
Encryption and Key
Management Tutorials

Part II: PKCS #11
Enhancements and
Opportunities

Robert Griffin
RSA, The Security Division of EMC
4/20/09 | Session ID: TUT-M51

Session Classification: Tutorial

2

Today’s Agenda

11 am – 12:15 pm: PKCS #11 V2.30

9 – 10:45 am: Learning to Speak Crypto

1 – 2:30 pm: Key Management

3:15- 5 pm: KMIP

3

Agenda for this Session

PKCS #11 use cases

Overview of PKCS #11

PKCS #11 V2.30 enhancements

PKCS #11 V2.30 use cases

Overview of
PKCS #11

PKCS #11 Standard
• PKCS #11 is a widely-accepted standard for interfacing with devices

that store keys (e.g. Hardware Security Module, smartcard)
– Specifies application programming interface (“Cryptoki”) in C

– Does not specify storage format

• History
– 1/94: project launched

– 4/95: v1.0 published

– 12/97: v2.01 published

– 12/99: v2.10 published

– 6/04: v2.20 published

– 12/05: amendments 1 & 2 (one-time password tokens, CTKIP)

– 1/07: amendment 3 (additional mechanisms)

• PKCS #11 home
– http://www.rsa.com/rsalabs/node.asp?id=2133

5

PKCS#11 Core Concepts

• Vendor neutral, cross-platform, industry
standard
– Security Object Life cycle
– Security Attributes for all Objects
– Secure by Design
– Cryptographic Services
– Extensible architecture
– Arbitrary Objects
– Arbitrary Attributes

• Supports wide range of devices
– simple tokens
– complex hardware security modules

6

General Cryptoki Model

Other Security Layers

Application 1

Cryptoki

Other Security Layers

Application k

Cryptoki

Device Contention/Synchronization

Slot 1

Token 1
(Device 1)

Slot n

Token n
(Device n)

*

7

PKCS #11 Object Hierarchy

Object

CertificateKeyData

Secret KeyPrivate KeyPublic Key

*

8

Object Attribute Hierarchy

Object
Class

Storage

Token
Private
Label
Modifiable

Hardware feature

Feature type

Mechanism

Mechanism type

Data

Application
Object Identifier
Value Certificate

Key

Domain
parameters

*

9

Security Object Life Cycle Services
• Create object on device

– In volatile (session) or persistent (token) form
– With security attributes (to protect migration or usage of object)

• Destroy object on device
• Import object into the device

– Via secure (wrapped) or insecure (plaintext) approach

• Export object from the device
– Via secure (wrapped) or insecure (plaintext) approach

• Perform operation on object on device (cryptographic
services)

• Locate object on device
– The search criteria is specified in terms of attribute values

• Set attributes against an object on device
• Get attributes from an object on device

10

Security Object Allowed Operations

• CKA_ENCRYPT
– CK_TRUE if the security object supports encryption

• CKA_DECRYPT
– CK_TRUE if the security object supports decryption

• CKA_SIGN
– CK_TRUE if the security object supports signing

• CKA_VERIFY
– CK_TRUE if the security object supports verification where the signature is an appendix to

the data

• CKA_VERIFY_RECOVER
– CK_TRUE if the security object supports verification where the data is recovered from the

signature

• CKA_DERIVE
– CK_TRUE if the security object key supports key derivation (i.e., if other keys can be derived

from this one)

• CKA_ALLOWED_MECHANISMS
– A list of mechanisms allowed to be used with this security object

11

Security Object Basic Permissions

• CKA_TOKEN
– CK_TRUE if security object is a token object
– CK_FALSE if security object is a session object

• CKA_MODIFIABLE
– CK_TRUE if object can be modified

• CKA_SENSITIVE
– Security sensitive attributes non-readable

• CKA_PRIVATE
– Authentication required prior to security object being visible

• CKA_TRUSTED
– For certificates – can be trusted for verification
– For keys – can be used as the wrapping key for wrap-trusted operations

• CKA_LOCAL
– Security object was created on the device (not imported)

12

Security Object Import/Export

• CKA_WRAP
– CK_TRUE if the security object supports wrapping (i.e., can be used to wrap

other security objects)
• CKA_WRAP_WITH_TRUSTED

– CK_TRUE if the security object can only be wrapped with a wrapping security
object that has CKA_TRUSTED set to CK_TRUE

• CKA_UNWRAP
– CK_TRUE if the security object supports unwrapping (i.e., can be used to

unwrap other security objects)
• CKA_EXTRACTABLE

– CK_TRUE if the security object is extractable and can be wrapped
• CKA_WRAP_TEMPLATE

– The attribute template to match against any security objects wrapped using this
wrapping security object. Security objects that do not match cannot be wrapped

• CKA_UNWRAP_TEMPLATE
– The attribute template to apply to any security objects unwrapped using this

wrapping security object. Any user supplied template is applied after this
template as if the object has already been created.

13

Security Object Historical State

• CKA_ALWAYS_SENSITIVE
– CK_TRUE if the security object has always had the

CKA_SENSITIVE attribute set to CK_TRUE

• CKA_NEVER_EXTRACTABLE
– CK_TRUE if the security object has never had the

CKA_EXTRACTABLE attribute set to CK_TRUE

• CKA_START_DATE
– Start date for the security object (day/month/year)

• CKA_END_DATE
– End date for the security object (day/month/year)

14

Session States

R/O Public
Session

R/O User
Functions

Lo
gi

n
U

se
r

Lo
go

ut

Open Session

Open Session

Close Session/
Device Removed

Close Session/
Device Removed

R/W SO
Functions

R/W Public
Session

Lo
gi

n
SO

Lo
go

ut

Open Session

Open Session

Close Session/
Device Removed

Close Session/
Device Removed

R/W User
Functions

Lo
gi

n
U

se
r

Lo
go

ut

Open Session Close Session/

Device Removed

Read-Only Session States

Read-Write Session States

*

15

Session Events

the device underlying the token has been removed from its slot.Device
Removed

the application closes the session or closes all sessions.Close Session
the application logs out the current user (SO or normal user).Log Out

the normal user is authenticated to the token.Log In User

the SO is authenticated to the token.Log In SO

Occurs when...Event

*

16

PKCS Mechanisms

• A mechanism specifies precisely how a certain cryptographic
process is to be performed.

– For example, CKM_RSA_PKCS_KEY_PAIR_GEN is a key pair generation
mechanism based on the RSA public-key cryptosystem, as defined in PKCS #1.
It does not support encrypt/decrypt, sign/verify, signRecovery/verifyRecover,
digest, wrap/unwrap or derive key.

• For a particular token, a particular operation may support only a
subset of the mechanisms listed.

– For example, CKM_SECURID_KEY_GEN, defined in Amendment 1 to V2.20,
generates RSA SecurID keys with a particular set of attributes as specified in the
template for the key.

• There is no guarantee that a token which supports one mechanism
for some operation supports any other mechanism for any other
operation (or even supports that same mechanism for any other
operation).

– For example, even if a token is able to create RSA digital signatures with the
CKM_RSA_PKCS mechanism, it may or may not be the case that the same
token can also perform RSA encryption with CKM_RSA_PKCS.

17

PKCS #11 Use
Cases

PKCS #11 Use Cases

• Hardware Security Module

• Smartcard Interface

• Certificate Distribution

• One-time Password

19

Oracle PKCS #11 Interface to HSM

Oracle Database 11g Transparent Data Encryption (TDE) communicates with the HSM
device using the PKCS#11 interface.

PKCS #11

20

Smartcard Interface

The two primary ways for applications to communicate with smart cards or other
cryptographic tokens are via a PKCS#11 interface, or by a Cryptographic Service
Provider (CSP).

21

Certificate Distribution

22

One-Time Password

23

PKCS #11 v2.30
Enhancements

PKCS #11 V2.30 Enhancements

• New mechanisms
– GOST

– SEED

– TPM

• Additional or enhanced mechanisms
– AES-CCM authenticated Encryption / Decryption

– AES-GCM authenticated Encryption / Decryption

– CKM_BLOWFISH_CBC_PAD

25

GOST Mechanisms

• The GOST standards are maintained by the Euro-
Asian Council for Standardization, Metrology and
Certification (EASC).
– Official web site at http://www.gost.ru/wps/portal/

– English information at http://tools.ietf.org/html/rfc4357

• GOST 28147-89 is a block cipher with 64-bit block size and 256-
bit keys.

– GOST 28147-89 secret key objects (object class CKO_SECRET_KEY, key
type CKK_GOST28147) hold GOST 28147-89 keys for key generation,
encrypt, etc.

– Additional objects support other GOST mechanisms.

• GOST R 34.11-94 is a mechanism for message digesting.

• GOST R 34.10-2001 is a mechanism for single- and multiple-part
signatures and verification.

26

GOST Mechanisms - 2

√CKM_ GOST3410_DERIVE

√CKM_ GOST3410_KEY_WRAP

√CKM_GOST3410_WITH_ GOST3411

√1CKM_GOST3410

√CKM_GOST3410_KEY_PAIR_GEN

√CKM_GOST3411_HMAC

√CKM_GOST3411

√CKM_ GOST28147_KEY_WRAP

√CKM_ GOST28147_MAC

√√CKM_GOST28147

√√CKM_ GOST28147_ECB

√CKM_GOST28147_KEY_GEN

DeriveWrap & UnwrapGen. Key/ Key
Pair

DigestSR & VRSign &
Verify

Encrypt &
Decrypt

Functions
Mechanism

27

SEED Mechanisms

• SEED is a block cipher with 128-bit block size
and 128-bit keys.
– developed by the Korean Information Security Agency and first

published in 1998.

– Used broadly in South Korean industry.

• The new key type is CKK_SEED. It is a general
block cipher key type with a fixed CKA_VALUE
length of 16 bytes.

28

SEED Mechanisms - 2

√CKM_SEED_CBC_ENCRYPT_DATA

√CKM_SEED_ECB_ENCRYPT_DATA

√CKM_SEED_MAC_GENERAL

√CKM_SEED_MAC

√√CKM_SEED_CBC_PAD

√√CKM_SEED_CBC

√√CKM_SEED_ECB

√CKM_SEED_KEY_GEN

DeriveWrap & UnwrapGen. Key/ Key
Pair

DigestSR & VRSign &
Veri
fy

Encrypt &
Dec
rypt

Functions

Mechanism

29

TPM Mechanisms

• New mechanisms proposed for V2.30 to support Trusted
Platform Modules (TPM).
– Support RSA encrypt/decrypt as specified in Trusted Computing Group

(TCG)'s Trusted Platform Module specification.

– Minor modification of PKCS#1 v 1.5 and PKCS#1-style OAEP to
prepend TCG-specific header information to plaintext before padding.

• Proposal is to introduce two new mechanisms to
automatically prepend / strip the header information
– Could be supported using existing mechanisms by requiring the

developer to process the header manually.

– Mechanisms make interoperability with TPM more developer-friendly.

30

TPM Mechanisms - 2

CKM_RSA_OAEP_TPM_1_1

CKM_RSA_PKCS_TPM_1_1

DeriveWrap
&

Unwrap

Gen.
Key/
Key
Pair

DigestSR
&

VR1

Sign
&

Verify

Encrypt
&

Decrypt
Mechanisms

Functions

Encrypt and decrypt support for single-part operations only.

31

Other Additional or Enhanced Mechanisms

• CKM_AES_CCM
– Supports Counter with CBC Mac Mode (RFC 2610) for authenticated

encrypt and decrypt processes.
– Specified in RFC 3610.
– For use in IPsec (RFC 4309), CMS (RFC 5084), etc.

• CKM_AES_GCM
– Supports Galois Counter Mode for authenticated encrypt and decrypt

processes.
– For use in IPsec (RFC 4106), CMS (RFC 5084), TLS (RFC 5288) etc.

• CKM_BLOWFISH_CBC_PAD
– Supports single- and multiple-part encryption and decryption, key

wrapping and key unwrapping.
– The PKCS padding in this mechanism allows the length of the plaintext

value to be recovered from the ciphertext value.

32

PKCS #11 v2.30
Opportunities

GOST

• Support PKCS #11 interfaces for disk encryption and
other applications in the Commonwealth of Independent
States (CIS).

34

SEED Mechanism

Support PKCS #11 interfaces for browser security and
other applications in the South Korean market.

Client Server

Decrypt challenge

Decrypt Message Digest and
Client Certificate

Verify Client certificate and
recompute message digestDone

Calculate message digest
on Challenge and Server
certificate

(Challenge phrase)
Server write key

[Message Digest &
Client Certificate]
Client private key

(Session Identifier)
Server's write key

Generate new challenge
Requests Client certificate

35

TPM Mechanism

• Allow encryption for TPM public key on non-
TPM-enabled machine

• Allow greater ease of use of TPM functionality
through PKCS#11 on TPM-enabled machine.

36

Authenticated Encryption

• TLS support through AES GCM and AES CCM
mechanisms.

37

Questions?

