
Recommendation X.509 (2000 edition) | ISO/IEC 9594-8:2000

Draft Technical Corrigendum 10

(covering resolution to defect report 314)

This corrects the defects reported in defect report 314

Replace subclause 8.4.2.2 with the following:

8.4.2.2 Name constraints extension

This field, which shall be used only in a CA-certificate, indicates a name space within which all subject names in
subsequent certificates in a certification path must be located. This field is defined as follows:

 nameConstraints EXTENSION ::= {
 SYNTAX NameConstraintsSyntax
 IDENTIFIED BY id-ce-nameConstraints }

 NameConstraintsSyntax ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

If present, the permittedSubtrees and excludedSubtrees components each specify one or more naming subtrees, each
defined by the name of the root of the subtree and optionally, within that subtree, an area that is bounded by upper
and/or lower levels. If permittedSubtrees is present, subject names within these subtrees are acceptable. If
excludedSubtrees is present, any certificate issued by the subject CA or subsequent CAs in the certification path that
has a subject name within these subtrees is unacceptable. If both permittedSubtrees and excludedSubtrees are
present and the name spaces overlap, the exclusion statement takes precedence for names within that overlap. If neither
permitted nor excluded subtrees are specified for a name form, then any name within that name form is acceptable.

If permittedSubtrees is present, the following applies to all subsequent certificates in the path. If any certificate
contains a subject name (in the subject field or subjectAltNames extension) of a name form for which permitted
subtrees are specified, the name must fall within at least one of the specified subtrees. If any certificate contains only
subject names of name forms other than those for which permittee subtrees are specified, the subject names are not
required to fall within any of the specified subtrees. For example, assume that two permitted subtrees are specified, one
for the DN name form and one for the rfc822 name form and no excluded subtrees are specified. A certificate that only
contained a DN and where the DN is within the specified permitted subtree, would be acceptable. A certificate that
contained both a DN and an rfc822 name and where only one of them is within its specified permitted subtree, would be
unacceptable. A certificate that contained only names other than a DN or rfc822 name would also be acceptable.

NOTE — This example is for illustrative purposes only. How to handle names that are in the name forms of the
GeneralName type, except the directoryName name form, in their hierarchical structure, is not defined in this
international standard | recommendation.

If excludedSubtrees is present, any certificate issued by the subject CA or subsequent CAs in the certification path
that has a subject name (in the subject field or subjectAltNames extension) within these subtrees is unacceptable. For
example, assume that two excluded subtrees are specified, one for the DN name form and one for the rfc822 name form.
A certificate that only contained a DN and where the DN is within the specified excluded subtree, would be
unacceptable. A certificate that contained both a DN and an rfc822 name and where at least one of them is within its
specified excluded subtree, would be unacceptable.
When a certificate subject has multiple names of the same name form (including, in the case of the directoryName
name form, the name in the subject field of the certificate if non-null) then all such names shall be tested for consistency
with a name constraint of that name form.

Of the name forms available through the GeneralName type, only those name forms that have a well-defined
hierarchical structure may be used in the permittedSubtrees and excludedSubtrees fields. The directoryName name
form satisfies this requirement; when using this name form a naming subtree corresponds to a DIT subtree.

The minimum field specifies the upper bound of the area within the subtree. All names whose final name component is
above the level specified are not contained within the area. A value of minimum equal to zero (the default) corresponds
to the base, i.e. the top node of the subtree. For example, if minimum is set to one, then the naming subtree excludes the
base node but includes subordinate nodes.

The maximum field specifies the lower bound of the area within the subtree. All names whose last component is below
the level specified are not contained within the area. A value of maximum of zero corresponds to the base, i.e. the top
of the subtree. An absent maximum component indicates that no lower limit should be imposed on the area within the
subtree. For example, if maximum is set to one, then the naming subtree excludes all nodes except the subtree base and
its immediate subordinates.

For the directoryName name form, a certificate is considered subordinate to the base (and therefore a candidate to
be within the subtree) if the SEQUENCE of RDNs, which forms the full DN in base, is identical to the initial
SEQUENCE of the same number of RDNs which forms the first part of the DN in the subject field of the
certificate. The DN in the subject field of the certificate may have additional trailing RDNs in its sequence that do not
appear in the DN in base. The distinguishedNameMatch matching rule is used to compare the value of base with
the initial sequence of RDNs in the DN in the subject field of the certificate.

This extension may, at the option of the certificate issuer, be either critical or non-critical. It is recommended that it be
flagged critical, otherwise a certificate user may not check that subsequent certificates in a certification path are located
in the name space intended by the issuing CA.

Conformant implementations are not required to recognize all possible name forms.

If the extension is present and is flagged critical, a certificate-using implementation must recognize and process all
name forms for which there is both a subtree specification (permitted or excluded) in the extension and a corresponding
value in the subject field or subjectAltNames extension of any subsequent certificate in the certification path. If an
unrecognized name form appears in both a subtree specification and a subsequent certificate, that certificate shall be
handled as if an unrecognized critical extension was encountered. If any subject name in the certificate falls within an
excluded subtree, the certificate is unacceptable. If a subtree is specified for a name form that is not contained in any
subsequent certificate, that subtree can be ignored.

If the extension is present and is flagged non-critical and a certificate-using implementation does not recognize a name
form used in any base component, then that subtree specification may be ignored.

Note that in some cases it may be required that more than one certificate be issued from a CA to another CA in order to
achieve the desired results if some of the name constraints requirements conflict. For example, assume the Acme
Corporation has 20 branches in the U.S.

The Widget Corporation wants to cross-certify the central CA of Acme Corporation, but only wants the Widget
community to use Acme certificates for the subjects that meets the following criteria:

- Branch1 to Branch19 of Acme Corporation, all sections are acceptable as subject;

- Branch20 of Acme Corporation, all sections are unacceptable as subject except for subject in Purchasing
Section.

This could be achieved by issued two certificates as follows; the first certificate would have a permittedSubtrees of
{base: C=US, O=Acme} and an excludedSubtrees of {base: C=US, O=Acme, OU=branch20}. The second certificate
would have a permittedSubtrees of {base: C=US, O=Acme, OU=branch20, OU=Purchasing}.

Annex G contains examples of use of the name constraints extension.

Replace subclause 10.5.2 with the following:

10.5.2 Processing intermediate certificates
For an intermediate certificate, the following constraint recording actions are then performed, in order to correctly set
up the state variables for the processing of the next certificate. Self-signed certificates, if encountered in the path, are
ignored.

a) If the nameConstraints extension with a permittedSubtrees component is present in the certificate, set
the permitted-subtrees state variable to the intersection of its previous value and the value indicated in
the certificate extension.

b) If the nameConstraints extension with an excludedSubtrees component is present in the certificate, set
the excluded-subtrees state variable to the union of its previous value and the value indicated in the
certificate extension.

c) If policy-mapping-inhibit-indicator is set:
– process any policy mappings extension by, for each mapping identified in the extension, locate all

rows in the authorities-constrained-policy-set table whose [path-depth] column entry is equal to the
issuer domain policy value in the extension and delete the row.

d) If policy-mapping-inhibit-indicator is not set:

– process any policy mappings extension by, for each mapping identified in the extension, locate all
rows in the authorities-constrained-policy-set table whose [path-depth] column entry is equal to the
issuer domain policy value in the extension, and write the subject domain policy value from the
extension in the [path-depth+1] column entry of the same row. If the extension maps an issuer
domain policy to more than one subject domain policy, then the affected row is copied and the new
entry added to each row. If the value in authorities-constrained-policy-set[0, path-depth] is any-
policy, then write each issuer domain policy identifier from the policy mappings extension in the
[path-depth] column, making duplicate rows as necessary and retaining qualifiers if they are
present, and write the subject domain policy value from the extension in the [path-depth+1] column
entry of the same row.

– if the policy-mapping-inhibit-pending indicator is set and the certificate is not self-issued, decrement
the corresponding skip-certificates value and, if this value becomes zero, set the policy-mapping-
inhibit-indicator.

– If the inhibitPolicyMapping constraint is present in the certificate, perform the following. For a
SkipCerts value of 0, set the policy-mapping-inhibit-indicator. For any other SkipCerts value, set
the policy-mapping-inhibit-pending indicator, and set the corresponding skip-certificates value to
the lesser of the SkipCerts value and the previous skip-certificates value (if the policy-mapping-
inhibit-pending indicator was already set).

e) For any row not modified in either step c) or d), above (and every row in the case that there is no
mapping extension present in the certificate), write the policy identifier from [path-depth] column in the
[path-depth+1] column of the row.

f) If inhibit-any-policy-indicator is not set:
 – If the inhibit-any-policy-pending indicator is set and the certificate is not self-issued, decrement the

corresponding skip-certificates value and, if this value becomes zero, set the inhibit-any-policy-
indicator.

 – If the inhibitAnyPolicy constraint is prensent in the certificate, perform the following. For a
SkipCerts value of 0, set the inhibit-any-policy-indicator. For any other SkipCerts value, set the
inhibit-any-policy-pending indicator, and set the corresponding skip-certificates value to the lesser
of the SkipCerts value and the previous skip-certificates value (if the inhibit-any-policy-pending
indicator was already set).

g) Increment [path-depth].

In Annex A, subclause A.1 replace:
nameConstraints EXTENSION ::= {
 SYNTAX NameConstraintsSyntax
 IDENTIFIED BY id-ce-nameConstraint }

NameConstraintsSyntax ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL,
 requiredNameForms [2] NameForms OPTIONAL }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

NameForms ::= SEQUENCE {
 basicNameForms [0] BasicNameForms OPTIONAL,
 otherNameForms [1] SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER OPTIONAL }
(ALL EXCEPT ({ --none; i.e.:at least one component shall be present-- }))

BasicNameForms ::= BIT STRING {
 rfc822Name (0),
 dNSName (1),
 x400Address (2),
 directoryName (3),
 ediPartyName (4),
 uniformResourceIdentifier (5),
 iPAddress (6),
 registeredID (7) } (SIZE (1..MAX))

with:
nameConstraints EXTENSION ::= {
 SYNTAX NameConstraintsSyntax
 IDENTIFIED BY id-ce-nameConstraints }

NameConstraintsSyntax ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

In Annex A, subclause A.1 replace:
id-ce-nameConstraint OBJECT IDENTIFIER ::= {id-ce 30 1}

with:
id-ce-nameConstraints OBJECT IDENTIFIER ::= {id-ce 30}

