_set_params_function . . 113
gnutls_certificate_set_rsa_export_params

. 113
gnutls_certificate_set_verify_flags 113
gnutls_certificate_set_verify_limits 113
gnutls_certificate_set_x509_crl 114
gnutls_certificate_set_x509_crl_file 114
gnutls_certificate_set_x509_crl_mem 114
gnutls_certificate_set_x509_key 115
gnutls_certificate_set_x509_key_file 115
gnutls_certificate_set_x509_key_mem 115
gnutls_certificate_set_x509_simple_pkcs12_

file . 116
gnutls_certificate_set_x509_trust 117
gnutls_certificate_set_x509_trust_file . . 116
gnutls_certificate_set_x509_trust_mem . . . 117
gnutls_certificate_type_get 117
gnutls_certificate_type_get_name 117
gnutls_certificate_type_set_priority 118
gnutls_certificate_verify_flags 20
gnutls_certificate_verify_peers 118
gnutls_certificate_verify_peers2 118
gnutls_check_version . 119
gnutls_cipher_get . 119
gnutls_cipher_get_key_size 119
gnutls_cipher_get_name . 119
gnutls_cipher_set_priority 119
gnutls_cipher_suite_get_name 120
gnutls_compression_get . 120
gnutls_compression_get_name 120
gnutls_compression_set_priority 120
gnutls_credentials_clear 120
gnutls_credentials_set . 121
gnutls_db_check_entry . 121
gnutls_db_get_ptr . 121
gnutls_db_remove_session 121
gnutls_db_set_cache_expiration 122
gnutls_db_set_ptr . 122
gnutls_db_set_remove_function 122
gnutls_db_set_retrieve_function 122
gnutls_db_set_store_function 122
gnutls_deinit . 123
gnutls_dh_get_group . 123
gnutls_dh_get_peers_public_bits 123
gnutls_dh_get_prime_bits 123
gnutls_dh_get_pubkey . 124
gnutls_dh_get_secret_bits 124
gnutls_dh_params_cpy . 124
gnutls_dh_params_deinit 124
gnutls_dh_params_export_pkcs3 124
gnutls_dh_params_export_raw 125
gnutls_dh_params_generate2 125
gnutls_dh_params_import_pkcs3 125
gnutls_dh_params_import_raw 126

Function and Data Index 256

gnutls_dh_params_init . 126
gnutls_dh_set_prime_bits 126
gnutls_error_is_fatal . 126
gnutls_error_to_alert . 126
gnutls_extra_check_version 200
gnutls_fingerprint . 127
gnutls_free . 127
gnutls_global_deinit . 127
gnutls_global_init . 127
gnutls_global_init_extra 200
gnutls_global_set_log_function 128
gnutls_global_set_log_level 128
gnutls_global_set_mem_functions 128
gnutls_handshake . 130
gnutls_handshake_get_last_in 129
gnutls_handshake_get_last_out 129
gnutls_handshake_set_max_packet_length . . 129
gnutls_handshake_set_private_extensions

. 129
gnutls_hex_decode . 130
gnutls_hex_encode . 130
gnutls_ia_allocate_client_credentials . . . 209
gnutls_ia_allocate_server_credentials . . . 209
gnutls_ia_enable . 210
gnutls_ia_endphase_send 210
gnutls_ia_extract_inner_secret 210
gnutls_ia_free_client_credentials 211
gnutls_ia_free_server_credentials 211
gnutls_ia_generate_challenge 211
gnutls_ia_get_client_avp_ptr 211
gnutls_ia_get_server_avp_ptr 211
gnutls_ia_handshake . 212
gnutls_ia_handshake_p . 211
gnutls_ia_permute_inner_secret 212
gnutls_ia_recv . 212
gnutls_ia_send . 213
gnutls_ia_set_client_avp_function 213
gnutls_ia_set_client_avp_ptr 214
gnutls_ia_set_server_avp_function 214
gnutls_ia_set_server_avp_ptr 214
gnutls_ia_verify_endphase 215
gnutls_init . 131
gnutls_kx_get . 131
gnutls_kx_get_name . 131
gnutls_kx_set_priority . 131
gnutls_mac_get . 132
gnutls_mac_get_name . 131
gnutls_mac_set_priority 132
gnutls_malloc . 132
gnutls_openpgp_key_check_hostname 202
gnutls_openpgp_key_deinit 202
gnutls_openpgp_key_export 202
gnutls_openpgp_key_get_creation_time 202
gnutls_openpgp_key_get_expiration_time . . 203
gnutls_openpgp_key_get_fingerprint 203
gnutls_openpgp_key_get_id 203
gnutls_openpgp_key_get_key_usage 203
gnutls_openpgp_key_get_name 203

gnutls_openpgp_key_get_pk_algorithm 204
gnutls_openpgp_key_get_version 204
gnutls_openpgp_key_import 204
gnutls_openpgp_key_init 204
gnutls_openpgp_key_to_xml 204
gnutls_openpgp_key_verify_ring 205
gnutls_openpgp_key_verify_self 205
gnutls_openpgp_key_verify_trustdb 205
gnutls_openpgp_keyring_check_id 206
gnutls_openpgp_keyring_deinit 206
gnutls_openpgp_keyring_import 206
gnutls_openpgp_keyring_init 206
gnutls_openpgp_privkey_deinit 206
gnutls_openpgp_privkey_get_pk_algorithm

. 207
gnutls_openpgp_privkey_import 207
gnutls_openpgp_privkey_init 207
gnutls_openpgp_send_key 132
gnutls_openpgp_set_recv_key_function 207
gnutls_openpgp_trustdb_deinit 208
gnutls_openpgp_trustdb_import_file 208
gnutls_openpgp_trustdb_init 208
gnutls_pem_base64_decode 133
gnutls_pem_base64_decode_alloc 132
gnutls_pem_base64_encode 133
gnutls_pem_base64_encode_alloc 133
gnutls_perror . 133
gnutls_pk_algorithm_get_name 134
gnutls_pkcs12_bag_decrypt 153
gnutls_pkcs12_bag_deinit 154
gnutls_pkcs12_bag_encrypt 154
gnutls_pkcs12_bag_get_count 154
gnutls_pkcs12_bag_get_data 154
gnutls_pkcs12_bag_get_friendly_name 154
gnutls_pkcs12_bag_get_key_id 155
gnutls_pkcs12_bag_get_type 155
gnutls_pkcs12_bag_init . 155
gnutls_pkcs12_bag_set_crl 155
gnutls_pkcs12_bag_set_crt 155
gnutls_pkcs12_bag_set_data 156
gnutls_pkcs12_bag_set_friendly_name 156
gnutls_pkcs12_bag_set_key_id 156
gnutls_pkcs12_deinit . 156
gnutls_pkcs12_export . 156
gnutls_pkcs12_generate_mac 157
gnutls_pkcs12_get_bag . 157
gnutls_pkcs12_import . 157
gnutls_pkcs12_init . 158
gnutls_pkcs12_set_bag . 158
gnutls_pkcs12_verify_mac 158
gnutls_pkcs7_deinit . 158
gnutls_pkcs7_delete_crl 158
gnutls_pkcs7_delete_crt 158
gnutls_pkcs7_export . 159
gnutls_pkcs7_get_crl_count 159
gnutls_pkcs7_get_crl_raw 159
gnutls_pkcs7_get_crt_count 159
gnutls_pkcs7_get_crt_raw 160

Function and Data Index 257

gnutls_pkcs7_import . 160
gnutls_pkcs7_init . 160
gnutls_pkcs7_set_crl . 160
gnutls_pkcs7_set_crl_raw 160
gnutls_pkcs7_set_crt . 161
gnutls_pkcs7_set_crt_raw 161
gnutls_prf . 134
gnutls_prf_raw . 134
gnutls_protocol_get_name 135
gnutls_protocol_get_version 135
gnutls_protocol_set_priority 135
gnutls_psk_allocate_client_credentials . . 135
gnutls_psk_allocate_server_credentials . . 136
gnutls_psk_free_client_credentials 136
gnutls_psk_free_server_credentials 136
gnutls_psk_server_get_username 136
gnutls_psk_set_client_credentials 137
gnutls_psk_set_client_credentials_function

. 136
gnutls_psk_set_params_function 137
gnutls_psk_set_server_credentials_file . . 137
gnutls_psk_set_server_credentials_function

. 137
gnutls_psk_set_server_dh_params 138
gnutls_psk_set_server_params_function . . . 138
gnutls_record_check_pending 138
gnutls_record_get_direction 138
gnutls_record_get_max_size 139
gnutls_record_recv . 139
gnutls_record_send . 139
gnutls_record_set_max_size 140
gnutls_rehandshake . 140
gnutls_rsa_export_get_modulus_bits 140
gnutls_rsa_export_get_pubkey 141
gnutls_rsa_params_cpy . 141
gnutls_rsa_params_deinit 141
gnutls_rsa_params_export_pkcs1 141
gnutls_rsa_params_export_raw 142
gnutls_rsa_params_generate2 142
gnutls_rsa_params_import_pkcs1 142
gnutls_rsa_params_import_raw 143
gnutls_rsa_params_init . 143
gnutls_server_name_get . 143
gnutls_server_name_set . 144
gnutls_session_get_client_random 144
gnutls_session_get_data 144
gnutls_session_get_data2 144
gnutls_session_get_id . 145
gnutls_session_get_master_secret 145
gnutls_session_get_ptr . 145
gnutls_session_get_server_random 145
gnutls_session_is_resumed 146
gnutls_session_set_data 146
gnutls_session_set_ptr . 146
gnutls_set_default_export_priority 146
gnutls_set_default_priority 147
gnutls_sign_algorithm_get_name 147
gnutls_srp_allocate_client_credentials . . 147

gnutls_srp_allocate_server_credentials . . 147
gnutls_srp_base64_decode 148
gnutls_srp_base64_decode_alloc 147
gnutls_srp_base64_encode 148
gnutls_srp_base64_encode_alloc 148
gnutls_srp_free_client_credentials 148
gnutls_srp_free_server_credentials 149
gnutls_srp_server_get_username 149
gnutls_srp_set_client_credentials 149
gnutls_srp_set_client_credentials_function

. 149
gnutls_srp_set_server_credentials_file . . 150
gnutls_srp_set_server_credentials_function

. 150
gnutls_srp_verifier . 150
gnutls_strerror . 151
gnutls_transport_get_ptr 151
gnutls_transport_get_ptr2 151
gnutls_transport_set_errno 151
gnutls_transport_set_global_errno 152
gnutls_transport_set_lowat 152
gnutls_transport_set_ptr 153
gnutls_transport_set_ptr2 152
gnutls_transport_set_pull_function 153
gnutls_transport_set_push_function 153
gnutls_x509_crl_check_issuer 161
gnutls_x509_crl_deinit . 161
gnutls_x509_crl_export . 161
gnutls_x509_crl_get_crt_count 162
gnutls_x509_crl_get_crt_serial 162
gnutls_x509_crl_get_dn_oid 162
gnutls_x509_crl_get_issuer_dn 163
gnutls_x509_crl_get_issuer_dn_by_oid 162
gnutls_x509_crl_get_next_update 163
gnutls_x509_crl_get_signature 164
gnutls_x509_crl_get_signature_algorithm

. 163
gnutls_x509_crl_get_this_update 164
gnutls_x509_crl_get_version 164
gnutls_x509_crl_import . 164
gnutls_x509_crl_init . 164
gnutls_x509_crl_print . 165
gnutls_x509_crl_set_crt 165
gnutls_x509_crl_set_crt_serial 165
gnutls_x509_crl_set_next_update 165
gnutls_x509_crl_set_this_update 166
gnutls_x509_crl_set_version 166
gnutls_x509_crl_sign . 166
gnutls_x509_crl_sign2 . 166
gnutls_x509_crl_verify . 167
gnutls_x509_crq_deinit . 167
gnutls_x509_crq_export . 167
gnutls_x509_crq_get_attribute_by_oid 167
gnutls_x509_crq_get_challenge_password . . 168
gnutls_x509_crq_get_dn . 169
gnutls_x509_crq_get_dn_by_oid 168
gnutls_x509_crq_get_dn_oid 169
gnutls_x509_crq_get_pk_algorithm 169

Function and Data Index 258

gnutls_x509_crq_get_version 170
gnutls_x509_crq_import . 170
gnutls_x509_crq_init . 170
gnutls_x509_crq_set_attribute_by_oid 170
gnutls_x509_crq_set_challenge_password . . 170
gnutls_x509_crq_set_dn_by_oid 171
gnutls_x509_crq_set_key 171
gnutls_x509_crq_set_version 171
gnutls_x509_crq_sign . 172
gnutls_x509_crq_sign2 . 171
gnutls_x509_crt_check_hostname 172
gnutls_x509_crt_check_issuer 172
gnutls_x509_crt_check_revocation 173
gnutls_x509_crt_cpy_crl_dist_points 173
gnutls_x509_crt_deinit . 173
gnutls_x509_crt_export . 173
gnutls_x509_crt_get_activation_time 174
gnutls_x509_crt_get_authority_key_id 174
gnutls_x509_crt_get_basic_constraints . . . 174
gnutls_x509_crt_get_ca_status 174
gnutls_x509_crt_get_crl_dist_points 175
gnutls_x509_crt_get_dn . 176
gnutls_x509_crt_get_dn_by_oid 175
gnutls_x509_crt_get_dn_oid 176
gnutls_x509_crt_get_expiration_time 177
gnutls_x509_crt_get_extension_by_oid 177
gnutls_x509_crt_get_extension_data 177
gnutls_x509_crt_get_extension_info 178
gnutls_x509_crt_get_extension_oid 178
gnutls_x509_crt_get_fingerprint 178
gnutls_x509_crt_get_issuer_dn 179
gnutls_x509_crt_get_issuer_dn_by_oid 179
gnutls_x509_crt_get_issuer_dn_oid 179
gnutls_x509_crt_get_key_id 180
gnutls_x509_crt_get_key_purpose_oid 180
gnutls_x509_crt_get_key_usage 181
gnutls_x509_crt_get_pk_algorithm 181
gnutls_x509_crt_get_pk_dsa_raw 181
gnutls_x509_crt_get_pk_rsa_raw 182
gnutls_x509_crt_get_proxy 182
gnutls_x509_crt_get_serial 182
gnutls_x509_crt_get_signature 183
gnutls_x509_crt_get_signature_algorithm

. 182
gnutls_x509_crt_get_subject_alt_name 183
gnutls_x509_crt_get_subject_alt_othername_

oid . 184
gnutls_x509_crt_get_subject_key_id 184
gnutls_x509_crt_get_version 184
gnutls_x509_crt_import . 184

gnutls_x509_crt_init . 185
gnutls_x509_crt_list_import 185
gnutls_x509_crt_list_verify 185
gnutls_x509_crt_print . 186
gnutls_x509_crt_set_activation_time 186
gnutls_x509_crt_set_authority_key_id 187
gnutls_x509_crt_set_basic_constraints . . . 187
gnutls_x509_crt_set_ca_status 187
gnutls_x509_crt_set_crl_dist_points 187
gnutls_x509_crt_set_crq 188
gnutls_x509_crt_set_dn_by_oid 188
gnutls_x509_crt_set_expiration_time 188
gnutls_x509_crt_set_extension_by_oid 188
gnutls_x509_crt_set_issuer_dn_by_oid 189
gnutls_x509_crt_set_key 190
gnutls_x509_crt_set_key_purpose_oid 189
gnutls_x509_crt_set_key_usage 189
gnutls_x509_crt_set_proxy 190
gnutls_x509_crt_set_proxy_dn 190
gnutls_x509_crt_set_serial 191
gnutls_x509_crt_set_subject_alternative_

name . 191
gnutls_x509_crt_set_subject_key_id 191
gnutls_x509_crt_set_version 191
gnutls_x509_crt_sign . 192
gnutls_x509_crt_sign2 . 192
gnutls_x509_crt_to_xml . 192
gnutls_x509_crt_verify . 193
gnutls_x509_crt_verify_data 193
gnutls_x509_dn_oid_known 193
gnutls_x509_privkey_cpy 193
gnutls_x509_privkey_deinit 194
gnutls_x509_privkey_export 195
gnutls_x509_privkey_export_dsa_raw 194
gnutls_x509_privkey_export_pkcs8 194
gnutls_x509_privkey_export_rsa_raw 195
gnutls_x509_privkey_fix 195
gnutls_x509_privkey_generate 196
gnutls_x509_privkey_get_key_id 196
gnutls_x509_privkey_get_pk_algorithm 196
gnutls_x509_privkey_import 198
gnutls_x509_privkey_import_dsa_raw 196
gnutls_x509_privkey_import_pkcs8 197
gnutls_x509_privkey_import_rsa_raw 197
gnutls_x509_privkey_init 198
gnutls_x509_privkey_sign_data 198
gnutls_x509_privkey_verify_data 198
gnutls_x509_rdn_get . 199
gnutls_x509_rdn_get_by_oid 199
gnutls_x509_rdn_get_oid 199

Bibliography 259

Bibliography

[CBCATT]
Bodo Moeller, "Security of CBC Ciphersuites in SSL/TLS: Problems and Coun-
termeasures", 2002, available from http://www.openssl.org/~bodo/tls-cbc.txt.

[GPGH] Mike Ashley, "The GNU Privacy Handbook", 2002, available from
http://www.gnupg.org/gph/en/manual.pdf.

[GUTPKI]
Peter Gutmann, "Everything you never wanted to know about PKI but were
forced to find out", Available from http://www.cs.auckland.ac.nz/~pgut001/.

[RFC2246]
Tim Dierks and Christopher Allen, "The TLS Protocol Version 1.0", January
1999, Available from http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2246.txt.

[RFC4346]
Tim Dierks and Eric Rescorla, "The TLS Protocol Version 1.1", Match 2006,
Available from http://kaizi.viagenie.qc.ca/ietf/rfc/rfc4346.txt.

[RFC2440]
Jon Callas, Lutz Donnerhacke, Hal Finney and Rodney Thayer,
"OpenPGP Message Format", November 1998, Available from
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2440.txt.

[RFC4211]
J. Schaad, "Internet X.509 Public Key Infrastructure Certificate Re-
quest Message Format (CRMF)", September 2005, Available from
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc4211.txt.

[RFC2817]
Rohit Khare and Scott Lawrence, "Upgrading to TLS Within HTTP/1.1", May
2000, Available from http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2817.txt

[RFC2818]
Eric Rescola, "HTTP Over TLS", May 2000, Available from
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2818.txt.

[RFC2945]
Tom Wu, "The SRP Authentication and Key Exchange System", September
2000, Available from http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2945.txt.

[RFC2986]
Magnus Nystrom and Burt Kaliski, "PKCS 10 v1.7: Certification
Request Syntax Specification", November 2000, Available from
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2986.txt.

[RFC3280]
Russell Housley, Tim Polk, Warwick Ford and David Solo, "In-
ternet X.509 Public Key Infrastructure Certificate and Certifi-
cate Revocation List (CRL) Profile", April 2002, Available from
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc3280.txt.

http://www.openssl.org/~bodo/tls-cbc.txt
http://www.gnupg.org/gph/en/manual.pdf
http://www.cs.auckland.ac.nz/~pgut001/
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2246.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc4346.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2440.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc4211.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2817.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2818.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2945.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc2986.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc3280.txt

Bibliography 260

[RFC3749]
Scott Hollenbeck, "Transport Layer Security Protocol Compression Methods",
May 2004, Available from http://kaizi.viagenie.qc.ca/ietf/rfc/rfc3749.txt.

[RFC3820]
Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman, and Mary Thomp-
son, "Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Pro-
file", June 2004, available from http://www.ietf.org/rfc3820.

[PKCS12] RSA Laboratories, "PKCS 12 v1.0: Personal Information Exchange Syntax",
June 1999, Available from http://www.rsa.com.

[RESCOLA]
Eric Rescola, "SSL and TLS: Designing and Building Secure Systems", 2001

[SSL3] Alan Freier, Philip Karlton and Paul Kocher, "The SSL Protocol Version 3.0",
November 1996, Available from http://wp.netscape.com/eng/ssl3/draft302.txt.

[STEVENS]
Richard Stevens, "UNIX Network Programming, Volume 1", Prentice Hall
PTR, January 1998

[TLSEXT] Simon Blake-Wilson, Magnus Nystrom, David Hopwood, Jan Mikkelsen and
Tim Wright, "Transport Layer Security (TLS) Extensions", June 2003, Avail-
able from http://kaizi.viagenie.qc.ca/ietf/rfc/rfc3546.txt.

[TLSPGP] Nikos Mavrogiannopoulos, "Using OpenPGP keys for TLS authen-
tication", April 2004, Internet draft, work in progress. Available from
http://www.normos.org/ietf/draft/draft-ietf-tls-openpgp-keys-05.txt.

[TLSSRP] David Taylor, Trevor Perrin, Tom Wu and Nikos Mavrogiannopoulos, "Using
SRP for TLS Authentication", August 2005, Internet draft, work in progress.
Available from http://www.normos.org/ietf/draft/draft-ietf-tls-srp-08.txt.

[TLSPSK] Pasi Eronen and Hannes Tschofenig, "Pre-shared key Ciphersuites for TLS",
December 2005, Available from http://kaizi.viagenie.qc.ca/ietf/rfc/rfc4279.txt.

[TOMSRP]
Tom Wu, "The Stanford SRP Authentication Project", Available at
http://srp.stanford.edu/.

[WEGER] Arjen Lenstra and Xiaoyun Wang and Benne de Weger, "Colliding X.509
Certificates", Cryptology ePrint Archive, Report 2005/067, Available at
http://eprint.iacr.org/.

http://kaizi.viagenie.qc.ca/ietf/rfc/rfc3749.txt
http://www.ietf.org/rfc3820
http://www.rsa.com
http://wp.netscape.com/eng/ssl3/draft302.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc3546.txt
http://www.normos.org/ietf/draft/draft-ietf-tls-openpgp-keys-05.txt
http://www.normos.org/ietf/draft/draft-ietf-tls-srp-08.txt
http://kaizi.viagenie.qc.ca/ietf/rfc/rfc4279.txt
http://srp.stanford.edu/
http://eprint.iacr.org/

	Preface
	The Library
	General Idea
	Error handling
	Memory handling
	Callback functions

	Introduction to TLS
	TLS layers
	The transport layer
	The TLS record protocol
	Encryption algorithms used in the record layer
	Compression algorithms used in the record layer
	Weaknesses and countermeasures

	The TLS Alert Protocol
	The TLS Handshake Protocol
	TLS cipher suites
	Client authentication
	Resuming Sessions
	Resuming internals

	TLS Extensions
	Maximum fragment length negotiation
	Server name indication

	On SSL 2 and older protocols

	Authentication methods
	Certificate authentication
	Authentication using X.509 certificates
	Authentication using OpenPGP keys
	Using certificate authentication

	Anonymous authentication
	Authentication using SRP
	Authentication using PSK
	Authentication and credentials
	Parameters stored in credentials

	More on certificate authentication
	The X.509 trust model
	X.509 certificates
	Verifying X.509 certificate paths
	PKCS #10 certificate requests
	PKCS #12 structures

	The OpenPGP trust model
	OpenPGP keys
	Verifying an OpenPGP key

	Digital signatures
	Supported algorithms
	Trading security for interoperability

	How to use TLS in application protocols
	Separate ports
	Upward negotiation

	How to use GnuTLS in applications
	Preparation
	Headers
	Version check
	Building the source

	Multi-threaded applications
	Client examples
	Simple client example with anonymous authentication
	Simple client example with X.509 certificate support
	Obtaining session information
	Verifying peer's certificate
	Using a callback to select the certificate to use
	Client with Resume capability example
	Simple client example with SRP authentication
	Simple client example with TLS/IA support
	Helper function for TCP connections

	Server examples
	Echo Server with X.509 authentication
	Echo Server with X.509 authentication II
	Echo Server with OpenPGP authentication
	Echo Server with SRP authentication
	Echo Server with anonymous authentication

	Miscellaneous examples
	Checking for an alert
	X.509 certificate parsing example
	Certificate request generation
	PKCS #12 structure generation

	Compatibility with the OpenSSL library

	Included programs
	Invoking srptool
	Invoking gnutls-cli
	Invoking gnutls-cli-debug
	Invoking gnutls-serv
	Setting up a test HTTPS server

	Invoking certtool

	Function reference
	Core functions
	X.509 certificate functions
	GnuTLS-extra functions
	OpenPGP functions
	TLS Inner Application (TLS/IA) functions
	Error codes and descriptions

	Certificate to XML convertion functions
	An X.509 certificate
	An OpenPGP key

	All the supported ciphersuites in GnuTLS
	Internal architecture of GnuTLS
	The TLS protocol
	TLS Handshake protocol
	TLS authentication methods
	TLS Extension handling
	Certificate handling

	Copying Information
	GNU Free Documentation License
	GNU Lesser General Public License
	GNU General Public License

	Concept Index
	Function and Data Index
	Bibliography

